
Chapter 4

Sorting

We have already looked at several sorting algorithms. In this chapter, however, we will look
at this topic more formally.

In previous chapters, we applied our sorting algorithms to arrays of integers. Although this is
a good way to introduce the algorithms, it is not very common in practical situations to sort an
array of simple numbers. Usually, the items being sorted are more complex, typically objects or
structs, so that each item is itself made up of a number of elements. We will refer to the items that
are being sorted as records and to the elements that make up the items as fields of the records.
For example, if each record is a name and address, then the fields might be first name, last name,
street address, city, state, and zip code. When an array of records is to be sorted, the sorted order
typically depends on only one of the fields of the record. This field is said to be the key field for the
sort, and the values of this field are called keys. In other words, when we sort an array of records,
we compare keys, and we arrange the records so that their keys are in ascending (or descending)
order.

For example, we might want to sort an array of names and addresses by zip code. The zip
code of each record would then be its key. Occasionally, a key might be made up of two or more
fields of a record. For example, we might want to sort the names and addresses using a key that
is a combination of last name and first name, so that the last names are in alphabetical order and
within a group of people with the same last name, the first names are in alphabetical order.

In a key-based sorting procedures, only the keys are compared. As an example, let’s look at
Insertion Sort applied to an array of names and addresses. Assume that MailingLabel is a class
that includes a field named zipcode of type string. We can apply Insertion Sort to sort an array of
n MailingLabel objects by zip code:

1. void insertion_sort_by_zip( MailingLabel list[], int n ) {

2. for ( int next = 1; next < n; next++ ) {

3. int value = list[next];

4. int pos = next;

5. while ( pos > 0 && list[pos-1].zipcode > value.zipcode ) {

6. list[pos] = list[pos-1];
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7. pos--;

8. }

9. list[pos] = value;

10. }

11. }

Compare this to Insertion Sort for an array of integers in Chapter 1. The only difference is that
we compare key values rather than entire array elements.

It might be worth noting that a sorting procedure does a lot of copying of array elements.
Copying a single integer does not take a lot of time, but copying a record that contains many fields
can be very expensive. In Java, the values stored in the array are actually pointers to objects.
When an array element is copied, only the pointer is copied; the object itself is not. In C++,
an array of objects contains the actual objects, and copying an array element can be relatively
time-consuming. In C++, it is of course possible to use an array of pointers to objects instead of
an array of objects. It can be a good idea to do so when sorting large objects.

So far, we have been concerned with only the time complexity of sorting algorithms. We have
seen that selection sort and insertion sort have worst-case run times that are Θ(n2), while the
worst-case run time of heap sort is Θ(n log(n)). However, it is also possible to consider space
complexity. For sorting algorithms, the natural question is, How much extra space—beyond the
space occupied by the array itself—is required for sorting an array of n elements. All the sorting
algorithms that we have seen so far use a constant amount of extra space, independent of the size
of the array. The only extra space required by these algorithms is for a few local variables in the
sorting routines. This is not something that is true for every sorting algorithm: A variation of heap
sort that puts items removed from the heap into a new separate array would require memory for
the extra array. The amount of extra memory would be Θ(n).

Definition 4.1. A sorting algorithm is said to be an in-place sorting algorithm if the amount of
extra space required by the algorithm is Θ(1). That is, the amount of extra space is bounded by a
constant, independent of the size of the array.

HeapSort is an interesting sorting algorithm not just because it is a Θ(n log(n)) algorithm, but
because it is an in-place Θ(n log(n)) sorting algorithm.

There is one more general property of sorting algorithms that we should consider. Suppose that
an array of name/address records has been sorted into alphabetical order by name. Now, suppose
that we apply some sorting algorithm to the array to sort it according to zip code. Consider a
group of records that all have the same zip code. These records form a contiguous group in the
array. The question is, are the records in this group still sorted into alphabetical order by name?
That is, when we sorted according to zip code, did we disturb the relative ordering of items that
have the same name? The answer is that it depends on the sorting algorithm that we use.

