
CPSC 229, Spring 2021 Sample Answers for Homework #9

1. (5 points) Use the Pumping Lemma for Regular Languages to prove that the following
languages are not regular. (Remember that any pumping lemma proof follows a similar pattern
to the one given in class, starting with, “Suppose that L is regular. Then by the pumping
lemma, there is an integer K such that if w is any string w ∈ L with |w| ≥ K, then w can be
written w = xyz where |xy| ≤ K, |y| ≥ 1, and xynz ∈ L for all natural numbers n. But let
w = . . . , which is in L and |w| ≥ K.”)

a) L = {ww | w ∈ {a, b}∗}. L consists of strings of a’s and b’s where the first half of the string
is identical to the second half, such as abbababbab.

b) L = {w ∈ {a, b}∗ | na(w) < nb(w)}, where nσ(w) means the number of σ’s in w.

Answer:

a) Let L = {ww | w ∈ {a, b}∗}. Suppose, for the sake of contradiction, that L is regular.
By the Pumping Lemma, there is a K ∈ N such that if w is any string in L with
|w| ≥ K, then w can be written w = xyz where |xy| ≤ K, |y| ≥ 1, and xynz ∈ L for all
natural numbers n. But let w = aKbaKb, which is in L and |w| ≥ K. Write w = xyz,
as in the Pumping Lemma. Since |xy| ≤ K, and the first K characters in w are a’s,
we see that y must consist entirely of a’s. So y = aj for some j > 0. By the Pumping
Lemma, xy2z ∈ L. Now xy2z = aK+jbaKb, where j > 0. Since there are more a’s in
the first group of a’s than in the second group, xy2z 6∈ L. This contradicts xy2z ∈ L,
and this contradiction proves that L cannot be regular.

b) Let L = {w ∈ {a, b}∗ | na(w) < nb(w)}. Suppose, for the sake of contradiction, that L
is regular. By the Pumping Lemma, there is a K ∈ N such that if w is any string in L
with |w| ≥ K, then w can be written w = xyz where |xy| ≤ K, |y| ≥ 1, and xynz ∈ L
for all natural numbers n. But let w = aKbK+1, which is in L and |w| ≥ K. Write
w = xyz, as in the Pumping Lemma. Since |xy| ≤ K, and the first K characters in
w are a’s, we see that y must consist entirely of a’s. So y = aj for some j > 0. By
the Pumping Lemma, xy2z ∈ L. Now xy2z = aK+jbK+1, where j > 0. Since j ≥ 1,
K + j ≥ K + 1. That is, the number of a’s in xy2z is not less than the number of b’s
in xy2z. So xy2z 6∈ L. This contradicts xy2z ∈ L, and this contradiction proves that
L cannot be regular.

S −→ TR
T −→ aTb
T −→ ε
R −→ cRd
R −→ c

2. (5 points) Consider the context free grammar shown at the right.

a) Write a derivation for the string aabbc using this grammar.

b) Write a derivation for the string abcccdd using this grammar.

c) Find the language generated by this grammar. Briefly justify your answer.

Answer:

a) S =⇒ TR
=⇒ aTbR
=⇒ aaTbbR
=⇒ aabbR
=⇒ aabbc



b) S =⇒ TR
=⇒ aTbR
=⇒ abR
=⇒ abcRd
=⇒ abccRdd
=⇒ abcccdd

c) This grammar generates the language {anbncm+1dm | n,m ∈ N}. (This could also be
written {anbmckd` | n = m and k = ` + 1}.) The only rule that applies to the start
symbol S is S −→ TR, so any string in the language consists of a string generated
from T followed by a string generated from R. From T , the rule T −→ aTb can
only generate the same number of a’s and b’s, with the T in the middle. Eventually,
T −→ ε must be applied to make the T go away, leaving a string anbn for some n ∈ N.
Similarly, R −→ cRd always generates the same number of c’s and d’s. Then the rule
R −→ c must be applied for the R to go away, leaving a string ckd` where k is `+ 1.

