
CPSC 229, Spring 2021 Second Test Info

The second test for this course will be given in class on Wednesday, April 14. The test covers

all of the material that we have studied from Chapter 3 and Sections 4.1 through 4.3 in Chapter

4, except for Sections 3.3 and 3.7. (This means that you will not be asked about grep, or about

other Linux commands, or about the complex syntax that is used for practical regular expressions.

And there will be no Pumping Lemma proof. Note that pushdown automata, Section 4.4, are not

included.)

The test will include some “short essay” questions that ask you to define something, or discuss

something, or explain something, and so on. Other than that, you can expect most of the questions

to be similar to problems that have been given on the homework. There might be some simple proofs.

Here are some terms and ideas that you should be familiar with for the test:

alphabet (finite, non-empty set of “symbols”)

string over an alphabet Σ

length of a string, |x|

empty string, ε

concatenation of strings, xy or x · y

reverse of a string, xR

xn, for a string x and a natural number n

nσ(x), the number of occurrences of a symbol σ in a string x

the set of all possible strings over Σ, denoted Σ∗

language over an alphabet Σ (a subset of Σ∗)

a language over Σ is an element of P
(

Σ∗

)

the set of strings over Σ is countable; the set of languages over Σ is uncountable

union, intersection, set difference, and complement applied to languages

concatenation of languages: LM , Ln for n ∈ N

Kleene-star operation on a language: L∗

regular experssion over an alphabet Σ; the operators: *, |, and concatenation

regular language; the language L(r) generated by a regular expression r

DFA (Deterministic Finite Automaton)

transition diagram [the usual picture] of a DFA

state (in a finite-state automaton); start state; accepting state (also known as final state)

definition of a DFA as a list of five things, (Q,Σ, qo, δ, F) — and what each thing means

how a DFA computes (that is, what it does when it reads and processes a string)

NFA (Non-deterministic Finite Automaton); the differences between NFAs and DFAs

nondeterminism

ε-transitions

what it means for an NFA to accept a string

the language, L(M), accepted by an NFA or DFA, M

algorithm for converting an NFA to an equivalent DFA

algorithm for converting a regular expression to an equivalent NFA

DFAs, NFAs, and regular expressions all define the same class of languages

operations (L ∪M , L ∩M , LM , L∗, L, LR) on regular languages produce regular languages

CFGs (Context-Free Grammars)

production rules; non-terminal and terminal symbols; start symbol

definition of a CFG as a list of 4 things, G = (V,Σ, P, S)

derivation (of a string from the start symbol of a CFG)

the language, L(G), generated by a CFG, G; context-free language

if L and M are context-free languages, then so are L ∪M , LM , and L∗

every regular language is context-free

BNF (Backus-Naur Form)

using BNF to define the syntax of a language

parsing

parse tree

left derivations and right derivations

how a parse tree coressponds to a derivation

examples of languages that are not regular, such as:

{anbn |n = m}

{anbmck | k = n+m}

{w ∈ {a, b}∗ |w = wR}

{w ∈ {a, b}∗ |na(w) < nb(w)}

{ww |w ∈ {a, b}∗}

{anbncn |n ∈ N}

{an
2

|n ∈ N}

{www |w ∈ {a, b}∗}

examples of languages that are context-free but not regular, such as:

the first four languages in the previous list

some of the tasks that you could be asked to perform:

finding a regular expression for a given language

finding a DFA or NFA for a given language

finding a regular expression for an NFA or DFA

converting an NFA into an equivalent DFA, using the algorithm

converting a regular expression into an equivalent NFA, using the algorithm

determining whether a given string is accepted by an NFA or DFA

finding a derivation for a given string from a given CFG

finding a CFG for a given language

finding the language generated by a given CFG

using BNF in basic ways

finding a parse tree for a given string from a given CFG

finding a left derivation or a right derivation

Here are some practice problems from old exams. . .

Note that this is not meant to be a complete review of
everything that might be on the test. It is meant to give you

a feeling for what kinds of test questions are possible

1. a) Suppose that L and M are languages over an alphabet Σ. How is the language LM defined?

b) Suppose that Σ = {a, b, c} and that L is the language L = {a, b} and M is the language
M = {w ∈ Σ∗ |w ends with a c}. What strings are in the language LM ? (Describe the language
with words, not with a regular expression.)

2. Consider the following context-free grammars:

S −→ TR

T −→ aTb

T −→ aT

T −→ a

R −→ aRb

R −→ bR

R −→ b

S −→ SS

S −→ T

T −→ aTb

T −→ ε

a) For the grammar on the left, find a left derivation and the corresponding parse tree for
the string aaabbabbb.

b) For the grammar on the right, find two left derivations and the two corresponding parse
trees for the string abaabbab.

3. Consider the following Nondeterministic Finite Automaton:

qo

q2

q4

q1

q3

a

b

b

b

a

a

a) Give a regular expression for the language accepted by this NFA.

b) Apply the NFA-to-DFA conversion algorithm to construct a DFA that accepts the same
language as this NFA.

4. Consider the regular language L = {w ∈ {a, b}∗ | w contains the substring abaab}. Draw a DFA
that accepts exactly this language.

5. Give a regular expression that generates each language (no explanation necessary):

L1 = {w ∈ {a, b}∗ | w contains at least 2 a’s}
L2 = {w ∈ {a, b}∗ | w contains exactly 2 a’s}

6. Draw an NFA that accepts the language over the alphabet Σ = {a, b, c} that is generated by the
regular expression (a|b)∗cc∗(a|b)∗. You do not have to use a specific regular-expression-to-NFA
conversion algorithm; any NFA that works will do.

7. Let L be a language over some alphabet Σ. Suppose that ε ∈ L. Show that L ⊆ L2.

8. What does it mean that xR = x for a string x? Let Σ = {a, b, c}. Give several examples of
strings, x, over the alphabet Σ that have the property that xR = x, and explain in English what
this property means.

9. Give a Context-Free Grammar for the language L = {anbmc bman | n ∈ N, m ∈ N}, and briefly
explain how your grammar works.

10. (“anbm variations”) Match each language with the grammar that generates it. Enter the number
for the correct grammer. No explanation is necessary.

a) {anbm | n 6= m}

Grammar #

b) {anbm | n ≥ m}

Grammar #

c) {anbm | n > 2m}

Grammar #

d) {anbm | n > 0}

Grammar #

e) {anbm | n > m > 0}

Grammar #

f) {anbm | n = 2m+ 1}

Grammar #

1) S −→ aSB

S −→ ε

B −→ b

B −→ ε

2) S −→ aS

S −→ Sb

S −→ a

3) S −→ aaSb

S −→ aT

T −→ aT

T −→ ε

4) S −→ aaTb

T −→ aTb

T −→ aT

T −→ ε

5) S −→ aSb

S −→ T

S −→ R

T −→ aT

R −→ Rb

T −→ a

R −→ b

6) S −→ aaSb

S −→ a

11. Let G = (V,Σ, P, S) be a Context-Free Grammar. L(G) is the language generated by G. How
is L(G) defined? That is, exactly what does it mean for a string, w, to be in L(G)? (Mention
Σ, P , and S in your answer.)

12. NFA stands for “Nondeterministic Finite Automaton.” Discuss how an NFA works and what it
means to say that it is “nondeterministic.” (What does an NFA do as it reads an input string?
What does it mean to say that the NFA accepts the string?)

