
Introduction to Computer Graphics

Version 1.3, August 2021

David J. Eck

Hobart and William Smith Colleges

This is a PDF version of a free, on-line book that is available
at http://math.hws.edu/graphicsbook/. The web site includes

source code for all example programs.

ii

c©2015–2021, David J. Eck

David J. Eck (eck@hws.edu)
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
Geneva, NY 14456

This book can be distributed in unmodified form for non-commercial purposes.
Modified versions can be made and distributed for non-commercial purposes
provided they are distributed under the same license as the original. More
specifically: This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Other uses require
permission from the author.

The web site for this book is: http://math.hws.edu/graphicsbook

Contents

Preface ix

1 Introduction 1

1.1 Painting and Drawing . 1
1.2 Elements of 3D Graphics . 4
1.3 Hardware and Software . 7

2 Two-Dimensional Graphics 11

2.1 Pixels, Coordinates, and Colors . 11
2.1.1 Pixel Coordinates . 11
2.1.2 Real-number Coordinate Systems . 14
2.1.3 Aspect Ratio . 16
2.1.4 Color Models . 17

2.2 Shapes . 19
2.2.1 Basic Shapes . 20
2.2.2 Stroke and Fill . 22
2.2.3 Polygons, Curves, and Paths . 24

2.3 Transforms . 27
2.3.1 Viewing and Modeling . 27
2.3.2 Translation . 29
2.3.3 Rotation . 30
2.3.4 Combining Transformations . 31
2.3.5 Scaling . 32
2.3.6 Shear . 33
2.3.7 Window-to-Viewport . 34
2.3.8 Matrices and Vectors . 35

2.4 Hierarchical Modeling . 37
2.4.1 Building Complex Objects . 37
2.4.2 Scene Graphs . 41
2.4.3 The Transform Stack . 43

2.5 Java Graphics2D . 45
2.5.1 Graphics2D . 46
2.5.2 Shapes . 46
2.5.3 Stroke and Fill . 49
2.5.4 Transforms . 51
2.5.5 BufferedImage and Pixels . 53

2.6 HTML Canvas Graphics . 55
2.6.1 The 2D Graphics Context . 55

iii

iv CONTENTS

2.6.2 Shapes . 56
2.6.3 Stroke and Fill . 59
2.6.4 Transforms . 60
2.6.5 Auxiliary Canvases . 62
2.6.6 Pixel Manipulation . 63
2.6.7 Images . 65

2.7 SVG: A Scene Description Language . 66
2.7.1 SVG Document Structure . 67
2.7.2 Shapes, Styles, and Transforms . 69
2.7.3 Polygons and Paths . 72
2.7.4 Hierarchical Models . 73
2.7.5 Animation . 75

3 OpenGL 1.1: Geometry 77

3.1 Shapes and Colors in OpenGL 1.1 . 77
3.1.1 OpenGL Primitives . 78
3.1.2 OpenGL Color . 81
3.1.3 glColor and glVertex with Arrays . 83
3.1.4 The Depth Test . 85

3.2 3D Coordinates and Transforms . 87
3.2.1 3D Coordinates . 87
3.2.2 Basic 3D Transforms . 88
3.2.3 Hierarchical Modeling . 91

3.3 Projection and Viewing . 93
3.3.1 Many Coordinate Systems . 94
3.3.2 The Viewport Transformation . 95
3.3.3 The Projection Transformation . 96
3.3.4 The Modelview Transformation . 100
3.3.5 A Camera Abstraction . 103

3.4 Polygonal Meshes and glDrawArrays . 105
3.4.1 Indexed Face Sets . 105
3.4.2 glDrawArrays and glDrawElements . 109
3.4.3 Data Buffers in Java . 112
3.4.4 Display Lists and VBOs . 113

3.5 Some Linear Algebra . 115
3.5.1 Vectors and Vector Math . 115
3.5.2 Matrices and Transformations . 118
3.5.3 Homogeneous Coordinates . 120

3.6 Using GLUT and JOGL . 120
3.6.1 Using GLUT . 121
3.6.2 Using JOGL . 127
3.6.3 About glsim.js . 132

4 OpenGL 1.1: Light and Material 135

4.1 Introduction to Lighting . 135
4.1.1 Light and Material . 136
4.1.2 Light Properties . 138
4.1.3 Normal Vectors . 139

CONTENTS v

4.1.4 The OpenGL 1.1 Lighting Equation . 141
4.2 Light and Material in OpenGL 1.1 . 144

4.2.1 Working with Material . 144
4.2.2 Defining Normal Vectors . 147
4.2.3 Working with Lights . 149
4.2.4 Global Lighting Properties . 151

4.3 Image Textures . 153
4.3.1 Texture Coordinates . 154
4.3.2 MipMaps and Filtering . 157
4.3.3 Texture Target and Texture Parameters 158
4.3.4 Texture Transformation . 159
4.3.5 Loading a Texture from Memory . 160
4.3.6 Texture from Color Buffer . 161
4.3.7 Texture Objects . 162
4.3.8 Loading Textures in C . 163
4.3.9 Using Textures with JOGL . 165

4.4 Lights, Camera, Action . 167
4.4.1 Attribute Stack . 167
4.4.2 Moving Camera . 169
4.4.3 Moving Light . 171

5 Three.js: A 3D Scene Graph API 173

5.1 Three.js Basics . 173
5.1.1 Scene, Renderer, Camera . 174
5.1.2 THREE.Object3D . 176
5.1.3 Object, Geometry, Material . 178
5.1.4 Lights . 186
5.1.5 A Modeling Example . 188

5.2 Building Objects . 191
5.2.1 Polygonal Meshes and IFSs . 191
5.2.2 Curves and Surfaces . 195
5.2.3 Textures . 199
5.2.4 Transforms . 201
5.2.5 Loading Models . 203

5.3 Other Features . 204
5.3.1 Instanced Meshes . 204
5.3.2 User Input . 205
5.3.3 Shadows . 209
5.3.4 Cubemap Textures and Skyboxes . 211
5.3.5 Reflection and Refraction . 212

6 Introduction to WebGL 217

6.1 The Programmable Pipeline . 218
6.1.1 The WebGL Graphics Context . 218
6.1.2 The Shader Program . 220
6.1.3 Data Flow in the Pipeline . 221
6.1.4 Values for Uniform Variables . 224
6.1.5 Values for Attributes . 225

vi CONTENTS

6.1.6 Drawing a Primitive . 228

6.1.7 WebGL 2.0: Vertex Array Objects . 229

6.1.8 WebGL 2.0: Instanced Drawing . 230

6.2 First Examples . 231

6.2.1 WebGL Context Options . 231

6.2.2 A Bit of GLSL . 232

6.2.3 The RGB Triangle in WebGL . 233

6.2.4 Shape Stamper . 236

6.2.5 The POINTS Primitive . 240

6.2.6 WebGL Error Handling . 241

6.3 GLSL . 242

6.3.1 Basic Types . 242

6.3.2 Data Structures . 244

6.3.3 Qualifiers . 245

6.3.4 Expressions . 248

6.3.5 Function Definitions . 250

6.3.6 Control Structures . 251

6.3.7 Limits . 251

6.4 Image Textures . 252

6.4.1 Texture Units and Texture Objects . 253

6.4.2 Working with Images . 257

6.4.3 More Ways to Make Textures . 260

6.4.4 Cubemap Textures . 262

6.4.5 A Computational Example . 265

6.4.6 Textures in WebGL 2.0 . 267

6.5 Implementing 2D Transforms . 269

6.5.1 Transforms in GLSL . 269

6.5.2 Transforms in JavaScript . 270

7 3D Graphics with WebGL 275

7.1 Transformations in 3D . 275

7.1.1 About Shader Scripts . 275

7.1.2 Introducing glMatrix . 276

7.1.3 Transforming Coordinates . 279

7.1.4 Transforming Normals . 281

7.1.5 Rotation by Mouse . 282

7.2 Lighting and Material . 284

7.2.1 Minimal Lighting . 285

7.2.2 Specular Reflection and Phong Shading 287

7.2.3 Adding Complexity . 290

7.2.4 Two-sided Lighting . 292

7.2.5 Moving Lights . 294

7.2.6 Spotlights . 295

7.2.7 Light Attenuation . 297

7.2.8 Diskworld 2 . 298

7.3 Textures . 299

7.3.1 Texture Transforms with glMatrix . 299

CONTENTS vii

7.3.2 Generated Texture Coordinates . 300

7.3.3 Procedural Textures . 302

7.3.4 Bumpmaps . 305

7.3.5 Environment Mapping . 308

7.4 Framebuffers . 311

7.4.1 Framebuffer Operations . 312

7.4.2 Render To Texture . 314

7.4.3 Renderbuffers . 316

7.4.4 Dynamic Cubemap Textures . 317

7.5 WebGL Extensions . 320

7.5.1 Anisotropic Filtering . 320

7.5.2 Floating-Point Colors . 322

7.5.3 Instanced Drawing in WebGL 1.0 . 325

7.5.4 Deferred Shading . 325

7.5.5 Multiple Draw Buffers in WebGL 2.0 . 327

8 Beyond Basic 3D Graphics 331

8.1 Ray Tracing . 331

8.1.1 Ray Casting . 332

8.1.2 Recursive Ray Tracing . 333

8.1.3 Limitations of Ray Tracing . 335

8.2 Path Tracing . 336

8.2.1 BSDF’s . 337

8.2.2 The Path Tracing Algorithm . 338

APPENDICES

A Programming Languages 341

A.1 The Java Programming Language . 341

A.1.1 Basic Language Structure . 342

A.1.2 Objects and Data Structures . 345

A.1.3 Windows and Events . 347

A.2 The C Programming Language . 349

A.2.1 Language Basics . 349

A.2.2 Pointers and Arrays . 352

A.2.3 Data Structures . 354

A.3 The JavaScript Programming Language . 356

A.3.1 The Core Language . 356

A.3.2 Arrays and Objects . 361

A.3.3 JavaScript on Web Pages . 364

A.3.4 Interacting with the Page . 367

B Blender 371

B.1 Blender Basics . 371

B.1.1 The 3D View . 372

B.1.2 Adding Objects to the Scene . 374

B.1.3 Edit Mode . 376

B.1.4 Light, Material, and Texture . 376

viii CONTENTS

B.1.5 Saving Your Work . 380
B.1.6 More Features . 380

B.2 Blender Modeling . 382
B.2.1 Text . 382
B.2.2 Curves . 384
B.2.3 Proportional Editing . 386
B.2.4 Extruding Meshes . 387
B.2.5 Mesh Modifiers . 388

B.3 Blender Animation . 391
B.3.1 Keyframe Animation and F-Curves . 391
B.3.2 Tracking . 394
B.3.3 Path Animation . 394
B.3.4 Rendering an Animation . 396

B.4 More on Light and Material . 398
B.4.1 Lighting . 398
B.4.2 Eevee versus Cycles . 400
B.4.3 The Shader Editor . 401

C Gimp and Inkscape 407

C.1 Gimp: A 2D Painting Program . 407
C.1.1 Painting Tools . 408
C.1.2 Selections and Paths . 412
C.1.3 Layers . 414

C.2 Inkscape: A 2D Drawing Program . 416

D List of Sample Programs 421

E Glossary 431

Preface

This textbook represents my attempt to develop a modern, one-semester first course in
computer graphics, which would typically be taken by a computer science student in the third
or fourth year of college. (Whether it will continue to be appropriate is an open question, given
the always-rapid changes in the field of computer graphics.)

A reader of this book should have substantial experience with at least one programming
language, including some knowledge of object-oriented programming and data structures.
Everyone taking my own computer graphics course has had at least two semesters of
programming, and most will have additional experience beyond that. My students have
studied the Java programming language, but the book should also be accessible to people
with background in other languages. Examples in the book use Java, C, and JavaScript.
The essential features of those languages are covered in an appendix. (If you need to learn
programming from the beginning, try my free introductory Java textbook, which is available
at http://math.hws.edu/javanotes.)

I used Version 1.0 of this book for a course in Fall 2015. Version 1.1 corrected some errors
and typos and added some material. It was used in the Fall 2017 version of my course. I will
teach computer graphics again in Fall 2021, and I have updated the book to Version 1.3 for
use in that course. The new version covers the same topics as Version 1.1, but there are some
significant updates: Chapter 5 is updated to use Version 129 of the three.js library. Chapters
6 and 7 now include some material on WebGL 2.0 and GLSL ES 3.00. JavaScript in sample
programs and in Section 3 of Appendix A has been updated to use ES6 (but the code for the
demos embedded in the textbook’s web pages has not been updated). And Appendix B now
covers Blender 2.93. There are other minor updates and corrections throughout.

The home web site for this book is http://math.hws.edu/graphicsbook. The page at that
address contains links for downloading a copy of the web site and for downloading PDF versions.

This is a free textbook. You are welcome to redistribute it, as long as you do not charge
for it. You can post an unmodified copy on your own web site. You can make and distribute
modified versions (including translations), as long as your version makes the original source
clear and is distributed free of charge and under the same license. (Officially, the book is
licensed under a “Creative Commons Non-Commercial Attribution Share-Alike License.”)

∗ ∗ ∗

Many of the sample programs for this book are actually Web pages meant to be viewed
in a Web browser. The Web version of this book includes interactive demo programs that are
integrated into the Web pages that make up the book.

The sample programs and demos use HTML canvas graphics (in Chapter 2) or WebGL (in
later chapters). Canvas graphics should work well in almost any modern browser. WebGL is
a newer technology and is more problematic. WebGL 1.0 now seems to work fairly reliably
in almost all modern browsers, including browsers on mobile devices. WebGL 2.0 works in
most desktop browsers and some mobile browsers, but is still not universally available. This

ix

x Preface

means that you are not guaranteed to be able to run every sample program in this book in your
favorite browser.

The sample programs and demos can all be found in the download of the web site version of
this book, which is available from its main page at http://math.hws.edu/graphicsbook. Look
for them in the folders named source and demo. Note that some Web browsers won’t use images
from the local file system in canvas and WebGL graphics. Those browsers will have errors when
they try to run some of the samples locally instead of over the Web. This issue affects only
some of the examples. For those examples, you can use an on-line version of the book. Another
solution is to run a web server on your own computer and view the textbook through that
web server. (See the section on “How to run things locally” in the three.js documentation at
https://threejs.org/docs for more information about this issue.)

∗ ∗ ∗

I have taught computer graphics every couple of years or so for almost 35 years. As the
field developed, I had to make major changes almost every time I taught the course, but for
much of that time, I was able to structure the course primarily around OpenGL 1.1, a graphics
API that was in common use for an extended period. OpenGL 1.1 supported fundamental
graphics concepts in a way that was fairly easy to use. OpenGL is still widely supported, but,
for various reasons, the parts of it that were easy to use have been officially dropped from
the latest versions (although they are in practice supported on most desktop computers). The
result is a much more powerful API but one that is much harder to learn. In particular, modern
OpenGL in its pure form does not make for a good introduction to graphics programming, and
it seems likely that some sort of simplified library or framework would be used to get people
started in most introductory courses.

My approach in this book is to use a subset of OpenGL 1.1 as the framework for introducing
the fundamental concepts of three-dimensional graphics. I then go on to cover WebGL—a
version of OpenGL that runs in a web browser—as an example of the more modern approach
to computer graphics. While OpenGL makes up the major foundation for the course, the
real emphasis is on fundamental concepts such as geometric modeling and transformations;
hierarchical modeling and scene graphs; color, lighting, and textures; and animation.

Chapter 1 is a short overview of computer graphics. It introduces many concepts that will
be covered in much more detail in the rest of the book.

Chapter 2 covers two-dimensional graphics in Java, JavaScript, and SVG, with an emphasis
on ideas such as transformations and scene graphs that carry over to three dimensions.

Chapter 3 and Chapter 4 cover OpengGL 1.1. While OpenGL 1.1 is fairly primitive by
today’s standard, it includes many basic features that are still fundamental to three-dimensional
computer graphics, in a form that is an easier starting point for people new to 3D graphics.
Only part of the API is covered.

Chapter 5 covers three.js, a higher-level object-oriented 3D graphics API for Web graphics
using JavaScript. This chapter shows how fundamental concepts can be used in a higher-level
interface.

Chapter 6 and Chapter 7 cover WebGL, a modern version of OpenGL for graphics on the
Web. WebGL is very low-level, and it requires the programmer to write “shader programs” to
implement many features that are built into OpenGL 1.1. Looking at the implementation is an
opportunity to understand more deeply how computers actually make 3D images.

And Chapter 8 looks very briefly at some advanced techniques that are not possible in
OpenGL.

Appendix A contains brief introductions to three programming languages that are used in the

Preface xi

book: Java, C, and JavaScript. Appendix B is meant to get readers started with the most basic
uses of Blender, a sophisticated 3D modeling program. I have found that introducing students
to Blender is a good way to help them develop their three-dimensional intuition. Appendix C
contains even briefer introductions to two 2D graphics programs, Gimp and Inkscape.

∗ ∗ ∗

Professor David J. Eck
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
300 Pulteney Street
Geneva, New York 14456, USA
Email: eck@hws.edu
WWW: http://math.hws.edu/eck/
August, 2021

xii Preface

Chapter 1

Introduction

The term “computer graphics” refers to anything involved in the creation or
manipulation of images on a computer, including animated images. It is a very broad field,
and one in which changes and advances seem to come at a dizzying pace. It can be difficult
for a beginner to know where to start. However, there is a core of fundamental ideas that are
part of the foundation of most applications of computer graphics. This book attempts to cover
those foundational ideas, or at least as many of them as will fit into a one-semester college-level
course. While it is not possible to cover the entire field in a first course—or even a large part
of it—this should be a good place to start.

This short chapter provides an overview and introduction to the material that will be covered
in the rest of the book, without going into a lot of detail.

1.1 Painting and Drawing

The main focus of this book is three-dimensional (3D) graphics, where most of the work
goes into producing a 3D model of a scene. But ultimately, in almost all cases, the end result of
a computer graphics project is a two-dimensional image. And of course, the direct production
and manipulation of 2D images is an important topic in its own right. Furthermore, a lot of
ideas carry over from two dimensions to three. So, it makes sense to start with graphics in 2D.

An image that is presented on the computer screen is made up of pixels. The screen consists
of a rectangular grid of pixels, arranged in rows and columns. The pixels are small enough that
they are not easy to see individually. In fact, for many very high-resolution displays, they
become essentially invisible. At a given time, each pixel can show only one color. Most screens
these days use 24-bit color, where a color can be specified by three 8-bit numbers, giving the
levels of red, green, and blue in the color. Any color that can be shown on the screen is made
up of some combination of these three “primary” colors. Other formats are possible, such as
grayscale , where each pixel is some shade of gray and the pixel color is given by one number
that specifies the level of gray on a black-to-white scale. Typically, 256 shades of gray are used.
Early computer screens used indexed color , where only a small set of colors, usually 16 or
256, could be displayed. For an indexed color display, there is a numbered list of possible colors,
and the color of a pixel is specified by an integer giving the position of the color in the list.

In any case, the color values for all the pixels on the screen are stored in a large block of
memory known as a frame buffer . Changing the image on the screen requires changing color
values that are stored in the frame buffer. The screen is redrawn many times per second, so
that almost immediately after the color values are changed in the frame buffer, the colors of

1

2 CHAPTER 1. INTRODUCTION

the pixels on the screen will be changed to match, and the displayed image will change.

A computer screen used in this way is the basic model of raster graphics. The term
“raster” technically refers to the mechanism used on older vacuum tube computer monitors:
An electron beam would move along the rows of pixels, making them glow. The beam was
moved across the screen by powerful magnets that would deflect the path of the electrons. The
stronger the beam, the brighter the glow of the pixel, so the brightness of the pixels could be
controlled by modulating the intensity of the electron beam. The color values stored in the
frame buffer were used to determine the intensity of the electron beam. (For a color screen,
each pixel had a red dot, a green dot, and a blue dot, which were separately illuminated by the
beam.)

A modern flat-screen computer monitor is not a raster in the same sense. There is no
moving electron beam. The mechanism that controls the colors of the pixels is different for
different types of screen. But the screen is still made up of pixels, and the color values for all
the pixels are still stored in a frame buffer. The idea of an image consisting of a grid of pixels,
with numerical color values for each pixel, defines raster graphics.

