- 1. (5 points) Use the Pumping Lemma for Regular Languages to prove that the following languages are **not** regular. (Remember that any pumping lemma proof follows a similar pattern to the one given in class, starting with, "Suppose that L is regular. Then by the pumping lemma, there is an integer K such that if w is any string $w \in L$ with $|w| \ge K$, then w can be written w = xyz where $|xy| \le K$, $|y| \ge 1$, and $xy^n z \in L$ for all natural numbers n. But let $w = \ldots$, which is in L and $|w| \ge K$.")
 - a) $L = \{ww \mid w \in \{a, b\}^*\}$. L consists of strings of a's and b's where the first half of the string is identical to the second half, such as *abbababbab*.
 - **b)** $L = \{w \in \{a, b\}^* \mid n_a(w) < n_b(w)\}$, where $n_\sigma(w)$ means the number of σ 's in w.

Answer:

- a) Let $L = \{ww \mid w \in \{a, b\}^*\}$. Suppose, for the sake of contradiction, that L is regular. By the Pumping Lemma, there is a $K \in \mathbb{N}$ such that if w is any string in L with $|w| \geq K$, then w can be written w = xyz where $|xy| \leq K$, $|y| \geq 1$, and $xy^n z \in L$ for all natural numbers n. But let $w = a^K b a^K b$, which is in L and $|w| \geq K$. Write w = xyz, as in the Pumping Lemma. Since $|xy| \leq K$, and the first K characters in w are a's, we see that y must consist entirely of a's. So $y = a^j$ for some j > 0. By the Pumping Lemma, $xy^2z \in L$. Now $xy^2z = a^{K+j}ba^Kb$, where j > 0. Since there are more a's in the first group of a's than in the second group, $xy^2z \notin L$. This contradicts $xy^2z \in L$, and this contradiction proves that L cannot be regular.
- **b)** Let $L = \{w \in \{a, b\}^* \mid n_a(w) < n_b(w)\}$. Suppose, for the sake of contradiction, that L is regular. By the Pumping Lemma, there is a $K \in \mathbb{N}$ such that if w is any string in L with $|w| \ge K$, then w can be written w = xyz where $|xy| \le K$, $|y| \ge 1$, and $xy^n z \in L$ for all natural numbers n. But let $w = a^K b^{K+1}$, which is in L and $|w| \ge K$. Write w = xyz, as in the Pumping Lemma. Since $|xy| \le K$, and the first K characters in w are a's, we see that y must consist entirely of a's. So $y = a^j$ for some j > 0. By the Pumping Lemma, $xy^2z \in L$. Now $xy^2z = a^{K+j}b^{K+1}$, where j > 0. Since $j \ge 1$, $K + j \ge K + 1$. That is, the number of a's in xy^2z is **not** less than the number of b's in xy^2z . So $xy^2z \notin L$. This contradicts $xy^2z \in L$, and this contradiction proves that L cannot be regular.
- **2.** (5 points) Consider the context free grammar shown at the right. $S \longrightarrow TR$
 - a) Write a derivation for the string *aabbc* using this grammar. $T \longrightarrow aTb$
 - **b)** Write a derivation for the string *abcccdd* using this grammar. $\begin{array}{c} T \longrightarrow \varepsilon \\ R \longrightarrow cRd \end{array}$
 - c) Find the language generated by this grammar. Briefly justify your answer. $R \longrightarrow c$

Answer:

$$\begin{array}{l} \mathbf{a)} \ \mathbf{S} \Longrightarrow TR \\ \Longrightarrow aTbR \\ \Longrightarrow aaTbbR \\ \Longrightarrow aabbR \\ \Longrightarrow aabbc \end{array}$$

b) $S \Longrightarrow TR$ $\Longrightarrow aTbR$ $\Rightarrow abR$ $\Rightarrow abcRd$ $\Rightarrow abccRdd$ $\Rightarrow abcccdd$

- c) This grammar generates the language $\{a^n b^n c^{m+1} d^m \mid n, m \in \mathbb{N}\}$. (This could also be written $\{a^n b^m c^k d^\ell \mid n = m \text{ and } k = \ell + 1\}$.) The only rule that applies to the start symbol S is $S \longrightarrow TR$, so any string in the language consists of a string generated from T followed by a string generated from R. From T, the rule $T \longrightarrow aTb$ can only generate the same number of a's and b's, with the T in the middle. Eventually, $T \longrightarrow \varepsilon$ must be applied to make the T go away, leaving a string $a^n b^n$ for some $n \in \mathbb{N}$. Similarly, $R \longrightarrow cRd$ always generates the same number of c's and d's. Then the rule $R \longrightarrow c$ must be applied for the R to go away, leaving a string $c^k d^\ell$ where k is $\ell + 1$.
- **3.** (10 points) For each of the following languages, create a Context-Free Grammar that generates that language. **Explain in words why your grammar works**. (As a hint for part (b), think about what you need to add to the grammar that we did in class for $\{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$. As a hint for part (d), note that letters can match in pairs a/c, a/d, b/c, and b/d.)
 - a) $\{a^n b a^n \mid n \in \mathbb{N}\}$ b) $\{w \in \{a, b\}^* \mid n_a(w) < n_b(w)\}$

c)
$$\{a^n b^m c^k d^l \mid m = k \text{ and } n = l\}$$
 d) $\{a^n b^m c^k d^l \mid n + m = k + l\}$