3. (10 points) For each of the following languages, create a Context-Free Grammar that generates
that language. Explain in words why your grammar works. (As a hint for part (b), think
about what you need to add to the grammar that we did in class for {w ∈ {a, b}∗ | na(w) =
nb(w)}. As a hint for part (d), note that letters can match in pairs a/c, a/d, b/c, and b/d.)

a) {anban | n ∈ N} b) {w ∈ {a, b}∗ | na(w) < nb(w)}

c) {anbmckdl | m = k and n = l} d) {anbmckdl | n+m = k + l}

Answer:

a) S −→ aSa
S −→ b

This grammar generates equal numbers of a’s on either
side of S. When the rule S −→ b is applied, it puts a b
between the two groups of a’s.

b) T −→ SbS
S −→ SS
S −→ aSb
S −→ bSa
S −→ ε
S −→ b

The start symbol for this grammar is T . Any string in the
language must have at least one b that does not match
any a. The first rule in the grammar must be the first
rule applied in any derivation, and it adds a b with no
matching a. The next four rules generate equal numbers
of a’s and b’s while the last rule makes it possible to add
more extra b’s.

c) S −→ aSd
S −→ T
T −→ bTc
T −→ ε

The first rule can be used repeatedly to generate strings
of the form anSd` where n = `. Eventually, the rule
S −→ T must be applied. Then the third rule can
be applied repeatedly to generate strings of the from
anbmTckd`, with m = k. The rule T −→ ε is used at
the end to get remove the T .



d) S −→ aSd
T −→ aTc
R −→ bRd
U −→ bUc
S −→ T
S −→ R
T −→ U
R −→ U
U −→ ε

The first four rules can generate the four possible pairs
of letters, a/c, a/d, b/c, and b/d. They ensure that the
number of a’s plus the number of b’s must always be equal
to the number of c’s plus the number of d’s. The next
four rules ensure that the characters can only occur in
the correct order. For example, once we stop generating
a/d pairs with the first rule, we can change to generating
either a/c or b/d pairs, inside the paired a’s and d’s. And
we can always finish by transitioning to U to generate b/c
pairs between any a’s and d’s. The last rule allows the
U to disappear in the end.

4. (3 points) Given the following (very incomplete) BNF grammar for “names” in Java, write
down six “names” generated by this grammar. Your examples should demonstrate all the
possibilities represented in the rules.

〈name〉 ::= 〈object ref 〉 [ “.” 〈identifier〉 ]
〈object ref 〉 ::= 〈identifier〉 | 〈method call〉
〈identifier〉 ::= “a” | “x” | “y” | “z”

〈method call〉 ::= 〈identifier〉 “(” 〈name〉 [ “,” 〈name〉 ]. . . “)”

Answer:

x a(x) x.y

a(x).y a(x,y,z) a(x,y,z).a

a(x(y)) z(a(x).y,z) z(y(z.a,z.a),x).a

S

A Ba b 

cA dBd

dBdcA

Aε

cA

ε

5. (7 points) Suppose that the parse tree at the right is based on a context-free
grammar G that has exactly five production rules.

a) Give the five production rules that must be part of G for this parse tree
to be valid.

b) What is the yield of this parse tree, that is, the string that is being
parsed?

c) Give the left derivation corresponding to this parse tree.

d) Give the right derivation corresponding to this parse tree.

e) Draw a parse tree using the same grammar for the string abdccd.

Answer:

a) S −→ aAbB
A −→ Ac
A −→ ε
B −→ dBd
B −→ A

b) accbddcdd



c) S =⇒ aAbB
=⇒ aAcbB
=⇒ aAccbB
=⇒ accbB
=⇒ accbdBd
=⇒ accbddBdd
=⇒ accbddAdd
=⇒ accbddAcdd
=⇒ accbddcdd

d) S =⇒ aAbB
=⇒ aAbdBd
=⇒ aAbddBdd
=⇒ aAbddAdd
=⇒ aAbddAcdd
=⇒ aAbddcdd
=⇒ aAcbddcdd
=⇒ aAccbddcdd
=⇒ accbddcdd

e)
S

A Ba b 

cA

dBd

cA

A

ε

ε