∗ ∗ ∗

Although images on the computer screen are represented using pixels, specifying individual
pixel colors is not always the best way to create an image. Another way is to specify the basic
geometric objects that it contains, shapes such as lines, circles, triangles, and rectangles. This
is the idea that defines vector graphics: Represent an image as a list of the geometric shapes
that it contains. To make things more interesting, the shapes can have attributes, such as
the thickness of a line or the color that fills a rectangle. Of course, not every image can be
composed from simple geometric shapes. This approach certainly wouldn’t work for a picture
of a beautiful sunset (or for most any other photographic image). However, it works well for
many types of images, such as architectural blueprints and scientific illustrations.

In fact, early in the history of computing, vector graphics was even used directly on computer
screens. When the first graphical computer displays were developed, raster displays were too
slow and expensive to be practical. Fortunately, it was possible to use vacuum tube technology
in another way: The electron beam could be made to directly draw a line on the screen, simply
by sweeping the beam along that line. A vector graphics display would store a display list

of lines that should appear on the screen. Since a point on the screen would glow only very
briefly after being illuminated by the electron beam, the graphics display would go through the
display list over and over, continually redrawing all the lines on the list. To change the image,
it would only be necessary to change the contents of the display list. Of course, if the display
list became too long, the image would start to flicker because a line would have a chance to
visibly fade before its next turn to be redrawn.

But here is the point: For an image that can be specified as a reasonably small number of
geometric shapes, the amount of information needed to represent the image is much smaller
using a vector representation than using a raster representation. Consider an image made up
of one thousand line segments. For a vector representation of the image, you only need to store
the coordinates of two thousand points, the endpoints of the lines. This would take up only a
few kilobytes of memory. To store the image in a frame buffer for a raster display would require
much more memory. Similarly, a vector display could draw the lines on the screen more quickly
than a raster display could copy the the same image from the frame buffer to the screen. (As
soon as raster displays became fast and inexpensive, however, they quickly displaced vector
displays because of their ability to display all types of images reasonably well.)

∗ ∗ ∗

1.1. PAINTING AND DRAWING 3

The divide between raster graphics and vector graphics persists in several areas of computer
graphics. For example, it can be seen in a division between two categories of programs that
can be used to create images: painting programs and drawing programs. In a painting
program, the image is represented as a grid of pixels, and the user creates an image by assigning
colors to pixels. This might be done by using a “drawing tool” that acts like a painter’s brush,
or even by tools that draw geometric shapes such as lines or rectangles. But the point in a
painting program is to color the individual pixels, and it is only the pixel colors that are saved.
To make this clearer, suppose that you use a painting program to draw a house, then draw a
tree in front of the house. If you then erase the tree, you’ll only reveal a blank background, not
a house. In fact, the image never really contained a “house” at all—only individually colored
pixels that the viewer might perceive as making up a picture of a house.

In a drawing program, the user creates an image by adding geometric shapes, and the image
is represented as a list of those shapes. If you place a house shape (or collection of shapes making
up a house) in the image, and you then place a tree shape on top of the house, the house is
still there, since it is stored in the list of shapes that the image contains. If you delete the tree,
the house will still be in the image, just as it was before you added the tree. Furthermore, you
should be able to select one of the shapes in the image and move it or change its size, so drawing
programs offer a rich set of editing operations that are not possible in painting programs. (The
reverse, however, is also true.)

A practical program for image creation and editing might combine elements of painting and
drawing, although one or the other is usually dominant. For example, a drawing program might
allow the user to include a raster-type image, treating it as one shape. A painting program
might let the user create “layers,” which are separate images that can be layered one on top of
another to create the final image. The layers can then be manipulated much like the shapes in
a drawing program (so that you could keep both your house and your tree in separate layers,
even if in the image of the house is in back of the tree).

Two well-known graphics programs are Adobe Photoshop and Adobe Illustrator. Photoshop
is in the category of painting programs, while Illustrator is more of a drawing program. In
the world of free software, the GNU image-processing program, Gimp, is a good alternative to
Photoshop, while Inkscape is a reasonably capable free drawing program. Short introductions
to Gimp and Inkscape can be found in Appendix C.

∗ ∗ ∗

The divide between raster and vector graphics also appears in the field of graphics file
formats. There are many ways to represent an image as data stored in a file. If the original
image is to be recovered from the bits stored in the file, the representation must follow some
exact, known specification. Such a specification is called a graphics file format. Some popular
graphics file formats include GIF, PNG, JPEG, WebP, and SVG. Most images used on the
Web are GIF, PNG, or JPEG, but most browsers also have support for SVG images and for
the newer WebP format.

GIF, PNG, JPEG, and WebP are basically raster graphics formats; an image is specified
by storing a color value for each pixel. GIF is an older file format, which has largely been
superseded by PNG, but you can still find GIF images on the web. (The GIF format supports
animated images, so GIFs are often used for simple animations on Web pages.) GIF uses an
indexed color model with a maximum of 256 colors. PNG can use either indexed or full 24-bit
color, while JPEG is meant for full color images.

The amount of data necessary to represent a raster image can be quite large. However,
the data usually contains a lot of redundancy, and the data can be “compressed” to reduce its

4 CHAPTER 1. INTRODUCTION

size. GIF and PNG use lossless data compression , which means that the original image
can be recovered perfectly from the compressed data. JPEG uses a lossy data compression

algorithm, which means that the image that is recovered from a JPEG file is not exactly the
same as the original image; some information has been lost. This might not sound like a good
idea, but in fact the difference is often not very noticeable, and using lossy compression usually
permits a greater reduction in the size of the compressed data. JPEG generally works well for
photographic images, but not as well for images that have sharp edges between different colors.
It is especially bad for line drawings and images that contain text; PNG is the preferred format
for such images. WebP can use both lossless and lossy compression.

SVG, on the other hand, is fundamentally a vector graphics format (although SVG images
can include raster images). SVG is actually an XML-based language for describing two-
dimensional vector graphics images. “SVG” stands for “Scalable Vector Graphics,” and the
term “scalable” indicates one of the advantages of vector graphics: There is no loss of quality
when the size of the image is increased. A line between two points can be represented at any
scale, and it is still the same perfect geometric line. If you try to greatly increase the size of
a raster image, on the other hand, you will find that you don’t have enough color values for
all the pixels in the new image; each pixel from the original image will be expanded to cover a
rectangle of pixels in the scaled image, and you will get multi-pixel blocks of uniform color. The
scalable nature of SVG images make them a good choice for web browsers and for graphical
elements on your computer’s desktop. And indeed, some desktop environments are now using
SVG images for their desktop icons.

∗ ∗ ∗

A digital image, no matter what its format, is specified using a coordinate system . A
coordinate system sets up a correspondence between numbers and geometric points. In two
dimensions, each point is assigned a pair of numbers, which are called the coordinates of the
point. The two coordinates of a point are often called its x -coordinate and y-coordinate,
although the names “x” and “y” are arbitrary.

A raster image is a two-dimensional grid of pixels arranged into rows and columns. As
such, it has a natural coordinate system in which each pixel corresponds to a pair of integers
giving the number of the row and the number of the column that contain the pixel. (Even in
this simple case, there is some disagreement as to whether the rows should be numbered from
top-to-bottom or from bottom-to-top.)

For a vector image, it is natural to use real-number coordinates. The coordinate system for
an image is arbitrary to some degree; that is, the same image can be specified using different
coordinate systems. I do not want to say a lot about coordinate systems here, but they will be a
major focus of a large part of the book, and they are even more important in three-dimensional
graphics than in two dimensions.

1.2 Elements of 3D Graphics

When we turn to 3D graphics, we find that the most common approaches have more in
common with vector graphics than with raster graphics. That is, the content of an image is
specified as a list of geometric objects. The technique is referred to as geometric modeling .
The starting point is to construct an “artificial 3D world” as a collection of simple geometric
shapes, arranged in three-dimensional space. The objects can have attributes that, combined
with global properties of the world, determine the appearance of the objects. Often, the range
of basic shapes is very limited, perhaps including only points, line segments, and triangles. A

1.2. ELEMENTS OF 3D GRAPHICS 5

more complex shape such as a polygon or sphere can be built or approximated as a collection
of more basic shapes, if it is not itself considered to be basic. To make a two-dimensional image
of the scene, the scene is projected from three dimensions down to two dimensions. Projection
is the equivalent of taking a photograph of the scene. Let’s look at how it all works in a little
more detail.

First, the geometry. . . . We start with an empty 3D space or “world.” Of course, this
space exists only conceptually, but it’s useful to think of it as real and to be able to visualize it
in your mind. The space needs a coordinate system that associates each point in the space with
three numbers, usually referred to as the x, y, and z coordinates of the point. This coordinate
system is referred to as “world coordinates.”

We want to build a scene inside the world, made up of geometric objects. For example,
we can specify a line segment in the scene by giving the coordinates of its two endpoints,
and we can specify a triangle by giving the coordinates of its three vertices. The smallest
building blocks that we have to work with, such as line segments and triangles, are called
geometric primitives. Different graphics systems make different sets of primitive available,
but in many cases only very basic shapes such as lines and triangles are considered primitive.
A complex scene can contain a large number of primitives, and it would be very difficult to
create the scene by giving explicit coordinates for each individual primitive. The solution,
as any programmer should immediately guess, is to chunk together primitives into reusable
components. For example, for a scene that contains several automobiles, we might create a
geometric model of a wheel. An automobile can be modeled as four wheels together with
models of other components. And we could then use several copies of the automobile model in
the scene. Note that once a geometric model has been designed, it can be used as a component
in more complex models. This is referred to as hierarchical modeling .

Suppose that we have constructed a model of a wheel out of geometric primitives. When
that wheel is moved into position in the model of an automobile, the coordinates of all of its
primitives will have to be adjusted. So what exactly have we gained by building the wheel? The
point is that all of the coordinates in the wheel are adjusted in the same way. That is, to place
the wheel in the automobile, we just have to specify a single adjustment that is applied to the
wheel as a whole. The type of “adjustment” that is used is called a geometric transform (or
geometric transformation). A geometric transform is used to adjust the size, orientation, and
position of a geometric object. When making a model of an automobile, we build one wheel.
We then apply four different transforms to the wheel model to add four copies of the wheel
to the automobile. Similarly, we can add several automobiles to a scene by applying different
transforms to the same automobile model.

The three most basic kinds of geometric transform are called scaling , rotation , and
translation . A scaling transform is used to set the size of an object, that is, to make it
bigger or smaller by some specified factor. A rotation transform is used to set an object’s
orientation, by rotating it by some angle about some specific axis. A translation transform
is used to set the position of an object, by displacing it by a given amount from its original
position. In this book, we will meet these transformations first in two dimensions, where they
are easier to understand. But it is in 3D graphics that they become truly essential.

∗ ∗ ∗

Next, appearance. . . . Geometric shapes by themselves are not very interesting. You
have to be able to set their appearance. This is done by assigning attributes to the geometric
objects. An obvious attribute is color, but getting a realistic appearance turns out to be a lot
more complicated than simply specifying a color for each primitive. In 3D graphics, instead of

6 CHAPTER 1. INTRODUCTION

color, we usually talk about material . The term material here refers to the properties that
determine the intrinsic visual appearance of a surface. Essentially, this means how the surface
interacts with light that hits the surface. Material properties can include a basic color as well
as other properties such as shininess, roughness, and transparency.

One of the most useful kinds of material property is a texture . In most general terms,
a texture is a way of varying material properties from point-to-point on a surface. The most
common use of texture is to allow different colors for different points. This is often done by
using a 2D image as a texture. The image can be applied to a surface so that the image looks
like it is “painted” onto the surface. However, texture can also refer to changing values for
things like transparency or “bumpiness.” Textures allow us to add detail to a scene without
using a huge number of geometric primitives; instead, you can use a smaller number of textured
primitives.

A material is an intrinsic property of an object, but the actual appearance of the object
also depends on the environment in which the object is viewed. In the real world, you don’t
see anything unless there is some light in the environment. The same is true in 3D graphics:
you have to add simulated lighting to a scene. There can be several sources of light in a
scene. Each light source can have its own color, intensity, and direction or position. The light
from those sources will then interact with the material properties of the objects in the scene.
Support for lighting in a graphics system can range from fairly simple to very complex and
computationally intensive.

∗ ∗ ∗

Finally, the image. . . . In general, the ultimate goal of 3D graphics is to produce 2D
images of the 3D world. The transformation from 3D to 2D involves viewing and projection .
The world looks different when seen from different points of view. To set up a point of view,
we need to specify the position of the viewer and the direction that the viewer is looking. It
is also necessary to specify an “up” direction, a direction that will be pointing upwards in the
final image. This can be thought of as placing a “virtual camera” into the scene. Once the
view is set up, the world as seen from that point of view can be projected into 2D. Projection
is analogous to taking a picture with the camera.

The final step in 3D graphics is to assign colors to individual pixels in the 2D image. This
process is called rasterization , and the whole process of producing an image is referred to as
rendering the scene.

In many cases the ultimate goal is not to create a single image, but to create an animation ,
consisting a sequence of images that show the world at different times. In an animation, there
are small changes from one image in the sequence to the next. Almost any aspect of a scene
can change during an animation, including coordinates of primitives, transformations, material
properties, and the view. For example, an object can be made to grow over the course of an
animation by gradually increasing the scale factor in a scaling transformation that is applied to
the object. And changing the view during an animation can give the effect of moving or flying
through the scene. Of course, it can be difficult to compute the necessary changes. There are
many techniques to help with the computation. One of the most important is to use a “physics
engine,” which computes the motion and interaction of objects based on the laws of physics.
(However, you won’t learn about physics engines in this book.)

1.3. HARDWARE AND SOFTWARE 7

1.3 Hardware and Software

We will be using OpenGL as the primary basis for 3D graphics programming. The original
version of OpenGL was released in 1992 by a company named Silicon Graphics, which was known
for its graphics workstations—powerful, expensive computers designed for intensive graphical
applications. (Today, you probably have more graphics computing power on your smart phone.)
OpenGL is supported by the graphics hardware in most modern computing devices, including
desktop computers, laptops, and many mobile devices. This section will give you a bit of
background about the history of OpenGL and about the graphics hardware that supports it.

In the first desktop computers, the contents of the screen were managed directly by the
CPU. For example, to draw a line segment on the screen, the CPU would run a loop to set the
color of each pixel that lies along the line. Needless to say, graphics could take up a lot of the
CPU’s time. And graphics performance was very slow, compared to what we expect today. So
what has changed? Computers are much faster in general, of course, but the big change is that
in modern computers, graphics processing is done by a specialized component called a GPU ,
or Graphics Processing Unit. A GPU includes processors for doing graphics computations; in
fact, it can include a large number of such processors that work in parallel to greatly speed up
graphical operations. It also includes its own dedicated memory for storing things like images
and lists of coordinates. GPU processors have very fast access to data that is stored in GPU
memory—much faster than their access to data stored in the computer’s main memory.

To draw a line or perform some other graphical operation, the CPU simply has to send
commands, along with any necessary data, to the GPU, which is responsible for actually
carrying out those commands. The CPU offloads most of the graphical work to the GPU,
which is optimized to carry out that work very quickly. The set of commands that the GPU
understands make up the API of the GPU. OpenGL is an example of a graphics API, and
most GPUs support OpenGL in the sense that they can understand OpenGL commands, or at
least that OpenGL commands can efficiently be translated into commands that the GPU can
understand.

OpenGL is not the only graphics API. The best-known alternatives are probably the
proprietary APIs used by Apple and Microsoft. Apple’s MacOS uses an API known as Metal,
while Microsoft Windows uses Direct3D. Nevertheless, OpenGL can currently still be used on
MacOS and Windows. Furthermore, a newer open API named Vulkan has been defined as a
replacement for OpenGL itself. Vulkan is a complex, low-level API designed more for speed and
efficiency rather than ease-of-use, and it will likely not completely replace OpenGL for some
time, if ever. Metal, Direct3D, and Vulkan are not covered in this textbook. We are using
OpenGL since it provides an easier introduction to 3D graphics and because it is still the basis
for 3D graphics in Web browsers.

∗ ∗ ∗

I have said that OpenGL is an API, but in fact it is a series of APIs that have been subject
to repeated extension and revision. The current version, in 2021, is 4.6, which was first released
in 2017. It is very different from the 1.0 version from 1992. Furthermore, there is a specialized
version called OpengGL ES for “embedded systems” such as mobile phones and tablets. And
there is also WebGL, for use in Web browsers, which is basically a port of OpenGL ES. It will
be useful to know something about how and why OpenGL has changed.

First of all, you should know that OpenGL was designed as a “client/server” system. The
server, which is responsible for controlling the computer’s display and performing graphics
computations, carries out commands issued by the client. Typically, the server is a GPU,

8 CHAPTER 1. INTRODUCTION

including its graphics processors and memory. The server executes OpenGL commands.
The client is the CPU in the same computer, along with the application program that it is
running. OpenGL commands come from the program that is running on the CPU. However,
it is actually possible to run OpenGL programs remotely over a network. That is, you can
execute an application program on a remote computer (the OpenGL client), while the graphics
computations and display are done on the computer that you are actually using (the OpenGL
server).

The key idea is that the client and the server are separate components, and there is a
communication channel between those components. OpenGL commands and the data that
they need are communicated from the client (the CPU) to the server (the GPU) over that
channel. The capacity of the channel can be a limiting factor in graphics performance. Think
of drawing an image onto the screen. If the GPU can draw the image in microseconds, but it
takes milliseconds to send the data for the image from the CPU to the GPU, then the great speed
of the GPU is irrelevant—most of the time that it takes to draw the image is communication
time.

For this reason, one of the driving factors in the evolution of OpenGL has been the desire
to limit the amount of communication that is needed between the CPU and the GPU. One
approach is to store information in the GPU’s memory. If some data is going to be used several
times, it can be transmitted to the GPU once and stored in memory there, where it will be
immediately accessible to the GPU. Another approach is to try to decrease the number of
OpenGL commands that must be transmitted to the GPU to draw a given image.

OpenGL draws primitives such as triangles. Specifying a primitive means specifying
coordinates and attributes for each of its vertices. In the original OpenGL 1.0, a separate
command was used to specify the coordinates of each vertex, and a command was needed each
time the value of an attribute changed. To draw a single triangle would require three or more
commands. Drawing a complex object made up of thousands of triangles would take many
thousands of commands. Even in OpenGL 1.1, it became possible to draw such an object with
a single command instead of thousands. All the data for the object would be loaded into arrays,
which could then be sent in a single step to the GPU. Unfortunately, if the object was going to
be drawn more than once, then the data would have to be retransmitted each time the object
was drawn. This was fixed in OpenGL 1.5 with Vertex Buffer Objects. A VBO is a block
of memory in the GPU that can store the coordinates or attribute values for a set of vertices.
This makes it possible to reuse the data without having to retransmit it from the CPU to the
GPU every time it is used.

Similarly, OpenGL 1.1 introduced texture objects to make it possible to store several
images on the GPU for use as textures. This means that texture images that are going to
be reused several times can be loaded once into the GPU, so that the GPU can easily switch
between images without having to reload them.

∗ ∗ ∗

As new capabilities were added to OpenGL, the API grew in size. But the growth was still
outpaced by the invention of new, more sophisticated techniques for doing graphics. Some of
these new techniques were added to OpenGL, but the problem is that no matter how many
features you add, there will always be demands for new features—as well as complaints that all
the new features are making things too complicated! OpenGL was a giant machine, with new
pieces always being tacked onto it, but still not pleasing everyone. The real solution was to
make the machine programmable. With OpenGL 2.0, it became possible to write programs
to be executed as part of the graphical computation in the GPU. The programs are run on the

1.3. HARDWARE AND SOFTWARE 9

GPU at GPU speed. A programmer who wants to use a new graphics technique can write a
program to implement the feature and just hand it to the GPU. The OpenGL API doesn’t have
to be changed. The only thing that the API has to support is the ability to send programs to
the GPU for execution.

The programs are called shaders (although the term does’t really describe what most of
them actually do). The first shaders to be introduced were vertex shaders and fragment

shaders. When a primitive is drawn, some work has to be done at each vertex of the primitive,
such as applying a geometric transform to the vertex coodinates or using the attributes and
global lighting environment to compute the color of that vertex. A vertex shader is a program
that can take over the job of doing such “per-vertex” computations. Similarly, some work has
to be done for each pixel inside the primitive. A fragment shader can take over the job of
performing such “per-pixel” computations. (Fragment shaders are also called pixel shaders.)

