This homework is due at the start of class on Wednesday, February 5.

1. Suppose that A and B are integer arrays of size n. Give a run time analysis for each of the following Java code segments. That is, find a function $f(n)$ such that the run time is in $\Theta(f(n))$. Briefly justify your answers.

 a)
   ```java
   for (int i = 0; i < n; i++) {
     B[i] = 0;
     for (int j = 0; j < i; j++)
   }
   ```

 b)
   ```java
   int[] C = new int[n];
   for (int i = 0; i < n; i++) {
     C[i] = A[i]*B[i];
   }
   ```

2. Suppose that A is an integer array of length n. Consider the following algorithm:

   ```java
   for (int i = 0; i < n-1; i++) {
     for(int j = i+1; j < n; j++) {
       if (A[i] == A[j]) {
         return true;
       }
     }
   }
   return false;
   ```

 a) What problem does this algorithm solve? (That is, what is the meaning of the return value?)

 b) What is the worst-case run time analysis for the algorithm? What sort of array gives the worst-case run time? What is the best-case run time analysis? What sort of array gives the best-case run time?

 c) Devise a new algorithm that solves the same problem. The improved algorithm should start by sorting the array. What is the run time analysis of the improved algorithm?

3. Devise an algorithm that finds the second-largest element in an array A of length N. You can assume that $N \geq 2$ and that all the elements in the array are different. (Write the algorithm either in Java or in careful pseudocode.) What is the run-time analysis for your algorithm? Exactly how many comparisons of array elements does it do? (That is, say what you can about the actual number of comparisons, not just a Big-Oh analysis.)

4. B is an infinite array of numbers, sorted into increasing order. You know that the array contains the number X, but you don’t know where in the array it is located. Devise an algorithm that will find the index, N, of X in the array (that is, find N such that $A[N] = X$). Your algorithm must have run time $\Theta(log(N))$, where N is the index of X in the array.

5. Apply the Master Theorem to solve the following recurrence relations:

 a) $T(1) = 1$
 \[T(n) = 9\times T(n/3) + n^2 \]

 b) $T(1) = 1$
 \[T(n) = 9\times T(n/3) + n^3 \]

 c) $T(1) = 1$
 \[T(n) = 5\times T(n/4) + n \]