
CPSC 327, Spring 2019 Homework #1

This relatively short homework is due in class on Wednesday, January 30. This is a written assignment,

which should be turned in on paper. You can discuss this homework with other people in the class, but you

should avoid discussing it with others. In any case, you should write up your own solutions in your own

words.

1. You are in one node in an infinitely long doubly-linked list stretching off to the left and to the
right. Exactly one node in the list contains a treasure, but you don’t know which one. The
only thing you can do is move left or right, one node at a time (and look in the current node
for the treasure). Give an algorithm for finding the treasure. The algorithm must specify the
sequence of left and right moves that you will make, and it must be guaranteed to find the
treasure eventually. Try for an algorithm that is as efficient as you can make it. Also, say what
you can about the number of moves that your algorithm makes while finding the treasure, if the
treasure is N nodes away from your starting position.

2. The vertex cover problem is a well-known graph problem. A graph is a set of vertices and a set
of edges, where each edge connects two vertices. Given a graph, the vertex cover problem asks
you to find a subset of the vertices such that every edge has at least one endpoint in the subset,
and the subset is as small as possible.

We can rephrase this as a “corridor guard” problem (keeping in mind that the network of
corridors can be three-dimensional): Given a network of intersecting corridors, you want to post
guards in selected intersections so that every corridor segment has a guard at at least one of
its two endpoints. The problem is to do this using the minimum number of guards. Here is an
example of such a network. The lines represent corridors (or edges) and the twelve numbered
circles are their intersections (or vertices). Note, for example, that a guard in intersection
number 6 can cover three corridor segments.

1 2

3 4

5 6

7 8

9 10

11 12

Note that there is a horribly inefficient “exhaustive search” algorithm that gives the correct
solution: Consider all possible subsets of the set of intersections, throw out any subsets that
don’t cover all of the corridor segments, and then return a set of minimal size among those
subsets that remain.

a) Find a reasonably efficient algorithm for selecting a subset of intersections where guards
will be posted. It does not have to be guaranteed to give the correct, minimal solution—it



just has to come up with some subset that seems likely to be pretty good. You should
carefully state the steps in your algorithm. It should be clear how to apply your algorithm
to any graph.

b) Show how your algorithm works for the example corridor network shown above. Don’t just
show the subset of intersections produced as the output of the algorithm; show how the
steps specified in your algorithm produce that subset.

c) Find a counterexample that shows that your algorithm does not, in fact, give the correct
solution in all cases. That is, find a corridor network (or graph) for which your algorithm
produces a larger-than-necessary set of intersections. (Exhibit the network of corridors for
your counterexample, the solution produced by your algorithm, and a smaller subset of
intersections that covers all the intersections.)

3. (Adapted from Exercise 2.1-3 in the textbook.) Consider the searching problem:

Input: An array A of numbers and a number v.

Output: An index i such that A[i] equals v, or the special value -1 if v is not in the array.

Write a pseudocode or Java algorithm for linear search, which scans through the array elements
in order, looking for v. State a loop invariant for your algorithm, and use it to show that the
algorithm is correct. You need to show that your loop invariant fulfills the three necessary
properties (Initialization, Maintenance, and Termination).