The idea of programmable graphics hardware was very successful—so successful that in
OpenGL 3.0, the usual per-vertex and per-fragment processing was deprecated (meaning that
its use was discouraged). And in OpenGL 3.1, it was removed from the OpenGL standard,
although it is still present as an optional extension. In practice, all the original features of
OpenGL are still supported in desktop versions of OpenGL and will probably continue to be
available in the future. On the embedded system side, however, with OpenGL ES 2.0 and later,
the use of shaders is mandatory, and a large part of the OpenGL 1.1 API has been completely
removed. WebGL, the version of OpenGL for use in web browsers, is based on OpenGL ES,
and it also requires shaders to get anything at all done. Nevertheless, we will begin our study of
OpenGL with version 1.1. Most of the concepts and many of the details from that version are
still relevant, and it offers an easier entry point for someone new to 3D graphics programming.

OpenGL shaders are written in GLSL (OpenGL Shading Language). Like OpenGL itself,
GLSL has gone through several versions. We will spend some time later in the course studying
GLSL ES, the version used with WebGL and OpenGL ES. GLSL uses a syntax similar to the
C programming language.

∗ ∗ ∗

As a final remark on GPU hardware, I should note that the computations that are done for
different vertices are pretty much independent, and so can potentially be done in parallel. The
same is true of the computations for different fragments. In fact, GPUs can have hundreds or
thousands of processors that can operate in parallel. Admittedly, the individual processors are
much less powerful than a CPU, but then typical per-vertex and per-fragment computations
are not very complicated. The large number of processors, and the large amount of parallelism
that is possible in graphics computations, makes for impressive graphics performance even on
fairly inexpensive GPUs.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Two-Dimensional Graphics

With this chapter, we begin our study of computer graphics by looking at the two-
dimensional case. Things are simpler, and a lot easier to visualize, in 2D than in 3D, but most
of the ideas that are covered in this chapter will also be very relevant to 3D.

The chapter begins with four sections that examine 2D graphics in a general way, without
tying it to a particular programming language or graphics API. The coding examples in these
sections are written in pseudocode that should make sense to anyone with enough programming
background to be reading this book. In the next three sections, we will take quick looks at 2D
graphics in three particular languages: Java with Graphics2D, JavaScript with HTML <canvas>

graphics, and SVG. We will see how these languages use many of the general ideas from earlier
in the chapter.

2.1 Pixels, Coordinates, and Colors

To create a two-dimensional image, each point in the image is assigned a color. A
point in 2D can be identified by a pair of numerical coordinates. Colors can also be specified
numerically. However, the assignment of numbers to points or colors is somewhat arbitrary.
So we need to spend some time studying coordinate systems, which associate numbers to
points, and color models, which associate numbers to colors.

2.1.1 Pixel Coordinates

A digital image is made up of rows and columns of pixels. A pixel in such an image can be
specified by saying which column and which row contains it. In terms of coordinates, a pixel
can be identified by a pair of integers giving the column number and the row number. For
example, the pixel with coordinates (3,5) would lie in column number 3 and row number 5.
Conventionally, columns are numbered from left to right, starting with zero. Most graphics
systems, including the ones we will study in this chapter, number rows from top to bottom,
starting from zero. Some, including OpenGL, number the rows from bottom to top instead.

11

12 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

7

6

5

4

3

2

1

0

12-by-8 pixel grids, shown with row and column numbers.

On the left, rows are numbered from top to bottom,

on the right, they are numberd bottom to top.

0 1 2 3 4 5 6 7 8 9 10 11

(3,5)

(3,5)

Note in particular that the pixel that is identified by a pair of coordinates (x,y) depends on the
choice of coordinate system. You always need to know what coordinate system is in use before
you know what point you are talking about.

Row and column numbers identify a pixel, not a point. A pixel contains many points;
mathematically, it contains an infinite number of points. The goal of computer graphics is not
really to color pixels—it is to create and manipulate images. In some ideal sense, an image
should be defined by specifying a color for each point, not just for each pixel. Pixels are an
approximation. If we imagine that there is a true, ideal image that we want to display, then
any image that we display by coloring pixels is an approximation. This has many implications.

Suppose, for example, that we want to draw a line segment. A mathematical line has no
thickness and would be invisible. So we really want to draw a thick line segment, with some
specified width. Let’s say that the line should be one pixel wide. The problem is that, unless
the line is horizontal or vertical, we can’t actually draw the line by coloring pixels. A diagonal
geometric line will cover some pixels only partially. It is not possible to make part of a pixel
black and part of it white. When you try to draw a line with black and white pixels only,
the result is a jagged staircase effect. This effect is an example of something called “aliasing.”
Aliasing can also be seen in the outlines of characters drawn on the screen and in diagonal or
curved boundaries between any two regions of different color. (The term aliasing likely comes
from the fact that ideal images are naturally described in real-number coordinates. When you
try to represent the image using pixels, many real-number coordinates will map to the same
integer pixel coordinates; they can all be considered as different names or “aliases” for the same
pixel.)

Antialiasing is a term for techniques that are designed to mitigate the effects of aliasing.
The idea is that when a pixel is only partially covered by a shape, the color of the pixel should be
a mixture of the color of the shape and the color of the background. When drawing a black line
on a white background, the color of a partially covered pixel would be gray, with the shade of
gray depending on the fraction of the pixel that is covered by the line. (In practice, calculating
this area exactly for each pixel would be too difficult, so some approximate method is used.)
Here, for example, is a geometric line, shown on the left, along with two approximations of that
line made by coloring pixels. The lines are greatly magnified so that you can see the individual
pixels. The line on the right is drawn using antialiasing, while the one in the middle is not:

2.1. PIXELS, COORDINATES, AND COLORS 13

Note that antialiasing does not give a perfect image, but it can reduce the “jaggies” that are
caused by aliasing (at least when it is viewed on a normal scale).

There are other issues involved in mapping real-number coordinates to pixels. For example,
which point in a pixel should correspond to integer-valued coordinates such as (3,5)? The center
of the pixel? One of the corners of the pixel? In general, we think of the numbers as referring
to the top-left corner of the pixel. Another way of thinking about this is to say that integer
coordinates refer to the lines between pixels, rather than to the pixels themselves. But that
still doesn’t determine exactly which pixels are affected when a geometric shape is drawn. For
example, here are two lines drawn using HTML canvas graphics, shown greatly magnified. The
lines were specified to be colored black with a one-pixel line width:

The top line was drawn from the point (100,100) to the point (120,100). In canvas graphics,
integer coordinates corresponding to the lines between pixels, but when a one-pixel line is
drawn, it extends one-half pixel on either side of the infinitely thin geometric line. So for the
top line, the line as it is drawn lies half in one row of pixels and half in another row. The
graphics system, which uses antialiasing, rendered the line by coloring both rows of pixels gray.
The bottom line was drawn from the point (100.5,100.5) to (120.5,120.5). In this case, the line
lies exactly along one line of pixels, which gets colored black. The gray pixels at the ends of
the bottom line have to do with the fact that the line only extends halfway into the pixels at
its endpoints. Other graphics systems might render the same lines differently.

The interactive demo c2/pixel-magnifier.html lets you experiment with pixels and antialias-
ing. Interactive demos can be found on the web pages in the on-line version of this book. If you
have downloaded the web site, you can also find the demos in the folder named demos. (Note
that in any of the interactive demos that accompany this book, you can click the question mark
icon in the upper left for more information about how to use it.)

∗ ∗ ∗

14 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

All this is complicated further by the fact that pixels aren’t what they used to be. Pixels
today are smaller! The resolution of a display device can be measured in terms of the number
of pixels per inch on the display, a quantity referred to as PPI (pixels per inch) or sometimes
DPI (dots per inch). Early screens tended to have resolutions of somewhere close to 72 PPI.
At that resolution, and at a typical viewing distance, individual pixels are clearly visible. For a
while, it seemed like most displays had about 100 pixels per inch, but high resolution displays
today can have 200, 300 or even 400 pixels per inch. At the highest resolutions, individual
pixels can no longer be distinguished.

The fact that pixels come in such a range of sizes is a problem if we use coordinate systems
based on pixels. An image created assuming that there are 100 pixels per inch will look tiny on a
400 PPI display. A one-pixel-wide line looks good at 100 PPI, but at 400 PPI, a one-pixel-wide
line is probably too thin.

In fact, in many graphics systems, “pixel” doesn’t really refer to the size of a physical
pixel. Instead, it is just another unit of measure, which is set by the system to be something
appropriate. (On a desktop system, a pixel is usually about one one-hundredth of an inch. On
a smart phone, which is usually viewed from a closer distance, the value might be closer to
1/160 inch. Furthermore, the meaning of a pixel as a unit of measure can change when, for
example, the user applies a magnification to a web page.)

Pixels cause problems that have not been completely solved. Fortunately, they are less of a
problem for vector graphics, which is mostly what we will use in this book. For vector graphics,
pixels only become an issue during rasterization, the step in which a vector image is converted
into pixels for display. The vector image itself can be created using any convenient coordinate
system. It represents an idealized, resolution-independent image. A rasterized image is an
approximation of that ideal image, but how to do the approximation can be left to the display
hardware.

2.1.2 Real-number Coordinate Systems

When doing 2D graphics, you are given a rectangle in which you want to draw some graphics
primitives. Primitives are specified using some coordinate system on the rectangle. It should
be possible to select a coordinate system that is appropriate for the application. For example, if
the rectangle represents a floor plan for a 15 foot by 12 foot room, then you might want to use
a coordinate system in which the unit of measure is one foot and the coordinates range from 0
to 15 in the horizontal direction and 0 to 12 in the vertical direction. The unit of measure in
this case is feet rather than pixels, and one foot can correspond to many pixels in the image.
The coordinates for a pixel will, in general, be real numbers rather than integers. In fact, it’s
better to forget about pixels and just think about points in the image. A point will have a pair
of coordinates given by real numbers.

To specify the coordinate system on a rectangle, you just have to specify the horizontal
coordinates for the left and right edges of the rectangle and the vertical coordinates for the top
and bottom. Let’s call these values left, right, top, and bottom. Often, they are thought of as
xmin, xmax, ymin, and ymax, but there is no reason to assume that, for example, top is less
than bottom. We might want a coordinate system in which the vertical coordinate increases
from bottom to top instead of from top to bottom. In that case, top will correspond to the
maximum y-value instead of the minimum value.

To allow programmers to specify the coordinate system that they would like to use, it would
be good to have a subroutine such as

2.1. PIXELS, COORDINATES, AND COLORS 15

setCoordinateSystem(left,right,bottom,top)

The graphics system would then be responsible for automatically transforming the coordinates
from the specfiied coordinate system into pixel coordinates. Such a subroutine might not be
available, so it’s useful to see how the transformation is done by hand. Let’s consider the general
case. Given coordinates for a point in one coordinate system, we want to find the coordinates
for the same point in a second coordinate system. (Remember that a coordinate system is just
a way of assigning numbers to points. It’s the points that are real!) Suppose that the horizontal
and vertical limits are oldLeft, oldRight, oldTop, and oldBottom for the first coordinate system,
and are newLeft, newRight, newTop, and newBottom for the second. Suppose that a point
has coordinates (oldX,oldY) in the first coordinate system. We want to find the coordinates
(newX,newY) of the point in the second coordinate system

oldLeft oldRight

oldTop

oldBottom

(oldX, oldY)

newLeft newRight

newTop

newBottom

(newX, newY)

Formulas for newX and newY are then given by

newX = newLeft +

((oldX - oldLeft) / (oldRight - oldLeft)) * (newRight - newLeft))

newY = newTop +

((oldY - oldTop) / (oldBottom - oldTop)) * (newBotom - newTop)

The logic here is that oldX is located at a certain fraction of the distance from oldLeft to
oldRight. That fraction is given by

((oldX - oldLeft) / (oldRight - oldLeft))

The formula for newX just says that newX should lie at the same fraction of the distance from
newLeft to newRight. You can also check the formulas by testing that they work when oldX is
equal to oldLeft or to oldRight, and when oldY is equal to oldBottom or to oldTop.

As an example, suppose that we want to transform some real-number coordinate system
with limits left, right, top, and bottom into pixel coordinates that range from 0 at left to 800 at
the right and from 0 at the top 600 at the bottom. In that case, newLeft and newTop are zero,
and the formulas become simply

newX = ((oldX - left) / (right - left)) * 800

newY = ((oldY - top) / (bottom - top)) * 600

Of course, this gives newX and newY as real numbers, and they will have to be rounded
or truncated to integer values if we need integer coordinates for pixels. The reverse
transformation—going from pixel coordinates to real number coordinates—is also useful. For
example, if the image is displayed on a computer screen, and you want to react to mouse clicks
on the image, you will probably get the mouse coordinates in terms of integer pixel coordinates,
but you will want to transform those pixel coordinates into your own chosen coordinate system.

In practice, though, you won’t usually have to do the transformations yourself, since most
graphics APIs provide some higher level way to specify transforms. We will talk more about
this in Section 2.3.

16 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

2.1.3 Aspect Ratio

The aspect ratio of a rectangle is the ratio of its width to its height. For example an aspect
ratio of 2:1 means that a rectangle is twice as wide as it is tall, and an aspect ratio of 4:3 means
that the width is 4/3 times the height. Although aspect ratios are often written in the form
width:height, I will use the term to refer to the fraction width/height. A square has aspect ratio
equal to 1. A rectangle with aspect ratio 5/4 and height 600 has a width equal to 600*(5/4),
or 750.

A coordinate system also has an aspect ratio. If the horizontal and vertical limits for the
coordinate system are left, right, bottom, and top, as above, then the aspect ratio is the absolute
value of

(right - left) / (top - bottom)

If the coordinate system is used on a rectangle with the same aspect ratio, then when viewed in
that rectangle, one unit in the horizontal direction will have the same apparent length as a unit
in the vertical direction. If the aspect ratios don’t match, then there will be some distortion.
For example, the shape defined by the equation x2 +y2 = 9 should be a circle, but that will
only be true if the aspect ratio of the (x,y) coordinate system matches the aspect ratio of the
drawing area.

-5 5

-5

5

-5 5

-5

5

-5 5

-5

5

Suppose that x and y coordinates both range from -5 to 5,

and we draw a "circle" of radius 3 with center at (0,0).

If the drawing area is square, the "circle" looks like a

circle; if not, the circle is distorted into an ellipse. The

problem occurs when the aspect ratio of the coordinate

system does not match the aspect ratio of the drawing area.

It is not always a bad thing to use different units of length in the vertical and horizontal
directions. However, suppose that you want to use coordinates with limits left, right, bottom,
and top, and that you do want to preserve the aspect ratio. In that case, depending on the
shape of the display rectangle, you might have to adjust the values either of left and right or
of bottom and top to make the aspect ratios match:

2.1. PIXELS, COORDINATES, AND COLORS 17

-5 5

-5

5

-5 5

-5

5

-5 5

-5

5

-7 7

8

-8

It is often a good idea to "preserve the aspect ratio"

by matching the aspect ratio of the coordinate system

to the aspect ratio of the drawing area. This can be

done by extending the range of x or y values -- here,

-5 to 5 -- either horizontally or vertically.

We will look more deeply into geometric transforms later in the chapter, and at that time, we’ll
see some program code for setting up coordinate systems.

2.1.4 Color Models

We are talking about the most basic foundations of computer graphics. One of those is
coordinate systems. The other is color. Color is actually a surprisingly complex topic. We
will look at some parts of the topic that are most relevant to computer graphics applications.

The colors on a computer screen are produced as combinations of red, green, and blue light.
Different colors are produced by varying the intensity of each type of light. A color can be
specified by three numbers giving the intensity of red, green, and blue in the color. Intensity
can be specified as a number in the range zero, for minimum intensity, to one, for maximum
intensity. This method of specifying color is called the RGB color model , where RGB stands
for Red/Green/Blue. For example, in the RGB color model, the number triple (1, 0.5, 0.5)
represents the color obtained by setting red to full intensity, while green and blue are set to
half intensity. The red, green, and blue values for a color are called the color components of
that color in the RGB color model.

Light is made up of waves with a variety of wavelengths. A pure color is one for which
all the light has the same wavelength, but in general, a color can contain many wavelengths—
mathematically, an infinite number. How then can we represent all colors by combining just
red, green, and blue light? In fact, we can’t quite do that.

You might have heard that combinations of the three basic, or “primary,” colors are sufficient
to represent all colors, because the human eye has three kinds of color sensors that detect red,
green, and blue light. However, that is only an approximation. The eye does contain three
kinds of color sensor. The sensors are called “cone cells.” However, cone cells do not respond
exclusively to red, green, and blue light. Each kind of cone cell responds, to a varying degree,
to wavelengths of light in a wide range. A given mix of wavelengths will stimulate each type
of cell to a certain degree, and the intensity of stimulation determines the color that we see. A
different mixture of wavelengths that stimulates each type of cone cell to the same extent will
be perceived as the same color. So a perceived color can, in fact, be specified by three numbers
giving the intensity of stimulation of the three types of cone cell. However, it is not possible
to produce all possible patterns of stimulation by combining just three basic colors, no matter

18 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

how those colors are chosen. This is just a fact about the way our eyes actually work; it might
have been different. Three basic colors can produce a reasonably large fraction of the set of
perceivable colors, but there are colors that you can see in the world that you will never see on
your computer screen. (This whole discussion only applies to people who actually have three
kinds of cone cell. Color blindness, where someone is missing one or more kinds of cone cell, is
surprisingly common.)

The range of colors that can be produced by a device such as a computer screen is called
the color gamut of that device. Different computer screens can have different color gamuts,
and the same RGB values can produce somewhat different colors on different screens. The color
gamut of a color printer is noticeably different—and probably smaller—than the color gamut
of a screen, which explain why a printed image probably doesn’t look exactly the same as it
did on the screen. (Printers, by the way, make colors differently from the way a screen does it.
Whereas a screen combines light to make a color, a printer combines inks or dyes. Because of
this difference, colors meant for printers are often expressed using a different set of basic colors.
A common color model for printer colors is CMYK, using the colors cyan, magenta, yellow, and
black.)

In any case, the most common color model for computer graphics is RGB. RGB colors are
most often represented using 8 bits per color component, a total of 24 bits to represent a color.
This representation is sometimes called “24-bit color.” An 8-bit number can represent 28, or
256, different values, which we can take to be the positive integers from 0 to 255. A color is
then specified as a triple of integers (r,g,b) in that range.

This representation works well because 256 shades of red, green, and blue are about as many
as the eye can distinguish. In applications where images are processed by computing with color
components, it is common to use additional bits per color component, to avoid visual effects
that might occur due to rounding errors in the computations. Such applications might use a
16-bit integer or even a 32-bit floating point value for each color component. On the other
hand, sometimes fewer bits are used. For example, one common color scheme uses 5 bits for
the red and blue components and 6 bits for the green component, for a total of 16 bits for a
color. (Green gets an extra bit because the eye is more sensitive to green light than to red or
blue.) This “16-bit color” saves memory compared to 24-bit color and was more common when
memory was more expensive.

There are many other color models besides RGB. RGB is sometimes criticized as being
unintuitive. For example, it’s not obvious to most people that yellow is made of a combination
of red and green. The closely related color models HSV and HSL describe the same set of
colors as RGB, but attempt to do it in a more intuitive way. (HSV is sometimes called HSB,
with the “B” standing for “brightness.” HSV and HSB are exactly the same model.)

The “H” in these models stands for “hue,” a basic spectral color. As H increases, the color
changes from red to yellow to green to cyan to blue to magenta, and then back to red. The
value of H is often taken to range from 0 to 360, since the colors can be thought of as arranged
around a circle with red at both 0 and 360 degrees.

The “S” in HSV and HSL stands for “saturation,” and is taken to range from 0 to 1. A
saturation of 0 gives a shade of gray (the shade depending on the value of V or L). A saturation
of 1 gives a “pure color,” and decreasing the saturation is like adding more gray to the color.
“V” stands for “value,” and “L” stands for “lightness.” They determine how bright or dark the
color is. The main difference is that in the HSV model, the pure spectral colors occur for V=1,
while in HSL, they occur for L=0.5.