Definition 4.2. A sorting algorithm is said to be stable if items that have the same key remain
in the same relative order after the sorting algorithm is applied as they were in before the sort.

Insertion Sort is a stable sorting algorithm because it never changes the ordering of items with
the same key. In Selection Sort, on the other hand, an item can jump from one part of the array
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to another, moving past other items with the same key. Selection Sort is not stable. Similarly,
HeapSort is not a stable sorting algorithm.1

Stability is not always needed in a sorting algorithm, but it is desirable in some cases. Suppose,
for example, we are sorting records that contain first name and last name fields. Suppose that we
sort the array using the first name as the key, and then we sort using the last name as key. If we
use a stable sorting algorithm, then records with the same last name will still be in alphabetical
order by first name. If the algorithm is not stable, then people with the same last name can end
up in an arbitrary order.

In the remainder of this chapter, we will look at several new sorting algorithms, starting with
QuickSort, which is probably the most commonly used general sorting algorithm in practice.

4.1 QuickSort

Fundamentally, QuickSort is based on a simple idea: Pick some key. Put all the records that have a
smaller key than the selected key at the beginning of the array, and put all the records with larger
keys at the end. Then apply the same procedure recursively to each group of records, continuing
until you get down to groups of size zero or one. However, organizing all this and doing it efficiently
requires some cleverness.

A basic operation in QuickSort is the algorithm that I call QuickSortStep, which applies the
procedure described in the preceding paragraph to the records between two specified positions in
the array. The first record in the sequence is used as a “pivot.” Records with smaller keys than the
pivot are moved to the beginning of the sequence; records with larger keys are moved to the end.
The pivot element itself ends up between the two groups of records. Note that records within one
of the groups are not yet sorted, but the pivot element is in the final position that it will occupy
when the entire sequence has been sorted. For an array of integers, QuickSortStep can be coded as
follows:

1. int QuickSortStep( int list[], int low, int high ) {

2. // Apply QuickSortStep to the sequence list[low],

3. // list[low+1], ..., list[high]. The return value

4. // is the final position of the pivot element.

5. int pivot = list[low];

6. while (true) {

7. while (high > low && list[high] >= pivot)

8. high--;

9. if (high == low)

10. break;

11. list[low] = list[high];

12. low++;

1The algorithm known as Merge Sort is a stable Θ(n log(n)) sorting algorithm. However, Merge Sort is not an
in-place sorting algorithm. It uses an auxiliary array of the same size as the original array and so has space complexity
Θ(n).
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13. while (high > low && list[low] <= pivot)

14. low++;

15. if (high == low)

16. break;

17. list[high] = list[low];

18. high--;

19. }

20. list[low] = pivot;

21. return low;

22. }

In this algorithm, pivot holds the pivot value. As the values of low and high change, positions
below low hold items that are known to be less than or equal to the pivot, and positions above high

hold items that are known to be greater than or equal to the pivot. Positions between low and high

hold items that are unclassified. Low and high gradually move towards each other. When they
become equal, there are no more unclassified items and the mutual value of low and high represents
the final position of the pivot, between the two groups of items. This final position is returned by
the function, since it is needed in the full QuickSort algorithm.

You should think of line 5 as leaving an empty space in the array at position low. Lines 7 and
8 look for an item from the top end of the sequence that is less than the pivot and therefore can
be moved to position low. When this item is moved, in line 11, there is an empty space in position
high. Lines 13 and 14 look for an item greater than the pivot to fill this space. When this item is
moved in line 17, the empty space is once again in position low. We break out of the loop as soon
as high becomes equal to low. In line 20, the pivot is placed into the final position of the empty
space.

With a QuickSortStep function in hand, it is easy to write a QuickSort function. The function
is recursive and is written so as to apply to a specified range of positions in the array. If A is an
array of n integers, we would sort the entire array by calling QuickSort(A,0,n − 1).

