
CPSC 327, Spring 2019 Homework #5

This homework is due at the start of class on Friday, March 1. In all cases, remember
to show your work and justify your answers. Note that there is a test coming up on Monday,
March 4.

1. A hashtable has 13 locations and uses the hash function hash(key) = key%13. It is a closed
hash table, meaning all the keys are stored in the table itself, and it uses open addressing with
linear probing. Show the table after the following sequence of keys is inserted into an initially
empty table:

66, 54, 98, 2, 38, 45, 14, 17, 35, 26, 88, 64

2. (From textbook exercise 12.1-1 ) For the set {1, 4, 5, 10, 16, 17, 21} of keys, draw five binary
search trees containing exactly that set of keys, where the trees have heights 2, 3, 4, 5, and 6.

3. (From textbook exercise 12.3-3 ) We can sort a given set of n numbers by first building a
binary sort tree containing these numbers (using the TREE-INSERT algorithm n times) and
then printing the numbers by an inorder tree traversal. What are the worst-case and best-case
running times for this sorting algorithm?

4. (From textbook exercise 12.1-5 ) Sorting n elements using a comparison sort takes Ω(n log(n))
time in the worst case. Using this fact, argue that any comparison-based algorithm for con-
structing a binary search tree from an arbitrary list of n elements takes Ω(n log(n)) time in the
worst case. (Hint: Suppose that you have an algorithm that can build binary search trees more
quickly than that.)

5. Suppose that the keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted in that order into a B-Tree that has
minimal degree t = 2. Initially, the tree is empty. Show the B-Tree that results. It would also
be a good idea to show the tree at several stages along the way. (Note that every node in the
tree contains either 1, 2, or 3 keys. An interior node contains 2, 3, or 4 child pointers.)

6. Suppose that a huge file is stored in secondary storage. It is much too large to fit into main
memory. Describe an algorithm for sorting the file. You should try to minimize the number
of page reads and writes. You can create extra files, of any size, on secondary storage if you
need them. Say what you can about both the run time and the number of page accesses used
by your algorithm. To make things definite, you might consider the case where the file is 1 TB
(240 bytes) and main memory is 8 GB (233 bytes) and page size is 4 KB (212 bytes). (You can
assume, if you like, that no item in the file overlaps a page boundary. That is, when you read a
page, you get some whole number of items.)