Let’s look at some colors in the HSV color model. The illustration below shows colors with

2.2. SHAPES 19

a full range of H-values, for S and V equal to 1 and to 0.5. Note that for S=V=1, you get
bright, pure colors. S=0.5 gives paler, less saturated colors. V=0.5 gives darker colors.

S � �� � �

S � ���� � 1

S � �� � ��5

S � ���� � ���

H�� H��� H�	
� H�	�� H�
�� H��� H���

It’s probably easier to understand color models by looking at some actual colors and how
they are represented. The interactive demo c2/rgb-hsv.html lets you experiment with the RGB
and HSV color models.

∗ ∗ ∗

Often, a fourth component is added to color models. The fourth component is called alpha ,
and color models that use it are referred to by names such as RGBA and HSLA. Alpha is not a
color as such. It is usually used to represent transparency. A color with maximal alpha value is
fully opaque; that is, it is not at all transparent. A color with alpha equal to zero is completely
transparent and therefore invisible. Intermediate values give translucent, or partly transparent,
colors. Transparency determines what happens when you draw with one color (the foreground
color) on top of another color (the background color). If the foreground color is fully opaque,
it simply replaces the background color. If the foreground color is partly transparent, then it
is blended with the background color. Assuming that the alpha component ranges from 0 to 1,
the color that you get can be computed as

new color = (alpha)*(foreground color) + (1 - alpha)*(background color)

This computation is done separately for the red, blue, and green color components. This is
called alpha blending . The effect is like viewing the background through colored glass; the
color of the glass adds a tint to the background color. This type of blending is not the only
possible use of the alpha component, but it is the most common.

An RGBA color model with 8 bits per component uses a total of 32 bits to represent a color.
This is a convenient number because integer values are often represented using 32-bit values. A
32-bit integer value can be interpreted as a 32-bit RGBA color. How the color components are
arranged within a 32-bit integer is somewhat arbitrary. The most common layout is to store the
alpha component in the eight high-order bits, followed by red, green, and blue. (This should
probably be called ARGB color.) However, other layouts are also in use.

2.2 Shapes

We have been talking about low-level graphics concepts like pixels and coordinates, but
fortunately we don’t usually have to work on the lowest levels. Most graphics systems let you
work with higher-level shapes, such as triangles and circles, rather than individual pixels. And

20 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

a lot of the hard work with coordinates is done using transforms rather than by working with
coordinates directly. In this section and the next, we will look at some of the higher-level
capabilities that are typically provided by 2D graphics APIs.

2.2.1 Basic Shapes

In a graphics API, there will be certain basic shapes that can be drawn with one command,
whereas more complex shapes will require multiple commands. Exactly what qualifies as a
basic shape varies from one API to another. In the WebGL API, for example, the only basic
shapes are points, lines, and triangles. In this subsection, I consider lines, rectangles, and ovals
to be basic.

By “line,” I really mean line segment, that is a straight line segment connecting two given
points in the plane. A simple one-pixel-wide line segment, without antialiasing, is the most
basic shape. It can be drawn by coloring pixels that lie along the infinitely thin geometric line
segment. An algorithm for drawing the line has to decide exactly which pixels to color. One of
the first computer graphics algorithms, Bresenham’s algorithm for line drawing, implements
a very efficient procedure for doing so. I won’t discuss such low-level details here, but it’s worth
looking them up if you want to start learning about what graphics hardware actually has
to do on a low level. In any case, lines are typically more complicated. Antialiasing is one
complication. Line width is another. A wide line might actually be drawn as a rectangle.

Lines can have other attributes, or properties, that affect their appearance. One question
is, what should happen at the end of a wide line? Appearance might be improved by adding
a rounded “cap” on the ends of the line. A square cap—that is, extending the line by half of
the line width—might also make sense. Another question is, when two lines meet as part of a
larger shape, how should the lines be joined? And many graphics systems support lines that
are patterns of dashes and dots. This illustration shows some of the possibilities:

On the left are three wide lines with no cap, a round cap, and a square cap. The geometric line
segment is shown as a dotted line. (The no-cap style is called “butt.”) To the right are four
lines with different patters of dots and dashes. In the middle are three different styles of line
joins: mitered, rounded, and beveled.

∗ ∗ ∗

The basic rectangular shape has sides that are vertical and horizontal. (A tilted rectangle
generally has to be made by applying a rotation.) Such a rectangle can be specified with two
points, (x1,y1) and (x2,y2), that give the endpoints of one of the diagonals of the rectangle.
Alternatively, the width and the height can be given, along with a single base point, (x,y). In
that case, the width and height have to be positive, or the rectangle is empty. The base point
(x,y) will be the upper left corner of the rectangle if y increases from top to bottom, and it will
be the lower left corner of the rectangle if y increases from bottom to top.

2.2. SHAPES 21

(x1,y1)

(x2,y2)

(x1,y1)

(x2,y2)

(x,y)

height

width

Suppose that you are given points (x1,y1) and (x2,y2), and that you want to draw the rectangle
that they determine. And suppose that the only rectangle-drawing command that you have
available is one that requires a point (x,y), a width, and a height. For that command, x must
be the smaller of x1 and x2, and the width can be computed as the absolute value of x1 minus
x2. And similarly for y and the height. In pseudocode,

DrawRectangle from points (x1,y1) and (x2,y2):

x = min(x1, x2)

y = min(y1, y2)

width = abs(x1 - x2)

height = abs(y1 - y2)

DrawRectangle(x, y, width, height)

A common variation on rectangles is to allow rounded corners. For a “round rect,” the
corners are replaced by elliptical arcs. The degree of rounding can be specified by giving the
horizontal radius and vertical radius of the ellipse. Here are some examples of round rects. For
the shape at the right, the two radii of the ellipse are shown:

My final basic shape is the oval. (An oval is also called an ellipse.) An oval is a closed curve
that has two radii. For a basic oval, we assume that the radii are vertical and horizontal. An
oval with this property can be specified by giving the rectangle that just contains it. Or it can
be specified by giving its center point and the lengths of its vertical radius and its horizontal
radius. In this illustration, the oval on the left is shown with its containing rectangle and with
its center point and radii:

r2

r1

The oval on the right is a circle. A circle is just an oval in which the two radii have the same
length.

If ovals are not available as basic shapes, they can be approximated by drawing a large
number of line segments. The number of lines that is needed for a good approximation depends
on the size of the oval. It’s useful to know how to do this. Suppose that an oval has center
point (x,y), horizontal radius r1, and vertical radius r2. Mathematically, the points on the oval
are given by

(x + r1*cos(angle), y + r2*sin(angle))

22 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

where angle takes on values from 0 to 360 if angles are measured in degrees or from 0 to 2π if
they are measured in radians. Here sin and cos are the standard sine and cosine functions. To
get an approximation for an oval, we can use this formula to generate some number of points
and then connect those points with line segments. In pseudocode, assuming that angles are
measured in radians and that pi represents the mathematical constant π,

Draw Oval with center (x,y), horizontal radius r1, and vertical radius r2:

for i = 0 to numberOfLines:

angle1 = i * (2*pi/numberOfLines)

angle2 = (i+1) * (2*pi/numberOfLines)

a1 = x + r1*cos(angle1)

b1 = y + r2*sin(angle1)

a2 = x + r1*cos(angle2)

b2 = y + r2*sin(angle2)

Draw Line from (x1,y1) to (x2,y2)

For a circle, of course, you would just have r1 = r2. This is the first time we have used the
sine and cosine functions, but it won’t be the last. These functions play an important role in
computer graphics because of their association with circles, circular motion, and rotation. We
will meet them again when we talk about transforms in the next section.

2.2.2 Stroke and Fill

There are two ways to make a shape visible in a drawing. You can stroke it. Or, if it is a closed
shape such as a rectangle or an oval, you can fill it. Stroking a line is like dragging a pen along
the line. Stroking a rectangle or oval is like dragging a pen along its boundary. Filling a shape
means coloring all the points that are contained inside that shape. It’s possible to both stroke
and fill the same shape; in that case, the interior of the shape and the outline of the shape can
have a different appearance.

When a shape intersects itself, like the two shapes in the illustration below, it’s not entirely
clear what should count as the interior of the shape. In fact, there are at least two different
rules for filling such a shape. Both are based on something called the winding number . The
winding number of a shape about a point is, roughly, how many times the shape winds around
the point in the positive direction, which I take here to be counterclockwise. Winding number
can be negative when the winding is in the opposite direction. In the illustration, the shapes on
the left are traced in the direction shown, and the winding number about each region is shown
as a number inside the region.

1
2 1

1

-1

1 2 0

2.2. SHAPES 23

The shapes are also shown filled using the two fill rules. For the shapes in the center, the fill
rule is to color any region that has a non-zero winding number. For the shapes shown on the
right, the rule is to color any region whose winding number is odd; regions with even winding
number are not filled.

There is still the question of what a shape should be filled with. Of course, it can be filled
with a color, but other types of fill are possible, including patterns and gradients. A pattern
is an image, usually a small image. When used to fill a shape, a pattern can be repeated
horizontally and vertically as necessary to cover the entire shape. A gradient is similar in that
it is a way for color to vary from point to point, but instead of taking the colors from an image,
they are computed. There are a lot of variations to the basic idea, but there is always a line
segment along which the color varies. The color is specified at the endpoints of the line segment,
and possibly at additional points; between those points, the color is interpolated. The color
can also be extrapolated to other points on the line that contains the line segment but lying
outside the line segment; this can be done either by repeating the pattern from the line segment
or by simply extending the color from the nearest endpoint. For a linear gradient , the color
is constant along lines perpendicular to the basic line segment, so you get lines of solid color
going in that direction. In a radial gradient , the color is constant along circles centered at
one of the endpoints of the line segment. And that doesn’t exhaust the possibilities. To give
you an idea what patterns and gradients can look like, here is a shape, filled with two gradients
and two patterns:

The first shape is filled with a simple linear gradient defined by just two colors, while the second
shape uses a radial gradient.

Patterns and gradients are not necessarily restricted to filling shapes. Stroking a shape is,
after all, the same as filling a band of pixels along the boundary of the shape, and that can be
done with a gradient or a pattern, instead of with a solid color.

Finally, I will mention that a string of text can be considered to be a shape for the purpose
of drawing it. The boundary of the shape is the outline of the characters. The text is drawn
by filling that shape. In some graphics systems, it is also possible to stroke the outline of the
shape that defines the text. In the following illustration, the string “Graphics” is shown, on
top, filled with a pattern and, below that, filled with a gradient and stroked with solid black:

24 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

2.2.3 Polygons, Curves, and Paths

It is impossible for a graphics API to include every possible shape as a basic shape, but there is
usually some way to create more complex shapes. For example, consider polygons. A polygon
is a closed shape consisting of a sequence of line segments. Each line segment is joined to the
next at its endpoint, and the last line segment connects back to the first. The endpoints are
called the vertices of the polygon, and a polygon can be defined by listing its vertices.

In a regular polygon , all the sides are the same length and all the angles between sides are
equal. Squares and equilateral triangles are examples of regular polygons. A convex polygon

has the property that whenever two points are inside or on the polygon, then the entire line
segment between those points is also inside or on the polygon. Intuitively, a convex polygon
has no “indentations” along its boundary. (Concavity can be a property of any shape, not just
of polygons.)

C����� �olygons N��������� �olygons

Sometimes, polygons are required to be “simple,” meaning that the polygon has no self-
intersections. That is, all the vertices are different, and a side can only intersect another
side at its endpoints. And polygons are usually required to be “planar,” meaning that all the
vertices lie in the same plane. (Of course, in 2D graphics, everything lies in the same plane, so
this is not an issue. However, it does become an issue in 3D.)

How then should we draw polygons? That is, what capabilities would we like to have in a
graphics API for drawing them. One possibility is to have commands for stroking and for filling
polygons, where the vertices of the polygon are given as an array of points or as an array of
x-coordinates plus an array of y-coordinates. In fact, that is sometimes done; for example, the
Java graphics API includes such commands. Another, more flexible, approach is to introduce
the idea of a “path.” Java, SVG, and the HTML canvas API all support this idea. A path is
a general shape that can include both line segments and curved segments. Segments can, but
don’t have to be, connected to other segments at their endpoints. A path is created by giving

2.2. SHAPES 25

a series of commands that tell, essentially, how a pen would be moved to draw the path. While
a path is being created, there is a point that represents the pen’s current location. There will
be a command for moving the pen without drawing, and commands for drawing various kinds
of segments. For drawing polygons, we need commands such as

• createPath() — start a new, empty path

• moveTo(x,y) — move the pen to the point (x,y), without adding a segment to the the
path; that is, without drawing anything

• lineTo(x,y) — add a line segment to the path that starts at the current pen location
and ends at the point (x,y), and move the pen to (x,y)

• closePath() — add a line segment from the current pen location back to the starting
point, unless the pen is already there, producing a closed path.

(For closePath, I need to define “starting point.” A path can be made up of “subpaths” A
subpath consists of a series of connected segments. A moveTo always starts a new subpath.
A closePath ends the current segment and implicitly starts a new one. So “starting point”
means the position of the pen after the most recent moveTo or closePath.)

Suppose that we want a path that represents the triangle with vertices at (100,100),
(300,100), and (200, 200). We can do that with the commands

createPath()

moveTo(100, 100)

lineTo(300, 100)

lineTo(200, 200)

closePath()

The closePath command at the end could be replaced by lineTo(100,100), to move the pen
back to the first vertex.

A path represents an abstract geometric object. Creating one does not make it visible on
the screen. Once we have a path, to make it visible we need additional commands for stroking
and filling the path.

Earlier in this section, we saw how to approximate an oval by drawing, in effect, a polygon
with a large number of sides. In that example, I drew each side as a separate line segment,
so we really had a bunch of separate lines rather than a polygon. There is no way to fill such
a thing. It would be better to approximate the oval with a polygonal path. For an oval with
center (x,y) and radii r1 and r2:

createPath()

moveTo(x + r1, y)

for i = 1 to numberOfPoints-1

angle = i * (2*pi/numberOfLines)

lineTo(x + r1*cos(angle), y + r2*sin(angle))

closePath()

Using this path, we could draw a filled oval as well as stroke it. Even if we just want to draw
the outline of a polygon, it’s still better to create the polygon as a path rather than to draw
the line segments as separate sides. With a path, the computer knows that the sides are part of
single shape. This makes it possible to control the appearance of the “join” between consecutive
sides, as noted earlier in this section.

∗ ∗ ∗

26 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

I noted above that a path can contain other kinds of segments besides lines. For example,
it might be possible to include an arc of a circle as a segment. Another type of curve is a
Bezier curve . Bezier curves can be used to create very general curved shapes. They are fairly
intuitive, so that they are often used in programs that allow users to design curves interactively.
Mathematically, Bezier curves are defined by parametric polynomial equations, but you don’t
need to understand what that means to use them. There are two kinds of Bezier curve in
common use, cubic Bezier curves and quadratic Bezier curves; they are defined by cubic and
quadratic polynomials respectively. When the general term “Bezier curve” is used, it usually
refers to cubic Bezier curves.

A cubic Bezier curve segment is defined by the two endpoints of the segment together with
two control points. To understand how it works, it’s best to think about how a pen would
draw the curve segment. The pen starts at the first endpoint, headed in the direction of the
first control point. The distance of the control point from the endpoint controls the speed of
the pen as it starts drawing the curve. The second control point controls the direction and
speed of the pen as it gets to the second endpoint of the curve. There is a unique cubic curve
that satisfies these conditions.

The illustration above shows three cubic Bezier curve segments. The two curve segments on
the right are connected at an endpoint to form a longer curve. The curves are drawn as thick
black lines. The endpoints are shown as black dots and the control points as blue squares, with
a thin red line connecting each control point to the corresponding endpoint. (Ordinarily, only
the curve would be drawn, except in an interface that lets the user edit the curve by hand.)
Note that at an endpoint, the curve segment is tangent to the line that connects the endpoint
to the control point. Note also that there can be a sharp point or corner where two curve
segments meet. However, one segment will merge smoothly into the next if control points are
properly chosen.

This will all be easier to understand with some hands-on experience. The interactive demo
c2/cubic-bezier.html lets you edit cubic Bezier curve segments by dragging their endpoints and
control points.

When a cubic Bezier curve segment is added to a path, the path’s current pen location acts
as the first endpoint of the segment. The command for adding the segment to the path must
specify the two control points and the second endpoint. A typical command might look like

cubicCurveTo(cx1, cy1, cx2, cy2, x, y)

This would add a curve from the current location to point (x,y), using (cx1,cy1) and (cx2,cy2)
as the control points. That is, the pen leaves the current location heading towards (cx1,cy1),
and it ends at the point (x,y), arriving there from the direction of (cx2,cy2).

Quadratic Bezier curve segments are similar to the cubic version, but in the quadratic case,
there is only one control point for the segment. The curve leaves the first endpoint heading
in the direction of the control point, and it arrives at the second endpoint coming from the
direction of the control point. The curve in this case will be an arc of a parabola.

2.3. TRANSFORMS 27

Again, this is easier to understand this with some hands-on experience. Try the interactive
demo c2/quadratic-bezier.html.

2.3 Transforms

In Section 2.1, we discussed coordinate systems and how it is possible to transform
coordinates from one coordinate system to another. In this section, we’ll look at that idea a
little more closely, and also look at how geometric transformations can be used to place graphics
objects into a coordinate system.

2.3.1 Viewing and Modeling

In a typical application, we have a rectangle made of pixels, with its natural pixel coordinates,
where an image will be displayed. This rectangle will be called the viewport . We also have
a set of geometric objects that are defined in a possibly different coordinate system, generally
one that uses real-number coordinates rather than integers. These objects make up the “scene”
or “world” that we want to view, and the coordinates that we use to define the scene are called
world coordinates.

For 2D graphics, the world lies in a plane. It’s not possible to show a picture of the entire
infinite plane. We need to pick some rectangular area in the plane to display in the image.
Let’s call that rectangular area the window , or view window. A coordinate transform is used
to map the window to the viewport.

4-4

-3

3

(-1,2)

(3,-1)

(300,100)

(700,400)

0

600

0 800

Window Viewport

T

In this illustration, T represents the coordinate transformation. T is a function that takes world
coordinates (x,y) in some window and maps them to pixel coordinates T(x,y) in the viewport.
(I’ve drawn the viewport and window with different sizes to emphasize that they are not the
same thing, even though they show the same objects, but in fact they don’t even exist in the
same space, so it doesn’t really make sense to compare their sizes.) In this example, as you can
check,

T(x,y) = (800*(x+4)/8, 600*(3-y)/6)

Look at the rectangle with corners at (-1,2) and (3,-1) in the window. When this rectangle is
displayed in the viewport, it is displayed as the rectangle with corners T(-1,2) and T(3,-1). In
this example, T(-1,2) = (300,100) and T(3,-1) = (700,400).

We use coordinate transformations in this way because it allows us to choose a world
coordinate system that is natural for describing the scene that we want to display, and it

28 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

is easier to do that than to work directly with viewport coordinates. Along the same lines,
suppose that we want to define some complex object, and suppose that there will be several
copies of that object in our scene. Or maybe we are making an animation, and we would like the
object to have different positions in different frames. We would like to choose some convenient
coordinate system and use it to define the object once and for all. The coordinates that we
use to define an object are called object coordinates for the object. When we want to place
the object into a scene, we need to transform the object coordinates that we used to define the
object into the world coordinate system that we are using for the scene. The transformation that
we need is called a modeling transformation . This picture illustrates an object defined in
its own object coordinate system and then mapped by three different modeling transformations
into the world coordinate system:

M1

M2

M3

Remember that in order to view the scene, there will be another transformation that maps the
object from a view window in world coordinates into the viewport.