1. void QuickSort(int list[], int low, int high) {

2. // Sort the elements list[low], list[low+1], ...,

3. // list[high] using QuickSort.

4. if (high > low) {

5. int mid = QuickSortStep(list,low,high);

6. QuickSort(list,low,mid-1);

7. QuickSort(list,mid+1,high);

8. }

9. }

The base case of the recursion occurs when high ≤ low. In this base case, the array segment
that is being sorted has fewer than two elements, so there is nothing to do. In the recursive case,
we start by applying QuickSortStep to the array segment. The variable mid is the position of the
pivot element that was used by QuickSortStep. This element is in its correct final location. We can
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then complete the sort by sorting the elements in locations low through mid − 1, which precede
the pivot, and the elements in positions mid + 1 through high, which follow the pivot. Note that
either of these sub-segments might have length zero or one. In that case, the corresponding call to
QuickSort will return without doing anything.

QuickSort is quite fast on average. Its average case run time is Θ(n log(n)), although this fact
is not so easy to prove. We can note that the run time for QuickSortStep is proportional to the
length of the array segment to which it is applied. When QuickSort is applied to an array of n

elements, the call to QuickSortStep on the top level does work proportional to n. On the next
level, QuickSortStep is applied to two sub-arrays, but the combined length of these sub-arrays is
just n − 1, so the total work done by the two calls to QuickSortStep on the second level of the
recursion is still bounded by a constant times n. Three levels down the recursion, QuickSortStep
can be applied to as many as four sub-arrays, but the combined length of all the sub-arrays is less
than n and so the total work done by all calls to QuickSortStep on the third level of the recursion
is also bounded by a constant times n. In fact, the work done on every level of the recursion is
bounded by a constant times n. If the recursion continues k levels deep, the total work done is
bounded by a constant times n ∗ k. Now, if QuickSortStep always divided the sub-array into two
equal parts, there would be log(n) levels, and the run time would be bounded by a constant times
n ∗ log(n). Thus, the run time would be Θ(n log(n)). QuickSortStep does not usually divide the
sub-array exactly in half. But it comes close enough on average that the average run time is still
Θ(n log(n)).

In practice, QuickSort is significantly faster than HeapSort on average (by a constant multiple).
However, the worst-case run time for QuickSort is Θ(n2). This worst case occurs, curiously, when
QuickSort is applied to an array that is already in sorted order. In this case, the pivot element
chosen by QuickSortStep is already in its final position, so that QuickSortStep will divide a sub-
array of length m into an array of length 0 and an array of length m − 1. For an array of length
n, QuickSortStep is applied to n elements on the top level of the recursion. On the second level, it
is applied to one sub-array with n− 1 elements. On the third level, it is applied to n− 2 elements.
And so on. There are n levels to this recursion, rather than log(n), and the total amount of work
done is proportional to n2. For randomly ordered arrays, run times close to the worst case are very
rare. However, if QuickSort is applied to arrays that are sorted or almost sorted, the run time can
be a problem.

This problem is sometimes addressed by using Randomized QuickSortStep. In this version,
instead of choosing the first element of the sub-array as the pivot, the pivot element is chosen
randomly from the sub-array. This random element is swapped with the first element, and then
Randomized QuickSortStep proceeds in the same way as the regular version. This does not change
the worst-case run time of QuickSort, but it does mean that the worst case is extremely unlikely to
occur for almost-sorted arrays. Since almost-sorted arrays are common in some application, Ran-
domized QuickSort is often preferred over regular QuickSort as a general purpose sorting algorithm.