Answer:

- a) $S \longrightarrow aSa$ $S \longrightarrow b$ This grammar generates equal numbers of a's on either side of S. When the rule $S \longrightarrow b$ is applied, it puts a b between the two groups of a's.
- b) $T \longrightarrow SbS$ The start symbol for this grammar is T. Any string in the language must have at least one b that does not match $S \longrightarrow aSb$ and a. The first rule in the grammar must be the first $S \longrightarrow bSa$ rule applied in any derivation, and it adds a b with no $S \longrightarrow \varepsilon$ matching a. The next four rules generate equal numbers $S \longrightarrow b$ of a's and b's while the last rule makes it possible to add more extra b's.
- $\begin{array}{lll} \mathbf{c} & S \longrightarrow aSd \\ & S \longrightarrow T \\ & T \longrightarrow bTc \\ & T \longrightarrow \varepsilon \end{array} \end{array} \begin{array}{lll} \text{The first rule can be used repeatedly to generate strings} \\ & of the form a^nSd^ℓ where $n = \ell$. Eventually, the rule $T \longrightarrow bTc$ \\ & T \longrightarrow \varepsilon \end{array} \end{array} \begin{array}{lll} \text{S} \longrightarrow T \\ & \text{be applied. Then the third rule can be applied repeatedly to generate strings of the from $a^nb^mTc^kd^\ell$, with $m = k$. The rule $T \longrightarrow \varepsilon$ is used at the end to get remove the T. } \end{array}$

d)	$S \longrightarrow aSd$	The first four rules can generate the four possible pairs
	$T \longrightarrow aTc$	of letters, a/c , a/d , b/c , and b/d . They ensure that the
	$R \longrightarrow bRd$	number of a 's plus the number of b 's must always be equal
	$U \longrightarrow bUc$	to the number of c 's plus the number of d 's. The next
	$S \longrightarrow T$	four rules ensure that the characters can only occur in
	$S \longrightarrow R$	the correct order. For example, once we stop generating
	$T \longrightarrow U$	a/d pairs with the first rule, we can change to generating
	$R \longrightarrow U$	either a/c or b/d pairs, inside the paired a's and d's. And
	$U \longrightarrow \varepsilon$	we can always finish by transitioning to U to generate b/c
		pairs between any a 's and d 's. The last rule allows the
		U to disappear in the end.

4. (3 points) Given the following (very incomplete) BNF grammar for "names" in Java, write down **six** "names" generated by this grammar. Your examples should demonstrate all the possibilities represented in the rules.

$$\begin{array}{l} \langle name \rangle :::= \langle object_ref \rangle ["." \langle identifier \rangle] \\ \langle object_ref \rangle :::= \langle identifier \rangle | \langle method_call \rangle \\ \langle identifier \rangle :::= "a" | "x" | "y" | "z" \\ \langle method_call \rangle :::= \langle identifier \rangle "(" \langle name \rangle ["," \langle name \rangle]...")" \end{array}$$

Answer:

x	a(x)	x.y
a(x).y	a(x,y,z)	a(x,y,z).a
a(x(y))	z(a(x).y,z)	z(y(z.a,z.a),x).a

- 5. (7 points) Suppose that the parse tree at the right is based on a context-free grammar G that has exactly five production rules.
 - a) Give the five production rules that must be part of G for this parse tree to be valid.
 - **b)** What is the yield of this parse tree, that is, the string that is being parsed?
 - c) Give the left derivation corresponding to this parse tree.
 - d) Give the right derivation corresponding to this parse tree.
 - e) Draw a parse tree using the same grammar for the string *abdccd*.

Answer:

a) $S \longrightarrow aAbB$ $A \longrightarrow Ac$ $A \longrightarrow \varepsilon$ $B \longrightarrow dBd$ $B \longrightarrow A$

b) accbddcdd

c) $S \Longrightarrow aAbB$

 $\implies aAcbB$

 $\implies aAccbB$

 $\implies accbB$

 $\implies accbdBd$

 $\implies accbddBdd$

 $\implies accbddAdd$

 $\implies accbddAcdd$

 $\implies accbddcdd$

d) $S \Longrightarrow aAbB$

 $\implies aAbdBd$

 $\implies aAbddBdd$

 $\implies aAbddAdd$

 $\implies aAbddAcdd$

 $\Longrightarrow aAbddcdd$

 $\implies aAcbddcdd$

 $\implies aAccbddcdd$

 $\implies accbddcdd$

e)

$$\begin{array}{c}
 S \\
 a \\
 A \\
 b \\
 B \\
 c \\
 A \\
 A \\
 A \\
 A \\
 C \\
 B \\
 E \\
 \end{array}$$