Now, keep in mind that the choice of a view window tells which part of the scene is shown
in the image. Moving, resizing, or even rotating the window will give a different view of the
scene. Suppose we make several images of the same car:

What happened between making the top image in this illustration and making the image on
the bottom left? In fact, there are two possibilities: Either the car was moved to the right, or
the view window that defines the scene was moved to the left. This is important, so be sure
you understand it. (Try it with your cell phone camera. Aim it at some objects, take a step
to the left, and notice what happens to the objects in the camera’s viewfinder: They move

2.3. TRANSFORMS 29

to the right in the picture!) Similarly, what happens between the top picture and the middle
picture on the bottom? Either the car rotated counterclockwise, or the window was rotated
clockwise. (Again, try it with a camera—you might want to take two actual photos so that you
can compare them.) Finally, the change from the top picture to the one on the bottom right
could happen because the car got smaller or because the window got larger. (On your camera,
a bigger window means that you are seeing a larger field of view, and you can get that by
applying a zoom to the camera or by backing up away from the objects that you are viewing.)

There is an important general idea here. When we modify the view window, we change
the coordinate system that is applied to the viewport. But in fact, this is the same as leaving
that coordinate system in place and moving the objects in the scene instead. Except that to
get the same effect in the final image, you have to apply the opposite transformation to the
objects (for example, moving the window to the left is equivalent to moving the objects to the
right). So, there is no essential distinction between transforming the window and transforming
the object. Mathematically, you specify a geometric primitive by giving coordinates in some
natural coordinate system, and the computer applies a sequence of transformations to those
coordinates to produce, in the end, the coordinates that are used to actually draw the primitive
in the image. You will think of some of those transformations as modeling transforms and some
as coordinate transforms, but to the computer, it’s all the same.

The on-line version of this section includes the live demo c2/transform-equivalence-2d.html
that can help you to understand the equivalence between modeling transformations and
viewport transformations. Read the help text in the demo for more information.

We will return to this idea several times later in the book, but in any case, you can see that
geometric transforms are a central concept in computer graphics. Let’s look at some basic types
of transformation in more detail. The transforms we will use in 2D graphics can be written in
the form

x1 = a*x + b*y + e

y1 = c*x + d*y + f

where (x,y) represents the coordinates of some point before the transformation is applied, and
(x1,y1) are the transformed coordinates. The transform is defined by the six constants a, b, c,
d, e, and f. Note that this can be written as a function T, where

T(x,y) = (a*x + b*y + e, c*x + d*y + f)

A transformation of this form is called an affine transform . An affine transform has the
property that, when it is applied to two parallel lines, the transformed lines will also be parallel.
Also, if you follow one affine transform by another affine transform, the result is again an affine
transform.

2.3.2 Translation

A translation transform simply moves every point by a certain amount horizontally and a
certain amount vertically. If (x,y) is the original point and (x1,y1) is the transformed point,
then the formula for a translation is

x1 = x + e

y1 = y + f

where e is the number of units by which the point is moved horizontally and f is the amount by
which it is moved vertically. (Thus for a translation, a = d = 1, and b = c = 0 in the general
formula for an affine transform.) A 2D graphics system will typically have a function such as

30 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

translate(e, f)

to apply a translate transformation. The translation would apply to everything that is drawn
after the command is given. That is, for all subsequent drawing operations, e would be added
to the x-coordinate and f would be added to the y-coordinate. Let’s look at an example.
Suppose that you draw an “F” using coordinates in which the “F” is centered at (0,0). If
you say translate(4,2) before drawing the “F”, then every point of the “F” will be moved
horizontally by 4 units and vertically by 2 units before the coordinates are actually used, so
that after the translation, the “F” will be centered at (4,2):

The light gray “F” in this picture shows what would be drawn without the translation; the dark
red “F” shows the same “F” drawn after applying a translation by (4,2). The top arrow shows
that the upper left corner of the “F” has been moved over 4 units and up 2 units. Every point
in the “F” is subjected to the same displacement. Note that in my examples, I am assuming
that the y-coordinate increases from bottom to top. That is, the y-axis points up.

Remember that when you give the command translate(e,f), the translation applies to all the
drawing that you do after that, not just to the next shape that you draw. If you apply another
transformation after the translation, the second transform will not replace the translation.
It will be combined with the translation, so that subsequent drawing will be affected by the
combined transformation. For example, if you combine translate(4,2) with translate(-1,5), the
result is the same as a single translation, translate(3,7). This is an important point, and there
will be a lot more to say about it later.

Also remember that you don’t compute coordinate transformations yourself. You just
specify the original coordinates for the object (that is, the object coordinates), and you specify
the transform or transforms that are to be applied. The computer takes care of applying the
transformation to the coordinates. You don’t even need to know the equations that are used
for the transformation; you just need to understand what it does geometrically.

2.3.3 Rotation

A rotation transform, for our purposes here, rotates each point about the origin, (0,0). Every
point is rotated through the same angle, called the angle of rotation. For this purpose, angles
can be measured either in degrees or in radians. (The 2D graphics APIs for Java and JavaScript
that we will look at later in this chapter use radians, but OpenGL and SVG use degrees.) A
rotation with a positive angle rotates objects in the direction from the positive x-axis towards
the positive y-axis. This is counterclockwise in a coordinate system where the y-axis points up,
as it does in my examples here, but it is clockwise in the usual pixel coordinates, where the
y-axis points down rather than up. Although it is not obvious, when rotation through an angle

2.3. TRANSFORMS 31

of r radians about the origin is applied to the point (x,y), then the resulting point (x1,y1) is
given by

x1 = cos(r) * x - sin(r) * y

y1 = sin(r) * x + cos(r) * y

That is, in the general formula for an affine transform, e = f = 0, a = d = cos(r), b = -sin(r),
and c = sin(r). Here is a picture that illustrates a rotation about the origin by the angle
negative 135 degrees:

Again, the light gray “F” is the original shape, and the dark red “F” is the shape that results
if you apply the rotation. The arrow shows how the upper left corner of the original “F” has
been moved.

A 2D graphics API would typically have a command rotate(r) to apply a rotation. The
command is used before drawing the objects to which the rotation applies.

2.3.4 Combining Transformations

We are now in a position to see what can happen when you combine two transformations.
Suppose that before drawing some object, you say

translate(4,0)

rotate(90)

Assume that angles are measured in degrees. The translation will then apply to all subsequent
drawing. But, because of the rotation command, the things that you draw after the translation
are rotated objects. That is, the translation applies to objects that have already been rotated.
An example is shown on the left in the illustration below, where the light gray “F” is the original
shape, and red “F” shows the result of applying the two transforms to the original. The original
“F” was first rotated through a 90 degree angle, and then moved 4 units to the right.

32 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

Rotate then translate Translate then rotate

Note that transforms are applied to objects in the reverse of the order in which they are given
in the code (because the first transform in the code is applied to an object that has already
been affected by the second transform). And note that the order in which the transforms are
applied is important. If we reverse the order in which the two transforms are applied in this
example, by saying

rotate(90)

translate(4,0)

then the result is as shown on the right in the above illustration. In that picture, the original
“F” is first moved 4 units to the right and the resulting shape is then rotated through an angle
of 90 degrees about the origin to give the shape that actually appears on the screen.

For another example of applying several transformations, suppose that we want to rotate
a shape through an angle r about a point (p,q) instead of about the point (0,0). We can do
this by first moving the point (p,q) to the origin, using translate(-p,-q). Then we can do a
standard rotation about the origin by calling rotate(r). Finally, we can move the origin back
to the point (p,q) by applying translate(p,q). Keeping in mind that we have to write the code
for the transformations in the reverse order, we need to say

translate(p,q)

rotate(r)

translate(-p,-q)

before drawing the shape. (In fact, some graphics APIs let us accomplish this transform with a
single command such as rotate(r,p,q). This would apply a rotation through the angle r about
the point (p,q).)

2.3.5 Scaling

A scaling transform can be used to make objects bigger or smaller. Mathematically, a scaling
transform simply multiplies each x-coordinate by a given amount and each y-coordinate by a
given amount. That is, if a point (x,y) is scaled by a factor of a in the x direction and by a
factor of d in the y direction, then the resulting point (x1,y1) is given by

x1 = a * x

y1 = d * y

If you apply this transform to a shape that is centered at the origin, it will stretch the shape
by a factor of a horizontally and d vertically. Here is an example, in which the original light
gray “F” is scaled by a factor of 3 horizontally and 2 vertically to give the final dark red “F”:

2.3. TRANSFORMS 33

The common case where the horizontal and vertical scaling factors are the same is called
uniform scaling . Uniform scaling stretches or shrinks a shape without distorting it.

When scaling is applied to a shape that is not centered at (0,0), then in addition to being
stretched or shrunk, the shape will be moved away from 0 or towards 0. In fact, the true
description of a scaling operation is that it pushes every point away from (0,0) or pulls every
point towards (0,0). If you want to scale about a point other than (0,0), you can use a sequence
of three transforms, similar to what was done in the case of rotation.

A 2D graphics API can provide a function scale(a,d) for applying scaling transformations.
As usual, the transform applies to all x and y coordinates in subsequent drawing operations.
Note that negative scaling factors are allowed and will result in reflecting the shape as well
as possibly stretching or shrinking it. For example, scale(1,-1) will reflect objects vertically,
through the x -axis.

It is a fact that every affine transform can be created by combining translations, rotations
about the origin, and scalings about the origin. I won’t try to prove that, but c2/transforms-
2d.html is an interactive demo that will let you experiment with translations, rotations, and
scalings, and with the transformations that can be made by combining them.

I also note that a transform that is made from translations and rotations, with no scaling,
will preserve length and angles in the objects to which it is applied. It will also preserve aspect
ratios of rectangles. Transforms with this property are called “Euclidean .” If you also allow
uniform scaling, the resulting transformation will preserve angles and aspect ratio, but not
lengths.

2.3.6 Shear

We will look at one more type of basic transform, a shearing transform . Although shears
can in fact be built up out of rotations and scalings if necessary, it is not really obvious how
to do so. A shear will “tilt” objects. A horizontal shear will tilt things towards the left (for
negative shear) or right (for positive shear). A vertical shear tilts them up or down. Here is an
example of horizontal shear:

34 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

A horizontal shear does not move the x-axis. Every other horizontal line is moved to the left or
to the right by an amount that is proportional to the y-value along that line. When a horizontal
shear is applied to a point (x,y), the resulting point (x1,y1) is given by

x1 = x + b * y

y1 = y

for some constant shearing factor b. Similarly, a vertical shear with shearing factor c is given
by the equations

x1 = x

y1 = c * x + y

Shear is occasionally called “skew,” but skew is usually specified as an angle rather than as a
shear factor.

2.3.7 Window-to-Viewport

The last transformation that is applied to an object before it is displayed in an image is the
window-to-viewport transformation, which maps the rectangular view window in the xy-plane
that contains the scene to the rectangular grid of pixels where the image will be displayed.
I’ll assume here that the view window is not rotated; that it, its sides are parallel to the x-
and y-axes. In that case, the window-to-viewport transformation can be expressed in terms of
translation and scaling transforms. Let’s look at the typical case where the viewport has pixel
coordinates ranging from 0 on the left to width on the right and from 0 at the top to height at
the bottom. And assume that the limits on the view window are left, right, bottom, and top.
In that case, the window-to-viewport transformation can be programmed as:

scale(width / (right-left), height / (bottom-top));

translate(-left, -top)

These should be the last transforms that are applied to a point. Since transforms are applied
to points in the reverse of the order in which they are specified in the program, they should be
the first transforms that are specified in the program. To see how this works, consider a point
(x,y) in the view window. (This point comes from some object in the scene. Several modeling
transforms might have already been applied to the object to produce the point (x,y), and that
point is now ready for its final transformation into viewport coordinates.) The coordinates (x,y)
are first translated by (-left,-top) to give (x-left,y-top). These coordinates are then multiplied
by the scaling factors shown above, giving the final coordinates

x1 = width / (right-left) * (x-left)

y1 = height / (bottom-top) * (y-top)

2.3. TRANSFORMS 35

Note that the point (left,top) is mapped to (0,0), while the point (right,bottom) is mapped to
(width,height), which is just what we want.

There is still the question of aspect ratio. As noted in Subsection 2.1.3, if we want to force
the aspect ratio of the window to match the aspect ratio of the viewport, it might be necessary
to adjust the limits on the window. Here is pseudocode for a subroutine that will do that, again
assuming that the top-left corner of the viewport has pixel coordinates (0,0):

subroutine applyWindowToViewportTransformation (

left, right, // horizontal limits on view window

bottom, top, // vertical limits on view window

width, height, // width and height of viewport

preserveAspect // should window be forced to match viewport aspect?

)

if preserveAspect :

// Adjust the limits to match the aspect ratio of the drawing area.

displayAspect = abs(height / width);

windowAspect = abs((top-bottom) / (right-left));

if displayAspect > windowAspect :

// Expand the viewport vertically.

excess = (top-bottom) * (displayAspect/windowAspect - 1)

top = top + excess/2

bottom = bottom - excess/2

else if displayAspect < windowAspect :

// Expand the viewport horizontally.

excess = (right-left) * (windowAspect/displayAspect - 1)

right = right + excess/2

left = left - excess/2

scale(width / (right-left), height / (bottom-top))

translate(-left, -top)

2.3.8 Matrices and Vectors

The transforms that are used in computer graphics can be represented as matrices, and the
points on which they operate are represented as vectors. Recall that a matrix , from the point
of view of a computer scientist, is a two-dimensional array of numbers, while a vector is a one-
dimensional array. Matrices and vectors are studied in the field of mathematics called linear

algebra . Linear algebra is fundamental to computer graphics. In fact, matrix and vector math
is built into GPUs. You won’t need to know a great deal about linear algebra for this textbook,
but a few basic ideas are essential.

The vectors that we need are lists of two, three, or four numbers. They are often written
as (x,y), (x,y,z), and (x,y,z,w). A matrix with N rows and M columns is called an “N-by-M
matrix.” For the most part, the matrices that we need are N-by-N matrices, where N is 2, 3,
or 4. That is, they have 2, 3, or 4 rows and columns, and the number of rows is equal to the
number of columns.

If A and B are two N-by-N matrices, then they can be multiplied to give a product matrix
C = AB. If A is an N-by-N matrix, and v is a vector of length N, then v can be multiplied
by A to give another vector w = Av. The function that takes v to Av is a transformation; it
transforms any given vector of size N into another vector of size N. A transformation of this
form is called a linear transformation .

36 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

Now, suppose that A and B are N-by-N matrices and v is a vector of length N. Then, we can
form two different products: A(Bv) and (AB)v. It is a central fact that these two operations
have the same effect. That is, we can multiply v by B and then multiply the result by A, or
we can multiply the matrices A and B to get the matrix product AB and then multiply v by
AB. The result is the same.

Rotation and scaling, as it turns out, are linear transformations. That is, the operation of
rotating (x,y) through an angle d about the origin can be done by multiplying (x,y) by a 2-by-2
matrix. Let’s call that matrix Rd. Similarly, scaling by a factor a in the horizontal direction
and b in the vertical direction can be given as a matrix Sa,b. If we want to apply a scaling
followed by a rotation to the point v = (x,y), we can compute either Rd(Sa,bv) or (RdSa,b)v.

So what? Well, suppose that we want to apply the same two operations, scale then rotate, to
thousands of points, as we typically do when transforming objects for computer graphics. The
point is that we could compute the product matrix RdSa,b once and for all, and then apply the
combined transform to each point with a single multiplication. This means that if a program
says

rotate(d)

scale(a,b)

.

. // draw a complex object

.

the computer doens’t have to keep track of two separate operations. It combines the operations
into a single matrix and just keeps track of that. Even if you apply, say, 50 transformations to
the object, the computer can just combine them all into one matrix. By using matrix algebra,
multiple transformations can be handled as efficiently as a single transformation!

This is really nice, but there is a gaping problem: Translation is not a linear

transformation. To bring translation into this framework, we do something that looks a
little strange at first: Instead of representing a point in 2D as a pair of numbers (x,y), we
represent it as the triple of numbers (x,y,1). That is, we add a one as the third coordinate. It
then turns out that we can then represent rotation, scaling, and translation—and hence any
affine transformation—on 2D space as multiplication by a 3-by-3 matrix. The matrices that we
need have a bottom row containing (0,0,1). Multiplying (x,y,1) by such a matrix gives a new
vector (x1,y1,1). We ignore the extra coordinate and consider this to be a transformation of
(x,y) into (x1,y1). For the record, the 3-by-3 matrices for translation (Ta,b), scaling (Sa,b), and
rotation (Rd) in 2D are

01 a

10 b

00 1

T
a,b

=

0a 0

b0 0

00 1

S
a,b

=

-sin(d)cos(d) 0

00 1

R
d
= cos(d)sin(d) 0

You can compare multiplication by these matrices to the formulas given above for translation,
scaling, and rotation. But when doing graphics programming, you won’t need to do the
multiplication yourself. For now, the important idea that you should take away from this
discussion is that a sequence of transformations can be combined into a single transformation.
The computer only needs to keep track of a single matrix, which we can call the “current
matrix” or “current transformation.” To implement transform commands such as translate(a,b)
or rotate(d), the computer simply multiplies the current matrix by the matrix that represents
the transform.

2.4. HIERARCHICAL MODELING 37

2.4 Hierarchical Modeling

In this section, we look at how complex scenes can be built from very simple shapes. The
key is hierarchical structure. That is, a complex object can be made up of simpler objects,
which can in turn be made up of even simpler objects, and so on until it bottoms out with
simple geometric primitives that can be drawn directly. This is called hierarchical modeling .
We will see that the transforms that were studied in the previous section play an important
role in hierarchical modeling.

Hierarchical structure is the key to dealing with complexity in many areas of computer
science (and in the rest of reality), so it be no surprise that it plays an important role in
computer graphics.

2.4.1 Building Complex Objects

A major motivation for introducing a new coordinate system is that it should be possible to
use the coordinate system that is most natural to the scene that you want to draw. We can
extend this idea to individual objects in a scene: When drawing an object, use the coordinate
system that is most natural for the object.

Usually, we want an object in its natural coordinates to be centered at the origin, (0,0), or
at least to use the origin as a convenient reference point. Then, to place it in the scene, we
can use a scaling transform, followed by a rotation, followed by a translation to set its size,
orientation, and position in the scene. Recall that transformations used in this way are called
modeling transformations. The transforms are often applied in the order scale, then rotate,
then translate, because scaling and rotation leave the reference point, (0,0), fixed. Once the
object has been scaled and rotated, it’s easy to use a translation to move the reference point
to any desired point in the scene. (Of course, in a particular case, you might not need all three
operations.) Remember that in the code, the transformations are specified in the opposite
order from the order in which they are applied to the object and that the transformations are
specified before drawing the object. So in the code, the translation would come first, followed
by the rotation and then the scaling. Modeling transforms are not always composed in this
order, but it is the most common usage.

The modeling transformations that are used to place an object in the scene should not
affect other objects in the scene. To limit their application to just the one object, we can
save the current transformation before starting work on the object and restore it afterwards.
How this is done differs from one graphics API to another, but let’s suppose here that there
are subroutines saveTransform() and restoreTransform() for performing those tasks. That is,
saveTransform will make a copy of the modeling transformation that is currently in effect and
store that copy. It does not change the current transformation; it merely saves a copy. Later,
when restoreTransform is called, it will retrieve that copy and will replace the current modeling
transform with the retrieved transform. Typical code for drawing an object will then have the
form:

saveTransform()

translate(dx,dy) // move object into position

rotate(r) // set the orientation of the object

scale(sx,sy) // set the size of the object

.

. // draw the object, using its natural coordinates

.

38 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

restoreTransform()

Note that we don’t know and don’t need to know what the saved transform does. Perhaps
it is simply the so-called identity transform , which is a transform that doesn’t modify the
coordinates to which it is applied. Or there might already be another transform in place, such
as a coordinate transform that affects the scene as a whole. The modeling transform for the
object is effectively applied in addition to any other transform that was specified previously.
The modeling transform moves the object from its natural coordinates into its proper place in
the scene. Then on top of that, a coordinate transform that is applied to the scene as a whole
would carry the object along with it.

Now let’s extend this idea. Suppose that the object that we want to draw is itself a complex
entity, made up of a number of smaller objects. Think, for example, of a potted flower made
up of pot, stem, leaves, and bloom. We would like to be able to draw the smaller component
objects in their own natural coordinate systems, just as we do the main object. For example,
we would like to specify the bloom in a coordinate system in which the center of the bloom is
at (0,0). But this is easy: We draw each small component object, such as the bloom, in its own
coordinate system, and use a modeling transformation to move the sub-object into position
within the main object. We are composing the complex object in its own natural coordinate
system as if it were a complete scene.