Because of the way QuickSortStep jumps elements from one part of the array to another,
QuickSort is not a stable sorting algorithm. It is also not in-place. This is clear if we note that
each recursive call in the QuickSort algorithm requires space on the stack of activation records that
is used to implement recursion. This stack memory is part of the extra space that is required by
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QuickSort. The amount of stack memory needed is proportional to the depth of the recursion. This
depth can be as little as log(n), but can be as much as n. On the average, it is much closer to
log(n) than to n. So, the average-case extra memory requirement of QuickSort is Θ(log(n)), but
the worst case is Θ(n). However, by the end of the next section, we’ll see a variation of QuickSort
for which the worst-case extra space requirement is Θ(log(n)).

4.2 Stacks and Recursion

Recursive subroutines are implemented using a stack of activation records. This is done automati-
cally, and a programmer who wants to use recursion does not have to think about stacks. However,
it is possible for a programmer to implement a recursive algorithm “by hand,” using a stack data
structure and a non-recursive routine. Since calling a function can be a relatively expensive oper-
ation, it is possible that a non-recursive routine that uses a stack might be faster than a recursive
routine that implements the same algorithm.

In recursion, a problem is broken down into subproblems. Since it’s only possible to work on
one subproblem at a time, some of the subproblems must be put aside for future processing. They
are placed on a stack. When one subproblem is finished, the next one is removed from the stack
for processing. We can develop this idea into a general pseudocode algorithm for using a stack to
solve a problem recursively:

Push the main problem onto the stack

While the stack is not empty {

Pop a problem from the stack

If the problem is a base case {

Solve the problem directly

}

Else {

Break the problem into subproblems

Push each subproblem onto the stack

}

}

In the case of QuickSort, a “problem” is a sub-array that we want to sort. QuickSortStep is used
to break this problem into two subproblems, which are then solved separately. We can represent
each subproblem by the two integers that mark the beginning and end of the sub-array. We can
store subproblems using a simple array of integers, as long as we put two integers onto the array for
each problem. That is, pushing a problem will mean pushing two integers and popping a problem
will mean popping two integers. Here is a version of QuickSort that uses this idea:

void QuickSort(int list[], int n) {

// Sort an array of n integers

IntStack stack; // A stack to hold subproblems
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stack.push(n-1); // Push the main problem onto the stack

stack.push(0);

while ( ! stack.isEmpty() ) {

int low = stack.pop(); // Get a problem from the stack.

int high = stack.pop();

if (high <= low) {

// base case, nothing to do

}

else {

int mid = QuickSortStep(list,low,high);

stack.push(mid-1); // Push first subproblem onto stack.

stack.push(low);

stack.push(high); // Push second subproblem onto stack.

stack.push(mid+1);

}

} // end while

}

We can improve on this a bit by noting that we keep pushing problems onto the stack that are
only going to be popped off immediately. We don’t really need to stack the problem that we are
going to work on next. With this idea, our pseudocode algorithm becomes:

Let P be the main problem

While (true) {

If P is a base case {

Solve P directly

If the stack is empty

break;

Pop a problem from the stack.

}

Else {

Break P into subproblems S1, S2, S3...

Push S2, S3, ... onto the stack

Let P be S1

}

}
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For QuickSort, we will only push one subproblem onto the stack and work on the other one.
In fact, the algorithm that we use always pushes the longer of the two subproblems onto the stack
and works on the shorter problem. Note that the shorter subproblem is always less than half the
size of the original problem. The result of this is that the stack never grows larger than 2 ∗ log(n),
where n is the size of the entire array. That is, we have an algorithm that has worst-case extra
space requirement Θ(log(n)). Here is the code for this version of QuickSort:

void QuickSort(int list[], int n) {

IntStack stack; // A stack to hold subproblems

int low = 0; // The main problem

int high = n-1;

while ( true ) {

if (high <= low) {

// base case, nothing to do for this problem.

if (stack.isEmpty())

break;

low = stack.pop(); // Pop a problem from the stack.

high = stack.pop();

}

else {

int mid = QuickSortStep(list,low,high);

if ( (high-mid) > (mid-low) ) {

stack.push(high); // Push longer subproblem onto stack.

stack.push(mid+1);

high = mid - 1; // Work on the shorter problem;

// The value of low stays the same.