On top of that, we can apply another modeling transformation to the complex object as
a whole, to move it into the actual scene; the sub-objects of the complex object are carried
along with it. That is, the overall transformation that applies to a sub-object consists of a
modeling transformation that places the sub-object into the complex object, followed by the
transformation that places the complex object into the scene.

In fact, we can build objects that are made up of smaller objects which in turn are made
up of even smaller objects, to any level. For example, we could draw the bloom’s petals in
their own coordinate systems, then apply modeling transformations to place the petals into the
natural coordinate system for the bloom. There will be another transformation that moves the
bloom into position on the stem, and yet another transformation that places the entire potted
flower into the scene. This is hierarchical modeling.

Let’s look at a little example. Suppose that we want to draw a simple 2D image of a cart
with two wheels.

This cart is used as one part of a complex scene in an example below. The body of the cart can
be drawn as a pair of rectangles. For the wheels, suppose that we have written a subroutine

drawWheel()

that draws a wheel. This subroutine draws the wheel in its own natural coordinate system. In
this coordinate system, the wheel is centered at (0,0) and has radius 1.

In the cart’s coordinate system, I found it convenient to use the midpoint of the base of
the large rectangle as the reference point. I assume that the positive direction of the y-axis

2.4. HIERARCHICAL MODELING 39

points upward, which is the common convention in mathematics. The rectangular body of the
cart has width 6 and height 2, so the coordinates of the lower left corner of the rectangle are
(-3,0), and we can draw it with a command such as fillRectangle(-3,0,6,2). The top of the cart
is a smaller red rectangle, which can be drawn in a similar way. To complete the cart, we need
to add two wheels to the object. To make the size of the wheels fit the cart, they need to be
scaled. To place them in the correct positions relative to body of the cart, one wheel must be
translated to the left and the other wheel, to the right. When I coded this example, I had to
play around with the numbers to get the right sizes and positions for the wheels, and I found
that the wheels looked better if I also moved them down a bit. Using the usual techniques of
hierarchical modeling, we save the current transform before drawing each wheel, and we restore
it after drawing the wheel. This restricts the effect of the modeling transformation for the wheel
to that wheel alone, so that it does not affect any other part of the cart. Here is pseudocode
for a subroutine that draws the cart in its own coordinate system:

subroutine drawCart() :

saveTransform() // save the current transform

translate(-1.65,-0.1) // center of first wheel will be at (-1.65,-0.1)

scale(0.8,0.8) // scale to reduce radius from 1 to 0.8

drawWheel() // draw the first wheel

restoreTransform() // restore the saved transform

saveTransform() // save it again

translate(1.5,-0.1) // center of second wheel will be at (1.5,-0.1)

scale(0.8,0.8) // scale to reduce radius from 1 to 0.8

drawWheel(g2) // draw the second wheel

restoreTransform() // restore the transform

setDrawingColor(RED) // use red color to draw the rectangles

fillRectangle(-3, 0, 6, 2) // draw the body of the cart

fillRectangle(-2.3, 1, 2.6, 1) // draw the top of the cart

It’s important to note that the same subroutine is used to draw both wheels. The reason that
two wheels appear in the picture in different positions is that different modeling transformations
are in effect for the two subroutine calls.

Once we have this cart-drawing subroutine, we can use it to add a cart to a scene. When
we do this, we apply another modeling transformation to the cart as a whole. Indeed, we could
add several carts to the scene, if we wanted, by calling the drawCart subroutine several times
with different modeling transformations.

You should notice the analogy here: Building up a complex scene out of objects is similar
to building up a complex program out of subroutines. In both cases, you can work on pieces of
the problem separately, you can compose a solution to a big problem from solutions to smaller
problems, and once you have solved a problem, you can reuse that solution in several places.

The demo c2/cart-and-windmills.html uses the cart in an animated scene. Here’s one of the
frames from that demo:

40 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

You can probably guess how hierarchical modeling is used to draw the three windmills in
this example. There is a drawWindmill method that draws a windmill in its own coordinate
system. Each of the windmills in the scene is then produced by applying a different modeling
transform to the standard windmill. Furthermore, the windmill is itself a complex object that
is constructed from several sub-objects using various modeling transformations.

∗ ∗ ∗

It might not be so easy to see how different parts of the scene can be animated. In fact,
animation is just another aspect of modeling. A computer animation consists of a sequence
of frames. Each frame is a separate image, with small changes from one frame to the next.
From our point of view, each frame is a separate scene and has to be drawn separately. The
same object can appear in many frames. To animate the object, we can simply apply a different
modeling transformation to the object in each frame. The parameters used in the transformation
can be computed from the current time or from the frame number. To make a cart move from
left to right, for example, we might apply a modeling transformation

translate(frameNumber * 0.1, 0)

to the cart, where frameNumber is the frame number. In each frame, the cart will be 0.1 units
farther to the right than in the previous frame. (In fact, in the actual program, the translation
that is applied to the cart is

translate(-3 + 13*(frameNumber % 300) / 300.0, 0)

which moves the reference point of the cart from -3 to 13 along the horizontal axis every 300
frames. In the coordinate system that is used for the scene, the x-coordinate ranges from 0 to
7, so this puts the cart outside the scene for much of the loop.)

The really neat thing is that this type of animation works with hierarchical modeling.
For example, the drawWindmill method doesn’t just draw a windmill—it draws an animated
windmill, with turning vanes. That just means that the rotation applied to the vanes depends
on the frame number. When a modeling transformation is applied to the windmill, the rotating
vanes are scaled and moved as part of the object as a whole. This is an example of hierarchical
modeling. The vanes are sub-objects of the windmill. The rotation of the vanes is part of

2.4. HIERARCHICAL MODELING 41

the modeling transformation that places the vanes into the windmill object. Then a further
modeling transformation is applied to the windmill object to place it in the scene.

The file java2d/HierarchicalModeling2D.java contains the complete source code for a Java
version of this example. The next section of this book covers graphics programming in Java.
Once you are familiar with that, you should take a look at the source code, especially the
paintComponent() method, which draws the entire scene. The same example, using the same
scene graph API, is implemented in JavaScript in canvas2d/HierarchicalModel2D.html.

2.4.2 Scene Graphs

Logically, the components of a complex scene form a structure. In this structure, each object is
associated with the sub-objects that it contains. If the scene is hierarchical, then the structure is
hierarchical. This structure is known as a scene graph . A scene graph is a tree-like structure,
with the root representing the entire scene, the children of the root representing the top-level
objects in the scene, and so on. We can visualize the scene graph for our sample scene:

SUN

WHEEL

GROUND

CIRCLE
FILLED

CIRCLE
LINE

FILLED

SQUARE

VANE

WINDMILL

CART

(12)
(12)

In this drawing, a single object can have several connections to one or more parent objects.
Each connection represents one occurrence of the object in its parent object. For example, the
“filled square” object occurs as a sub-object in the cart and in the windmill. It is used twice in
the cart and once in the windmill. (The cart contains two red rectangles, which are created as
squares with a non-uniform scaling; the pole of the windmill is made as a scaled square.) The
“filled circle” is used in the sun and is used twice in the wheel. The “line” is used 12 times in
the sun and 12 times in the wheel; I’ve drawn one thick arrow, marked with a 12, to represent

42 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

12 connections. The wheel, in turn, is used twice in the cart. (My diagram leaves out, for lack
of space, two occurrences of the filled square in the scene: It is used to make the road and the
line down the middle of the road.)

Each arrow in the picture can be associated with a modeling transformation that places
the sub-object into its parent object. When an object contains several copies of a sub-object,
each arrow connecting the sub-object to the object will have a different associated modeling
transformation. The object is the same for each copy; only the transformation differs.

Although the scene graph exists conceptually, in some applications it exists only implicitly.
For example, the Java version of the program that was mentioned above draws the image
“procedurally,” that is, by calling subroutines. There is no data structure to represent the
scene graph. Instead, the scene graph is implicit in the sequence of subroutine calls that
draw the scene. Each node in the graph is a subroutine, and each arrow is a subroutine
call. The various objects are drawn using different modeling transformations. As discussed in
Subsection 2.3.8, the computer only keeps track of a “current transformation” that represents
all the transforms that are applied to an object. When an object is drawn by a subroutine, the
program saves the current transformation before calling the subroutine. After the subroutine
returns, the saved transformation is restored. Inside the subroutine, the object is drawn in
its own coordinate system, possibly calling other subroutines to draw sub-objects with their
own modeling transformations. Those extra transformations will have no effect outside of the
subroutine, since the transform that is in effect before the subroutine is called will be restored
after the subroutine returns.

It is also possible for a scene graph to be represented by an actual data structure in the
program. In an object-oriented approach, the graphical objects in the scene are represented
by program objects. There are many ways to build an object-oriented scene graph API. For a
simple example implemented in Java, you can take a look at java2d/SceneGraphAPI2D.java.
This program draws the same animated scene as the previous example, but it represents the
scene with an object-oriented data structure rather than procedurally. The same scene graph
API is implemented in JavaScript in the live demo c2/cart-and-windmills.html, and you might
take a look at its source code after you read about HTML canvas graphics in Section 2.6.

In the example program, both in Java and in JavaScript, a node in the scene graph is
represented by an object belonging to a class named SceneGraphNode. SceneGraphNode is an
abstract class, and actual nodes in the scene graph are defined by subclasses of that class. For
example, there is a subclass named CompoundObject to represent a complex graphical object
that is made up of sub-objects. A variable, obj, of type CompoundObject includes a method
obj.add(subobj) for adding a sub-object to the compound object.

When implementing a scene graph as a data structure made up of objects, a decision has
to be made about how to handle transforms. One option is to allow transformations to be
associated with any node in the scene graph. In this case, however, I decided to use special
nodes to represent transforms as objects of type TransformedObject. A TransformedObject

is a SceneGraphNode that contains a link to another SceneGraphNode and also contains a
modeling transformation that is to be applied to that object. The modeling transformation
is given in terms of scaling, rotation, and translation amounts that are instance variables in
the object. It is worth noting that these are always applied in the order scale, then rotate,
then translate, no matter what order the instance variables are set in the code. If you want to
do a translation followed by a rotation, you will need two TransformedObjects to implement it,
since a translation plus a rotation in the same TransformedObject would be applied in the order
rotate-then-translate. It is also worth noting that the setter methods for the scaling, rotation,

2.4. HIERARCHICAL MODELING 43

and translation have a return value that is equal to the object. This makes it possible to chain
calls to the methods into a single statement such as

transformedObject.setScale(5,2).setTranslation(3.5,0);

and even say things like

world.add(

new TransformedObject(windmill).setScale(0.4,0.4).setTranslation(2.2,1.3)

);

This type of chaining can make for more compact code and can eliminate the need for a lot of
extra temporary variables.

Another decision has to be made about how to handle color. One possibility would be to
make a ColoredObject class similar to TransformedObject. However, in this case I just added
a setColor() method to the main ScreenGraphNode class. A color that is set on a compound
object is inherited by any sub-objects, unless a different color is set on the sub-object. In other
words, a color on a compound object acts as a default color for its sub-objects, but color can
be overridden on the sub-objects.

In addition to compound objects and transformed objects, we need scene graph nodes to
represent the basic graphical objects that occupy the bottom level of the scene graph. These
are the nodes that do the actual drawing in the end.

For those who are familiar with data structures, I will note that a scene graph is actually
an example of a “directed acyclic graph” or “dag.” The process of drawing the scene involves
a traversal of this dag. The term “acyclic” means that there can’t be cycles in the graph. For
a scene graph, this is the obvious requirement that an object cannot be a sub-object, either
directly or indirectly, of itself.

2.4.3 The Transform Stack

Suppose that you write a subroutine to draw an object. At the beginning of the subroutine,
you use a routine such as saveTransform() to save a copy of the current transform. At the end
of the subroutine, you call restoreTransform() to reset the current transform back to the value
that was saved. Now, in order for this to work correctly for hierarchical graphics, these routines
must actually use a stack of transforms. (Recall that a stack is simply a list where items can
be added, or “pushed,” onto one end of the list and removed, or “popped,” from the same end.)
The problem is that when drawing a complex object, one subroutine can call other subroutines.
This means that several drawing subroutines can be active at the same time, each with its own
saved transform. When a transform is saved after another transform has already been saved,
the system needs to remember both transforms. When restoreTransform() is called, it is the
most recently saved transform that should be restored.

A stack has exactly the structure that is needed to implement these operations. Before you
start drawing an object, you would push the current transform onto the stack. After drawing
the object, you would pop the transform from the stack. Between those two operations, if the
object is hierarchical, the transforms for its sub-objects will have been pushed onto and popped
from the stack as needed.

Some graphics APIs come with transform stacks already defined. For example, the original
OpenGL API includes the functions glPushMatrix () and glPopMatrix () for using a stack of
transformation matrices that is built into OpenGL. The Java Graphics2D API does not include
a built-in stack of transforms, but it does have methods for getting and setting the current
transform, and the get and set methods can be used with an explicit stack data structure to

44 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

implement the necessary operations. When we turn to the HTML canvas API for 2D graphics,
we’ll see that it includes functions named save() and restore() that are actually push and pop
operations on a stack. These functions are essential to implementing hierarchical graphics for
an HTML canvas.

Let’s try to bring this all together by considering how it applies to a simple object in a
complex scene: one of the filled circles that is part of the front wheel on the cart in our example
scene. Here, I have rearranged part of the scene graph for that scene, and I’ve added labels to
show the modeling transformations that are applied to each object:

WHEEL

FILLED

CIRCLE

CART

scale(2, 2)

scale(0.8, 0.8)

translate(1.65, 0)

scale(0.3, 0.3)

translate(dx, 0)

rotate(r)

The rotation amount for the wheel and the translation amount for the cart are shown as
variables, since they are different in different frames of the animation. When the computer
starts drawing the scene, the modeling transform that is in effect is the identity transform,
that is, no transform at all. As it prepares to draw the cart, it saves a copy of the current
transform (the identity) by pushing it onto the stack. It then modifies the current transform
by multiplying it by the modeling transforms for the cart, scale(0.3,0.3) and translate(dx,0).
When it comes to drawing the wheel, it again pushes the current transform (the modeling
transform for the cart as a whole) onto the stack, and it modifies the current transform to take
the wheel’s modeling transforms into account. Similarly, when it comes to the filled circle, it
saves the modeling transform for the wheel, and then applies the modeling transform for the
circle.

When, finally, the circle is actually drawn in the scene, it is transformed by the combined
transform. That transform places the circle directly into the scene, but it has been composed
from the transform that places the circle into the wheel, the one that places the wheel into the
cart, and the one that places the cart into the scene. After drawing the circle, the computer
replaces the current transform with one it pops from the stack. That will be the modeling
transform for the wheel as a whole, and that transform will be used for any further parts of the
wheel that have to be drawn. When the wheel is done, the transform for the cart is popped.
And when the cart is done, the original transform, the identity, is popped. When the computer
goes onto the next object in the scene, it starts the whole process again, with the identity
transform as the starting point.

This might sound complicated, but I should emphasize that it something that the computer
does for you. Your responsibility is simply to design the individual objects, in their own natural
coordinate system. As part of that, you specify the modeling transformations that are applied
to the sub-objects of that object. You construct the scene as a whole in a similar way. The
computer will then put everything together for you, taking into account the many layers of
hierarchical structure. You only have to deal with one component of the structure at a time.
That’s the power of hierarchical design; that’s how it helps you deal with complexity.

2.5. JAVA GRAPHICS2D 45

2.5 Java Graphics2D

In the rest of this chapter, we look at specific implementations of two-dimensional graphics.
There are a few new ideas here, but mostly you will see how the general concepts that we have
covered are used in several real graphics systems.

In this section, our focus is on the Java programming language. Java remains one of the
most popular programming languages. Its standard desktop version includes a sophisticated
2D graphics API, which is our topic here. Before reading this section, you should already know
the basics of Java programming. But even if you don’t, you should be able to follow most
of the discussion of the graphics API itself. (See Section A.1 in Appendix A for a very basic
introduction to Java.)

The graphics API that is discussed here is part of Swing, an API for graphical user interface
programming that is included as part of the standard distribution of Java. Many Java programs
are now written using an alternative API called JavaFX, which is not part of the standard
distribution. JavaFX is not discussed in this textbook. Its graphics API is, in fact, quite
similar to the API for HTML canvas graphics, which is discussed in Section 2.6.

The original version of Java had a much smaller graphics API. It was tightly focused on
pixels, and it used only integer coordinates. The API had subroutines for stroking and filling a
variety of basic shapes, including lines, rectangles, ovals, and polygons (although Java uses the
term draw instead of stroke). Its specification of the meaning of drawing operations was very
precise on the pixel level. Integer coordinates are defined to refer to the lines between pixels.
For example, a 12-by-8 pixel grid has x -coordinates from 0 to 12 and y-coordinates from 0 to
8, as shown below. The lines between pixels are numbered, not the pixels.

0 123 8
0

2

8

5

0 123 8
0

2

8

5

The command fillRect(3,2,5,3) fills the rectangle with upper left corner at (3,2), with width 5,
and with height 3, as shown on the left above. The command drawRect(3,2,5,3) conceptually
drags a “pen” around the outline of this rectangle. However, the pen is a 1-pixel square, and
it is the upper left corner of the pen that moves along the outline. As the pen moves along
the right edge of the rectangle, the pixels to the right of that edge are colored; as the pen
moves along the bottom edge, the pixels below the edge are colored. The result is as shown
on the right above. My point here is not to belabor the details, but to point out that having
a precise specification of the meaning of graphical operations gives you very fine control over
what happens on the pixel level.

Java’s original graphics did not support things like real-number coordinates, transforms,
antialiasing, or gradients. Just a few years after Java was first introduced, a new graphics API
was added that does support all of these. It is that more advanced API that we will look at
here.

46 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

2.5.1 Graphics2D

Java is an object-oriented language. Its API is defined as a large set of classes, The actual
drawing operations in the original graphics API were mostly contained in the class named
Graphics. In the newer Swing API, drawing operations are methods in a class named Graphics2D,
which is a subclass of Graphics, so that all the original drawing operations are still available.
(A class in Java is contained in a collection of classes known as a “package.” Graphics and
Graphics2D, for example, are in the package named java.awt. Classes that define shapes and
transforms are in a package named java.awt.geom.)

A graphics system needs a place to draw. In Java, the drawing surface is often an object
of the class JPanel, which represents a rectangular area on the screen. The JPanel class has a
method named paintComponent() to draw its content. To create a drawing surface, you can
create a subclass of JPanel and provide a definition for its paintComponent() method. All
drawing should be done inside paintComponent(); when it is necessary to change the contents
of the drawing, you can call the panel’s repaint() method to trigger a call to paintComponent().
The paintComponent() method has a parameter of type Graphics, but the parameter that is
passed to the method is actually an object of type Graphics2D, and it can be type-cast to
Graphics2D to obtain access to the more advanced graphics capabilities. So, the definition of
the paintComponent() method usually looks something like this:

protected void paintComponent(Graphics g) {

Graphics2D g2;

g2 = (Graphics2D)g; // Type-cast the parameter to Graphics2D.

.

. // Draw using g2.

.

}

In the rest of this section, I will assume that g2 is a variable of type Graphics2D, and I will
discuss some of the things that you can do with it. As a first example, I note that Graphics2D
supports antialiasing, but it is not turned on by default. It can be enabled in a graphics context
g2 with the rather intimidating command

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);

For simple examples of graphics in complete Java programs, you can look at the sample
programs java2d/GraphicsStarter.java and java2d/AnimationStarter.java. They provide very
minimal frameworks for drawing static and animated images, respectively, using Graphics2D.
The program java2d/EventsStarter.java is a similar framework for working with mouse and key
events in a graphics program. You can use these programs as the basis for some experimentation
if you want to explore Java graphics.

2.5.2 Shapes

Drawing with the original Graphics class is done using integer coordinates, with the measurement
given in pixels. This works well in the standard coordinate system, but is not appropriate when
real-number coordinates are used, since the unit of measure in such a coordinate system will
not be equal to a pixel. We need to be able to specify shapes using real numbers. The Java
package java.awt.geom provides support for shapes defined using real number coordinates. For
example, the class Line2D in that package represents line segments whose endpoints are given
as pairs of real numbers.

2.5. JAVA GRAPHICS2D 47

Now, Java has two real number types: double and float. The double type can represent a
larger range of numbers than float, with a greater number of significant digits, and double is
the more commonly used type. In fact, doubles are simply easier to use in Java. However, float
values generally have enough accuracy for graphics applications, and they have the advantage
of taking up less space in memory. Furthermore, computer graphics hardware often uses float
values internally.

So, given these considerations, the java.awt.geom package actually provides two versions
of each shape, one using coordinates of type float and one using coordinates of type double.
This is done in a rather strange way. Taking Line2D as an example, the class Line2D itself
is an abstract class. It has two subclasses, one that represents lines using float coordinates
and one using double coordinates. The strangest part is that these subclasses are defined
as nested classes inside Line2D: Line2D.Float and Line2D.Double. This means that you can
declare a variable of type Line2D, but to create an object, you need to use Line2D.Double or
Line2D.Float:

Line2D line1, line2;

line1 = new Line2D.Double(1,2,5,7); // Line from (1.0,2.0) to (5.0,7.0)

line2 = new Line2D.Float(2.7F,3.1F,1.5F,7.1F); // (2.7,3.1) to (1.5,7.1)

Note that when using constants of type float in Java, you have to add “F” as a suffix to the
value. This is one reason why doubles are easier in Java. For simplicity, you might want to
stick to using Line2D.Double. However, Line2D.Float might give slightly better performance.

∗ ∗ ∗

Let’s take a look at some of the other classes from java.awt.geom. The abstract class
Point2D—with its concrete subclasses Point2D.Double and Point2D.Float—represents a point
in two dimensions, specified by two real number coordinates. A point is not a shape;
you can’t fill or stroke it. A point can be constructed from two real numbers (“new
Point2D.Double(1.2,3.7)”). If p is a variable of type Point2D, you can use p.getX () and
p.getY () to retrieve its coordinates, and you can use p.setX (x), p.setY (y), or p.setLocation(x,y)
to set its coordinates. If pd is a variable of type Point2D.Double, you can also refer directly to the
coordinates as pd.x and pd.y (and similarly for Point2D.Float). Other classes in java.awt.geom
offer a similar variety of ways to manipulate their properties, and I won’t try to list them all
here.

There is a variety of classes that represent geometric shapes, including Line2D, Rectangle2D,
RoundRectangle2D, Ellipse2D, Arc2D, and Path2D. All of these are abstract classes, and each of
them contains a pair of subclasses such as Rectangle2D.Double and Rectangle2D.Float. Some
shapes, such as rectangles, have interiors that can be filled; such shapes also have outlines that
can be stroked. Some shapes, such as lines, are purely one-dimensional and can only be stroked.

Aside from lines, rectangles are probably the simplest shapes. A Rectangle2D has
a corner point (x,y), a width, and a height, and can be constructed from that data
(“new Rectangle2D.Double(x,y,w,h)”). The corner point (x,y) specifies the minimum x -
and y-values in the rectangle. For the usual pixel coordinate system, (x,y) is the upper left
corner. However, in a coordinate system in which the minimum value of y is at the bottom,
(x,y) would be the lower left corner. The sides of the rectangle are parallel to the coordinate
axes. A variable r of type Rectangle2D.Double has public instance variables r.x, r.y, r.width,
and r.height. If the width or the height is less than or equal to zero, nothing will be drawn
when the rectangle is filled or stroked. A common task is to define a rectangle from two corner
points (x1,y1) and (x2,y2). This can be accomplished by creating a rectangle with height and

48 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

width equal to zero and then adding the second point to the rectangle. Adding a point to a
rectangle causes the rectangle to grow just enough to include that point:

Rectangle2D.Double r = new Rectangle2D.Double(x1,y1,0,0);

r.add(x2,y2);

The classes Line2D, Ellipse2D, RoundRectangle2D and Arc2D create other basic shapes and
work similarly to Rectangle2D. You can check the Java API documentation for details.

The Path2D class is more interesting. It represents general paths made up of segments that
can be lines and Bezier curves. Paths are created using methods similar to the moveTo and
lineTo subroutines that were discussed in Subsection 2.2.3. To create a path, you start by
constructing an object of type Path2D.Double (or Path2D.Float):

Path2D.Double p = new Path2D.Double();

The path p is empty when it is first created. You construct the path by moving an imaginary
“pen” along the path that you want to create. The method p.moveTo(x,y) moves the pen to
the point (x,y) without drawing anything. It is used to specify the initial point of the path or
the starting point of a new piece of the path. The method p.lineTo(x,y) draws a line from the
current pen position to (x,y), leaving the pen at (x,y). The method p.close() can be used to
close the path (or the current piece of the path) by drawing a line back to its starting point.
For example, the following code creates a triangle with vertices at (0,5), (2,-3), and (-4,1):

Path2D.Double p = new Path2D.Double();

p.moveTo(0,5);

p.lineTo(2,-3);

p.lineTo(-4,1);

p.close();

You can also add Bezier curve segments to a Path2D. Bezier curves were discussed in
Subsection 2.2.3. You can add a cubic Bezier curve to a Path2D p with the method

p.curveTo(cx1, cy1, cx2, cy2, x, y);

This adds a curve segment that starts at the current pen position and ends at (x,y), using
(cx1,cy1) and (cx2,cy2) as the two control points for the curve. The method for adding a
quadratic Bezier curve segment to a path is quadTo. It requires only a single control point:

p.quadTo(cx, cy, x, y);

When a path intersects itself, its interior is determined by looking at the winding number,
as discussed in Subsection 2.2.2. There are two possible rules for determining whether a point
is interior: asking whether the winding number of the curve about that point is non-zero, or
asking whether it is odd. You can set the winding rule used by a Path2D p with

p.setWindingRule(Path2D.WIND NON ZERO);

p.setWindingrule(Path2D.WIND EVEN ODD);

The default is WIND NON ZERO.
Finally, I will note that it is possible to draw a copy of an image into a graphics context. The

image could be loaded from a file or created by the program. I discuss the second possibility
later in this section. An image is represented by an object of type Image. In fact, I will assume
here that the object is of type BufferedImage, which is a subclass of Image. If img is such an
object, then

g2.drawImage(img, x, y, null);

2.5. JAVA GRAPHICS2D 49

will draw the image with its upper left corner at the point (x,y). (The fourth parameter is hard
to explain, but it should be specified as null for BufferedImages.) This draws the image at its
natural width and height, but a different width and height can be specified in the method:

g2.drawImage(img, x, y, width, height, null);

There is also a method for drawing a string of text. The method specifies the string and
the basepoint of the string. (The basepoint is the lower left corner of the string, ignoring
“descenders” like the tail on the letter “g”.) For example,

g2.drawString("Hello World", 100, 50);

Images and strings are subject to transforms in the same way as other shapes. Transforms are
the only way to get rotated text and images. As an example, here is what can happen when
you apply a rotation to some text and an image:

2.5.3 Stroke and Fill

Once you have an object that represents a shape, you can fill the shape or stroke it. The
Graphics2D class defines methods for doing this. The method for stroking a shape is called
draw :

g2.fill(shape);

g2.draw(shape);

Here, g2 is of type Graphics2D, and shape can be of type Path2D, Line2D, Rectangle2D or any
of the other shape classes. These are often used on a newly created object, when that object
represents a shape that will only be drawn once. For example

g2.draw(new Line2D.Double(-5, -5, 5, 5));

Of course, it is also possible to create shape objects and reuse them many times.
The “pen” that is used for stroking a shape is usually represented by an object of type

BasicStroke. The default stroke has line width equal to 1. That’s one unit in the current
coordinate system, not one pixel. To get a line with a different width, you can install a new
stroke with

g2.setStroke(new BasicStroke(width));

The width in the constructor is of type float. It is possible to add parameters to the
constructor to control the shape of a stroke at its endpoints and where two segments meet.
(See Subsection 2.2.1.) For example,

50 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

g2.setStroke(new BasicStroke(5.0F,

BasicStroke.CAP ROUND, BasicStroke.JOIN BEVEL));

It is also possible to make strokes out of dashes and dots, but I won’t discuss how to do it here.

∗ ∗ ∗

Stroking or filling a shape means setting the colors of certain pixels. In Java, the rule
that is used for coloring those pixels is called a “paint.” Paints can be solid colors, gradients,
or patterns. Like most things in Java, paints are represented by objects. If paint is such an
object, then

g2.setPaint(paint);

will set paint to be used in the graphics context g2 for subsequent drawing operations, until
the next time the paint is changed. (There is also an older method, g2.setColor(c), that works
only for colors and is equivalent to calling g2.setPaint(c).)

Solid colors are represented by objects of type Color. A color is represented internally as
an RGBA color. An opaque color, with maximal alpha component, can be created using the
constructor

new Color(r, g, b);

where r, g, and b are integers in the range 0 to 255 that give the red, green, and blue components
of the color. To get a translucent color, you can add an alpha component, also in the range 0
to 255:

new Color(r, b, g, a);

There is also a function, Color.getHSBColor(h,s,b), that creates a color from values in the HSB
color model (which is another name for HSV). In this case, the hue, saturation, and brightness
color components must be given as values of type float. And there are constants to represent
about a dozen common colors, such as Color.WHITE, Color.RED, and Color.YELLOW. For
example, here is how I might draw a square with a black outline and a light blue interior:

Rectangle2D square = new Rectangle2D.Double(-2,-2,4,4);

g2.setPaint(new Color(200,200,255));

g2.fill(square);

g2.setStroke(new BasicStroke(0.1F));

g2.setPaint(Color.BLACK);

g2.draw(square);

Beyond solid colors, Java has the class GradientPaint, to represent simple linear gradients,
and TexturePaint to represent to represent pattern fills. (Image patterns used in a similar way
in 3D graphics are called textures.) Gradients and patterns were discussed in Subsection 2.2.2.
For these paints, the color that is applied to a pixel depends on the coordinates of the pixel.

To create a TexturePaint, you need a BufferedImage object to specify the image that it will
use as a pattern. You also have to say how coordinates in the image will map to drawing
coordinates in the display. You do this by specifying a rectangle in that will hold one copy of
the image. So the constructor takes the form:

new TexturePaint(image, rect);

where image is the BufferedImage and rect is a Rectangle2D. Outside that specified rectangle,
the image is repeated horizontally and vertically. The constructor for a GradientPaint takes the
form

2.5. JAVA GRAPHICS2D 51

new GradientPaint(x1, y1, color1, x2, y2, color2, cyclic)

Here, x1, y1, x2, and y2 are values of type float; color1 and color2 are of type Color ; and cyclic
is boolean. The gradient color will vary along the line segment from the point (x1,y1) to the
point (x2,y2). The color is color1 at the first endpoint and is color2 at the second endpoint.
Color is constant along lines perpendicular to that line segment. The boolean parameter cyclic
says whether or not the color pattern repeats. As an example, here is a command that will
install a GradientPaint into a graphics context:

g2.setPaint(new GradientPaint(0,0, Color.BLACK, 200,100, Color.RED, true));

You should, by the way, note that the current paint is used for strokes as well as for fills.

The sample Java program java2d/PaintDemo.java displays a polygon filled with a
GradientPaint or a TexturePaint and lets you adjust their properties. The image files
java2d/QueenOfHearts.png and java2d/TinySmiley.png are part of that program, and they
must be in the same location as the compiled class files that make up that program when it is
run.

2.5.4 Transforms

Java implements geometric transformations as methods in the Graphics2D class. For example,
if g2 is a Graphics2D, then calling g2.translate(1,3) will apply a translation by (1,3) to objects
that are drawn after the method is called. The methods that are available correspond to the
transform functions discussed in Section 2.3:

• g2.scale(sx,sy) — scales by a horizontal scale factor sx and a vertical scale factor sy.

• g2.rotate(r) — rotates by the angle r about the origin, where the angle is measured in
radians. A positive angle rotates the positive x-axis in the direction of the positive y-axis.

• g2.rotate(r,x,y) — rotates by the angle r about the point (x,y).

• g2.translate(dx,dy) — translates by dx horizontally and dy vertically.

• g2.shear(sx,sy) — applies a horizontal shear amount sx and a vertical shear amount
sy. (Usually, one of the shear amounts is 0, giving a pure horizontal or vertical shear.)

A transform in Java is represented as an object of the class AffineTransform. You can create
a general affine transform with the contstructor

AffineTransform trns = new AffineTransform(a,b,c,d,e,f);

The transform trns will transform a point (x,y) to the point (x1,y1) given by

x1 = a*x + c*y + e

y1 = b*x + d*y + f;

You can apply the transform trns to a graphics context g2 by calling g2.transform(trns).

The graphics context g2 includes the current affine transform, which is the composition of
all the transforms that have been applied. Commands such as g2.rotate and g2.transform
modify the current transform. You can get a copy of the current transform by calling
g2.getTransform(), which returns an AffineTransform object. You can set the current transform
using g2.setTransform(trns). This replaces the current transform in g2 with the AffineTransform

trns. (Note that g2.setTransform(trns) is different from g2.transform(trns); the first command
replaces the current transform in g2, while the second modifies the current transform by
composing it with trns.)

52 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

The getTransform and setTransform methods can be used to implement hierarchical
modeling. The idea, as discussed in Section 2.4, is that before drawing an object, you should save
the current transform. After drawing the object, restore the saved transform. Any additional
modeling transformations that are applied while drawing the object and its sub-objects will
have no effect outside the object. In Java, this looks like

AffineTransform savedTransform = g2.getTransform();

drawObject();

g2.setTransform(savedTransform);

For hierarchical graphics, we really need a stack of transforms. However, if the hierarchy is
implemented using subroutines, then the above code would be part of a subroutine, and the value
of the local variable savedTransform would be stored on the subroutine call stack. Effectively,
we would be using the subroutine call stack to implement the stack of saved transforms.

In addition to modeling transformations, transforms are used to set up the window-to-
viewport transformation that establishes the coordinate system that will be used for drawing.
This is usually done in Java just after the graphics context has been created, before any drawing
operations. It can be done with a Java version of the applyWindowToViewportTransformation
function from Subsection 2.3.7. See the sample program java2d/GraphicsStarter.java for an
example.

∗ ∗ ∗

I will mention one more use for AffineTransform objects: Sometimes, you do need to explicitly
transform coordinates. For example, given object coordinates (x,y), I might need to know where
they will actually end up on the screen, in pixel coordinates. That is, I would like to transform
(x,y) by the current transform to get the corresponding pixel coordinates. The AffineTransform

class has a method for applying the affine transform to a point. It works with objects of type
Point2D. Here is an example:

AffineTransform trns = g2.getTransform();

Point2D.Double originalPoint = new Point2D.Double(x,y);

Point2D.Double transformedPoint = new Point2D.Double();

trns.transform(originalPoint, transformedPoint);

// transformedPoint nowcontains the pixel coords corresponding to (x,y)

int pixelX = (int)transformedPoint.x;

int pixelY = (int)transformedPoint.y;

One way I have used this is when working with strings. Often when displaying a string in a
transformed coordinate system, I want to transform the basepoint of a string, but not the string
itself. That is, I want the transformation to affect the location of the string but not its size
or rotation. To accomplish this, I use the above technique to obtain the pixel coordinates for
the transformed basepoint, and then draw the string at those coordinates, using an original,
untransformed graphics context.

The reverse operation is also sometimes necessary. That is, given pixel coordinates (px,py),
find the point (x,y) that is transformed to (px,py) by a given affine transform. For example,
when implementing mouse interaction, you will generally know the pixel coordinates of the
mouse, but you will want to find the corresponding point in your own chosen coordinate
system. For that, you need an inverse transform . The inverse of an affine transform T

is another transform that performs the opposite transformation. That is, if T(x,y) = (px,py),
and if R is the inverse transform, then R(px,py) = (x,y). In Java, the inverse transform of an
AffineTransform trns can be obtained with

2.5. JAVA GRAPHICS2D 53

AffineTransform inverse = trns.createInverse();

(A final note: The older drawing methods from Graphics, such as drawLine, use integer
coordinates. It’s important to note that any shapes drawn using these older methods are
subject to the same transformation as shapes such as Line2D that are specified with real number
coordinates. For example, drawing a line with g.drawLine(1,2,5,7) will have the same effect as
drawing a Line2D that has endpoints (1.0,2.0) and (5.0,7.0). In fact, all drawing is affected by
the transformation of coordinates.)

2.5.5 BufferedImage and Pixels

In some graphics applications, it is useful to be able to work with images that are not visible
on the screen. That is, you need what I call an off-screen canvas. You also need a way
to quickly copy the off-screen canvas onto the screen. For example, it can be useful to store
a copy of the on-screen image in an off-screen canvas. The canvas is the official copy of the
image. Changes to the image are made to the canvas, then copied to the screen. One reason
to do this is that you can then draw extra stuff on top of the screen image without changing
the official copy. For example, you might draw a box around a selected region in the on-screen
image. You can do this without damaging the official copy in the off-screen canvas. To remove
the box from the screen, you just have to copy the off-screen canvas image onto the screen.

In Java, an off-screen image can be implemented as an object of type BufferedImage. A
BufferedImage represents a region in memory where you can draw, in exactly the same way that
you can draw to the screen. That is, you can obtain a graphics context g2 of type Graphics2D

that you can use for drawing on the image. A BufferedImage is an Image, and you can draw it
onto the screen—or into any other graphics context—like any other Image, that is, by using the
drawImage method of the graphics context where you want to display the image. In a typical
setup, there are variables

BufferedImage OSC; // The off-screen canvas.

Graphics2D OSG; // graphics context for drawing to the canvas

The objects are created using, for example,

OSC = new BufferedImage(640, 480, BufferedImage.TYPE INT RGB);

OSG = OSC.createGraphics();

The constructor for BufferedImage specifies the width and height of the image along with its
type. The type tells what colors can be represented in the image and how they are stored.
Here, the type is TYPE INT RGB, which means the image uses regular RGB colors with 8 bits for
each color component. The three color components for a pixel are packed into a single integer
value.

In a program that uses a BufferedImage to store a copy of the on-screen image, the
paintComponent method generally has the form

protected void paintComponent(Graphics g) {

g.drawimage(OSC, 0, 0, null);

Graphics2D g2 = (Graphics2D)g.create();

.

. // Draw extra stuff on top of the image.

.

}

54 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

A sample program that uses this technique is java2d/JavaPixelManipulation.java. In that
program, the user can draw lines, rectangles, and ovals by dragging the mouse. As the mouse
moves, the shape is drawn between the starting point of the mouse and its current location. As
the mouse moves, parts of the existing image can be repeatedly covered and uncovered, without
changing the existing image. In fact, the image is in an off-screen canvas, and the shape that
the user is drawing is actually drawn by paintComponent over the contents of the canvas. The
shape is not drawn to the official image in the canvas until the user releases the mouse and ends
the drag operation.

But my main reason for writing the program was to illustrate pixel manipulation, that is,
computing with the color components of individual pixels. The BufferedImage class has methods
for reading and setting the color of individual pixels. An image consists of rows and columns
of pixels. If OSC is a BufferedImage, then

int color = OSC.getRGB(x,y)

gets the integer that represents the color of the pixel in column number x and row number y.
Each color component is stored in an 8-bit field in the integer color value. The individual color
components can be extracted for processing using Java’s bit manipulation operators:

int red = (color >> 16) & 255;

int green = (color >> 8) & 255;

int blue = color & 255;

Similarly, given red, green, and blue color component values in the range 0 to 255, we can
combine those component values into a single integer and use it to set the color of a pixel in
the image:

int color = (red << 16) | (green << 8) | blue;

OSC.setRGB(x,y,color);

There are also methods for reading and setting the colors of an entire rectangular region of
pixels.

Pixel operations are used to implement two features of the sample program. First, there is
a “Smudge” tool. When the user drags with this tool, it’s like smearing wet paint. When the
user first clicks the mouse, the color components from a small square of pixels surrounding the
mouse position are copied into arrays. As the user moves the mouse, color from the arrays is
blended into the color of the pixels near the mouse position, while those colors are blended into
the colors in the arrays. Here is a small rectangle that has been “smudged”:

The second use of pixel manipulation is in implementing “filters.” A filter, in this program, is
an operation that modifies an image by replacing the color of each pixel with a weighted average
of the colors of a 3-by-3 square of pixels. A “Blur” filter for example, uses equal weights for all
pixels in the average, so the color of a pixel is changed to the simple average of the colors of
that pixel and its neighbors. Using different weights for each pixel can produce some striking
effects.