}

else {

stack.push(mid-1); // Push longer subproblem onto stack.

stack.push(low);

low = mid + 1; // Work on the shorter problem;

// The value of high stays the same.

}

}

} // end while

}
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4.3 Radix Sort

So far, every sorting algorithm that we have looked at has worst-case run time that is Θ(n log(n))
or greater. The same is true for the average case. This is no accident. For a large class of sorting
algorithms, it can be shown that Θ(n log(n)) is the best we can do for the worst and average case
run times. The type of algorithm in question is called a comparison sort. A comparison sort can
compare two keys to find out which one is greater, but it cannot look at the internal structure of
a key. If we lift this restriction and allow a sorting algorithm to inspect the structure of a key, we
can find non-comparison sorts that have worst case run time Θ(n). One of these is Radix Sort.

It is easiest to think of Radix Sort as working on lists, rather than on arrays. Let’s see how
Radix Sort would be applied to sort a list of k-digit positive integers. The integers might be zip
codes or social security numbers, for example. Radix Sort first separates the integers into 10 lists,
based on the last (least significant) digit. Numbers in which the last digit is 0 go into the first list,
numbers in which it is 1 go into the second list, and so one. The ten lists are the concatenated
back into one list. In this list, the numbers are sorted into order according to the value of their
least significant digits. This operation can be performed with a run time that is proportional to
the length of the list.

Now, repeat the same operation, but using the next-to-last digit. And continue to do the same
for each of the digits in the numbers. In the end, the numbers will be completely sorted. We
have done k passes through the numbers, where k is the number of digits. Each pass has run
time proportional to n. Since k is a constant, the total run time is also proportional to n. As
long as we limit ourselves to keys with a fixed maximum number of digits, Radix Sort is a Θ(n)
sorting algorithm. Note however that this is mostly of theoretical interest, since for arrays of any
reasonable size, QuickSort is faster than Radix Sort.

Radix Sort is also of historical interest, since it is the method that was used by machines that
sorted punched cards according to the value of some number punched onto the cards. The machine
would separate the cards into bins based on the value of some specified digit in the number. The
cards would first be sorted into bins according to their least significant digits. Then the cards would
be removed from the bins, stacked up, and fed through the machine again to sort them according
to the next digit. After a sufficient number of passes through the machine, the cards would be
completely sorted.

We can easily write a RadixSort routine that uses the IntList ADT from the previous chapter
to sort an array of positive integers. We use ten lists, one for each possible digit. I also assume
that we have a function digit(n,d) that returns the dth digit of n for a positive integer n.

void RadixSort(int list[], int n, int digits) {

// Sort an array of n positive integers, where the

// maximum number of digits in any of the integers

// is given by the third parameter.

IntList digitlist[10]; // One list for each possible digit.

for (int digitnum = 0; digitnum < digits; digitnum++) {
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for (int i = 0; i < n; i++) {

// Place item i into one of the 10 lists, based

// on the digit at position digitinum in that item.

int d = digit(list[i],digitnum); // Digit from item i.

digitlist[d].insert( digitlist[d].end(), list[i] );

}

int ct = 0; // Number of items retrieved from the lists

for (int d = 0; d < 10; d++) {

// Move the items from list number d back to the array.

while (digitlist[d].begin() != digitlist[d].end()) {

list[ct] = digitlist[d].get(digitlist[d].begin());

ct++;

digitlist[d].remove(digitlist[d].begin());

}

}

}

}

Exercises

1. Do an experiment to determine how much slower the recursive version of QuickSort is than the version
that uses a stack (if at all).

2. For very short arrays, Insertion Sort is actually faster than QuickSort. Write a version of QuickSort that
uses Insertion Sort to sort a sub-array whose length is less than some specified limit. Do an experiment
to test the performance of this version of QuickSort for various array size limits.

3. Is Radix Sort an in-place sort? Is it stable?