The pixel manipulation in the sample program produces effects that can’t be achieved with
pure vector graphics. I encourage you to learn more by looking at the source code. You might
also take a look at the live demos in the next section, which implement the same effects using
HTML canvas graphics.

2.6. HTML CANVAS GRAPHICS 55

2.6 HTML Canvas Graphics

Most modern web browsers support a 2D graphics API that can be used to create images
on a web page. The API is implemented using JavaScript, the client-side programming language
for the web. I won’t cover the JavaScript language in this section. To understand the material
presented here, you don’t need to know much about it. Even if you know nothing about it at
all, you can learn something about its 2D graphics API and see how it is similar to, and how
it differs from, the Java API presented in the previous section. (For a short introduction to
JavaScript, see Section A.3 in Appendix A.)

2.6.1 The 2D Graphics Context

The visible content of a web page is made up of “elements” such as headlines and paragraphs.
The content is specified using the HTML language. A “canvas” is an HTML element. It appears
on the page as a blank rectangular area which can be used as a drawing surface by what I am
calling the “HTML canvas” graphics API. In the source code of a web page, a canvas element
is created with code of the form

<canvas width="800" height="600" id="theCanvas"></canvas>

The width and height give the size of the drawing area, in pixels. The id is an identifier that
can be used to refer to the canvas in JavaScript.

To draw on a canvas, you need a graphics context. A graphics context is an object that
contains functions for drawing shapes. It also contains variables that record the current graphics
state, including things like the current drawing color, transform, and font. Here, I will generally
use graphics as the name of the variable that refers to the graphics context, but the variable
name is, of course, up to the programmer. This graphics context plays the same role in the
canvas API that a variable of type Graphics2D plays in Java. A typical starting point is

canvas = document.getElementById("theCanvas");

graphics = canvas.getContext("2d");

The first line gets a reference to the canvas element on the web page, using its id. The second
line creates the graphics context for that canvas element. (This code will produce an error in a
web browser that doesn’t support canvas, so you might add some error checking such as putting
these commands inside a try..catch statement.)

Typically, you will store the canvas graphics context in a global variable and use the same
graphics context throughout your program. This is in contrast to Java, where you typically
get a new Graphics2D context each time the paintComponent() method is called, and that
new context is in its initial state with default color and stroke properties and with no applied
transform. When a graphics context is global, changes made to the state in one function call
will carry over to subsequent function calls, unless you do something to limit their effect. This
can actually lead to a fairly common type of bug: For example, if you apply a 30-degree rotation
in a function, those rotations will accumulate each time the function is called, unless you do
something to undo the previous rotation before the function is called again.

The rest of this section will be mostly concerned with describing what you can do with
a canvas graphics context. But here, for the record, is the complete source code for a very
minimal web page that uses canvas graphics:

56 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

<!DOCTYPE html>

<html>

<head>

<title>Canvas Graphics</title>

<script>

let canvas; // DOM object corresponding to the canvas

let graphics; // 2D graphics context for drawing on the canvas

function draw() {

// draw on the canvas, using the graphics context

graphics.fillText("Hello World", 10, 20);

}

function init() {

canvas = document.getElementById("theCanvas");

graphics = canvas.getContext("2d");

draw(); // draw something on the canvas

}

window.onload = init;

</script>

</head>

<body>

<canvas id="theCanvas" width="640" height="480"></canvas>

</body>

</html>

For a more complete, though still minimal, example, you can look at the sample page can-
vas2d/GraphicsStarter.html. (You should look at the page in a browser, but you should also
read the source code.) This example shows how to draw some basic shapes using canvas graph-
ics, and you can use it as a basis for your own experimentation. There are also three more ad-
vanced “starter” examples: canvas2d/GraphicsPlusStarter.html adds some utility functions for
drawing shapes and setting up a coordinate system; canvas2d/AnimationStarter.html adds ani-
mation and includes a simple hierarchical modeling example; and canvas2d/EventsStarter.html
shows how to respond to keyboard and mouse events.

2.6.2 Shapes

The default coordinate system on a canvas is the usual: The unit of measure is one pixel;
(0,0) is at the upper left corner; the x -coordinate increases to the right; and the y-coordinate
increases downward. The range of x and y values is given by the width and height properties
of the <canvas> element. The term “pixel” here for the unit of measure is not really correct.
Probably, I should say something like “one nominal pixel.” The unit of measure is one pixel
at typical desktop resolution with no magnification. If you apply a magnification to a browser
window, the unit of measure gets stretched. And on a high-resolution screen, one unit in the
default coordinate system might correspond to several actual pixels on the display device.

The canvas API supports only a very limited set of basic shapes. In fact, the only basic
shapes are rectangles and text. Other shapes must be created as paths. Shapes can be stroked
and filled. That includes text: When you stroke a string of text, a pen is dragged along the
outlines of the characters; when you fill a string, the insides of the characters are filled. It only
really makes sense to stroke text when the characters are rather large. Here are the functions

2.6. HTML CANVAS GRAPHICS 57

for drawing rectangles and text, where graphics refers to the object that represents the graphics
context:

• graphics.fillRect(x,y,w,h) — draws a filled rectangle with corner at (x,y), with width
w and with height h. If the width or the height is less than or equal to zero, nothing is
drawn.

• graphics.strokeRect(x,y,w,h) — strokes the outline of the same rectangle.

• graphics.clearRect(x,y,w,h) — clears the rectangle by filling it with fully transparent
pixels, allowing the background of the canvas to show. The background is determined by
the properties of the web page on which the canvas appears. It might be a background
color, an image, or even another canvas.

• graphics.fillText(str,x,y) — fills the characters in the string str. The left end of the
baseline of the string is positioned at the point (x,y).

• graphics.strokeText(str,x,y) — strokes the outlines of the characters in the string.

A path can be created using functions in the graphics context. The context keeps track of
a “current path.” In the current version of the API, paths are not represented by objects, and
there is no way to work with more than one path at a time or to keep a copy of a path for later
reuse. Paths can contain lines, Bezier curves, and circular arcs. Here are the most common
functions for working with paths:

• graphics.beginPath() — start a new path. Any previous path is discarded, and the
current path in the graphics context is now empty. Note that the graphics context
also keeps track of the current point, the last point in the current path. After calling
graphics.beginPath(), the current point is undefined.

• graphics.moveTo(x,y) — move the current point to (x,y), without adding anything to
the path. This can be used for the starting point of the path or to start a new, disconnected
segment of the path.

• graphics.lineTo(x,y) — add the line segment starting at current point and ending at
(x,y) to the path, and move the current point to (x,y).

• graphics.bezierCurveTo(cx1,cy1,c2x,cy2,x,y) — add a cubic Bezier curve to the
path. The curve starts at the current point and ends at (x,y). The points (cx1,cy1) and
(cx2,cy2) are the two control points for the curve. (Bezier curves and their control points
were discussed in Subsection 2.2.3.)

• graphics.quadraticCurveTo(cx,cy,x,y) — adds a quadratic Bezier curve from the
current point to (x,y), with control point (cx,cy).

• graphics.arc(x,y,r,startAngle,endAngle) — adds an arc of the circle with center
(x,y) and radius r. The next two parameters give the starting and ending angle of the arc.
They are measured in radians. The arc extends in the positive direction from the start
angle to the end angle. (The positive rotation direction is from the positive x-axis towards
the positive y-axis; this is clockwise in the default coordinate system.) An optional fifth
parameter can be set to true to get an arc that extends in the negative direction. After
drawing the arc, the current point is at the end of the arc. If there is a current point
before graphics.arc is called, then before the arc is drawn, a line is added to the path that
extends from the current point to the starting point of the arc. (Recall that immediately
after graphics.beginPath(), there is no current point.)

58 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

• graphics.closePath() — adds to the path a line from the current point back to the
starting point of the current segment of the curve. (Recall that you start a new segment
of the curve every time you use moveTo.)

Creating a curve with these commands does not draw anything. To get something visible to
appear in the image, you must fill or stroke the path.

The commands graphics.fill() and graphics.stroke() are used to fill and to stroke the current
path. If you fill a path that has not been closed, the fill algorithm acts as though a final line
segment had been added to close the path. When you stroke a shape, it’s the center of the
virtual pen that moves along the path. So, for high-precision canvas drawing, it’s common
to use paths that pass through the centers of pixels rather than through their corners. For
example, to draw a line that extends from the pixel with coordinates (100,200) to the pixel with
coordinates (300,200), you would actually stroke the geometric line with endpoints (100.5,200.5)
and (100.5,300.5). We should look at some examples. It takes four steps to draw a line:

graphics.beginPath(); // start a new path

graphics.moveTo(100.5,200.5); // starting point of the new path

graphics.lineTo(300.5,200.5); // add a line to the point (300.5,200.5)

graphics.stroke(); // draw the line

Remember that the line remains as part of the current path until the next time you call
graphics.beginPath(). Here’s how to draw a filled, regular octagon centered at (200,400) and
with radius 100:

graphics.beginPath();

graphics.moveTo(300,400);

for (let i = 1; i < 8; i++) {

let angle = (2*Math.PI)/8 * i;

let x = 200 + 100*Math.cos(angle);

let y = 400 + 100*Math.sin(angle);

graphics.lineTo(x,y);

}

graphics.closePath();

graphics.fill();

The function graphics.arc() can be used to draw a circle, with a start angle of 0 and an end
angle of 2*Math.PI. Here’s a filled circle with radius 100, centered at 200,300:

graphics.beginPath();

graphics.arc(200, 300, 100, 0, 2*Math.PI);

graphics.fill();

To draw just the outline of the circle, use graphics.stroke() in place of graphics.fill(). You
can apply both operations to the same path. If you look at the details of graphics.arc(), you
can see how to draw a wedge of a circle:

graphics.beginPath();

graphics.moveTo(200,300); // Move current point to center of the circle.

graphics.arc(200,300,100,0,Math.PI/4); // Arc, plus line from current point.

graphics.lineTo(200,300); // Line from end of arc back to center of circle.

graphics.fill(); // Fill the wedge.

There is no way to draw an oval that is not a circle, except by using transforms. We
will cover that later in this section. But JavaScript has the interesting property that it is
possible to add new functions and properties to an existing object. The sample program

2.6. HTML CANVAS GRAPHICS 59

canvas2d/GraphicsPlusStarter.html shows how to add functions to a graphics context for
drawing lines, ovals, and other shapes that are not built into the API.

2.6.3 Stroke and Fill

Attributes such as line width that affect the visual appearance of strokes and fills are stored as
properties of the graphics context. For example, the value of graphics.lineWidth is a number
that represents the width that will be used for strokes. (The width is given in pixels for the
default coordinate system, but it is subject to transforms.) You can change the line width by
assigning a value to this property:

graphics.lineWidth = 2.5; // Change the current width.

The change affects subsequent strokes. You can also read the current value:

saveWidth = graphics.lineWidth; // Save current width.

The property graphics.lineCap controls the appearance of the endpoints of a stroke. It can be
set to “round”, “square”, or “butt”. The quotation marks are part of the value. For example,

graphics.lineCap = "round";

Similarly, graphics.lineJoin controls the appearance of the point where one segment of a stroke
joins another segment; its possible values are “round”, “bevel”, or “miter”. (Line endpoints
and joins were discussed in Subsection 2.2.1.)

Note that the values for graphics.lineCap and graphics.lineJoin are strings. This is a
somewhat unusual aspect of the API. Several other properties of the graphics context take
values that are strings, including the properties that control the colors used for drawing and
the font that is used for drawing text.

Color is controlled by the values of the properties graphics.fillStyle and graphics.strokeStyle.
The graphics context maintains separate styles for filling and for stroking. A solid color for
stroking or filling is specified as a string. Valid color strings are ones that can be used in CSS,
the language that is used to specify colors and other style properties of elements on web pages.
Many solid colors can be specified by their names, such as “red”, “black”, and “beige”. An
RGB color can be specified as a string of the form “rgb(r,g,b)”, where the parentheses contain
three numbers in the range 0 to 255 giving the red, green, and blue components of the color.
Hexadecimal color codes are also supported, in the form “#XXYYZZ” where XX, YY, and ZZ
are two-digit hexadecimal numbers giving the RGB color components. For example,

graphics.fillStyle = "rgb(200,200,255)"; // light blue

graphics.strokeStyle = "#0070A0"; // a darker, greenish blue

The style can actually be more complicated than a simple solid color: Gradients and patterns
are also supported. As an example, a gradient can be created with a series of steps such as

let lineargradient = graphics.createLinearGradient(420,420,550,200);

lineargradient.addColorStop(0,"red");

lineargradient.addColorStop(0.5,"yellow");

lineargradient.addColorStop(1,"green");

graphics.fillStyle = lineargradient; // Use a gradient fill!

The first line creates a linear gradient that will vary in color along the line segment from the
point (420,420) to the point (550,200). Colors for the gradient are specified by the addColorStop
function: the first parameter gives the fraction of the distance from the initial point to the final
point where that color is applied, and the second is a string that specifies the color itself. A

60 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

color stop at 0 specifies the color at the initial point; a color stop at 1 specifies the color at the
final point. Once a gradient has been created, it can be used both as a fill style and as a stroke
style in the graphics context.

Finally, I note that the font that is used for drawing text is the value of the property
graphics.font. The value is a string that could be used to specify a font in CSS. As such, it can
be fairly complicated, but the simplest versions include a font-size (such as 20px or 150%) and
a font-family (such as serif, sans-serif, monospace, or the name of any font that is accessible to
the web page). You can add italic or bold or both to the front of the string. Some examples:

graphics.font = "2cm monospace"; // the size is in centimeters

graphics.font = "bold 18px sans-serif";

graphics.font = "italic 150% serif"; // size is 150% of the usual size

The default is “10px sans-serif,” which is usually too small. Note that text, like all drawing,
is subject to coordinate transforms. Applying a scaling operation changes the size of the text,
and a negative scaling factor can produce mirror-image text.

2.6.4 Transforms

A graphics context has three basic functions for modifying the current transform by scaling,
rotation, and translation. There are also functions that will compose the current transform
with an arbitrary transform and for completely replacing the current transform:

• graphics.scale(sx,sy) — scale by sx in the x -direction and sy in the y-direction.

• graphics.rotate(angle) — rotate by angle radians about the origin. A positive rotation
is clockwise in the default coordinate system.

• graphics.translate(tx,ty) — translate by tx in the x -direction and ty in the y-
direction.

• graphics.transform(a,b,c,d,e,f) — apply the affine transform x1 = a*x + c*y + e,
and y1 = b*x + d*y + f.

• graphics.setTransform(a,b,c,d,e,f) — discard the current transformation, and set
the current transformation to be x1 = a*x + c*y + e, and y1 = b*x + d*y + f.

Note that there is no shear transform, but you can apply a shear as a general transform. For
example, for a horizontal shear with shear factor 0.5, use

graphics.transform(1, 0, 0.5, 1, 0, 0)

To implement hierarchical modeling, as discussed in Section 2.4, you need to be able to save
the current transformation so that you can restore it later. Unfortunately, no way is provided
to read the current transformation from a canvas graphics context. However, the graphics
context itself keeps a stack of transformations and provides methods for pushing and popping
the current transformation. In fact, these methods do more than save and restore the current
transformation. They actually save and restore almost the entire state of the graphics context,
including properties such as current colors, line width, and font (but not the current path):

• graphics.save() — push a copy of the current state of the graphics context, including
the current transformation, onto the stack.

• graphics.restore() — remove the top item from the stack, containing a saved state of
the graphics context, and restore the graphics context to that state.

Using these methods, the basic setup for drawing an object with a modeling transform
becomes:

2.6. HTML CANVAS GRAPHICS 61

graphics.save(); // save a copy of the current state

graphics.translate(a,b); // apply modeling transformations

graphics.rotate(r);

graphics.scale(sx,sy);

.

. // Draw the object!

.

graphics.restore(); // restore the saved state

Note that if drawing the object includes any changes to attributes such as drawing color, those
changes will be also undone by the call to graphics.restore(). In hierarchical graphics, this is
usually what you want, and it eliminates the need to have extra statements for saving and
restoring things like color.

To draw a hierarchical model, you need to traverse a scene graph, either procedurally or
as a data structure. It’s pretty much the same as in Java. In fact, you should see that the
basic concepts that you learned about transformations and modeling carry over to the canvas
graphics API. Those concepts apply very widely and even carry over to 3D graphics APIs,
with just a little added complexity. The sample web page canvas2d/HierarchicalModel2D.html
implements hierarchical modeling using the 2D canvas API.

∗ ∗ ∗

Now that we know how to do transformations, we can see how to draw an oval using the
canvas API. Suppose that we want an oval with center at (x,y), with horizontal radius r1 and
with vertical radius r2. The idea is to draw a circle of radius 1 with center at (0,0), then
transform it. The circle needs to be scaled by a factor of r1 horizontally and r2 vertically. It
should then be translated to move its center from (0,0) to (x,y). We can use graphics.save()
and graphics.restore() to make sure that the transformations only affect the circle. Recalling
that the order of transforms in the code is the opposite of the order in which they are applied
to objects, this becomes:

graphics.save();

graphics.translate(x, y);

graphics.scale(r1, r2);

graphics.beginPath();

graphics.arc(0, 0, 1, 0, Math.PI); // a circle of radius 1

graphics.restore();

graphics.stroke();

Note that the current path is not affected by the calls to graphics.save() and graphics.restore().
So, in the example, the oval-shaped path is not discarded when graphics.restore() is called.
When graphics.stroke() is called at the end, it is the oval-shaped path that is stroked. On the
other hand, the line width that is used for the stroke is not affected by the scale transform that
was applied to the oval. Note that if the order of the last two commands were reversed, then
the line width would be subject to the scaling.

There is an interesting point here about transforms and paths. In the HTML canvas API,
the points that are used to create a path are transformed by the current transformation before
they are saved. That is, they are saved in pixel coordinates. Later, when the path is stroked
or filled, the current transform has no effect on the path (although it can affect, for example,
the line width when the path is stroked). In particular, you can’t make a path and then apply
different transformations. For example, you can’t make an oval-shaped path, and then use it to
draw several ovals in different positions. Every time you draw the oval, it will be in the same
place, even if different translation transforms are applied to the graphics context.

62 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

The situation is different in Java, where the coordinates that are stored in the path are
the actual numbers that are used to specify the path, that is, the object coordinates. When
the path is stroked or filled, the transformation that is in effect at that time is applied to the
path. The path can be reused many times to draw copies with different transformations. This
comment is offered as an example of how APIs that look very similar can have subtle differences.

2.6.5 Auxiliary Canvases

In Subsection 2.5.5, we looked at the sample program java2d/JavaPixelManipulation.java,
which uses a BufferedImage both to implement an off-screen canvas and to allow direct
manipulation of the colors of individual pixels. The same ideas can be applied in HTML
canvas graphics, although the way it’s done is a little different. The sample web application
canvas2d/SimplePaintProgram.html does pretty much the same thing as the Java program
(except for the image filters).

The on-line version of this section has a live demo version of the program that has the same
functionality. You can try it out to see how the various drawing tools work. Don’t forget to
try the “Smudge” tool! (It has to be applied to shapes that you have already drawn.)

For JavaScript, a web page is represented as a data structure, defined by a standard called
the DOM, or Document Object model. For an off-screen canvas, we can use a <canvas> that is
not part of that data structure and therefore is not part of the page. In JavaScript, a <canvas>

can be created with the function call document.createElement(“canvas”). There is a way to add
this kind of dynamically created canvas to the DOM for the web page, but it can be used as an
off-screen canvas without doing so. To use it, you have to set its width and height properties,
and you need a graphics context for drawing on it. Here, for example, is some code that creates
a 640-by-480 canvas, gets a graphics context for the canvas, and fills the whole canvas with
white:

OSC = document.createElement("canvas"); // off-screen canvas

OSC.width = 640; // Size of OSC must be set explicitly.

OSC.height = 480;

OSG = OSC.getContext("2d"); // Graphics context for drawing on OSC.

OSG.fillStyle = "white"; // Use the context to fill OSC with white.

OSG.fillRect(0,0,OSC.width,OSC.height);

The sample program lets the user drag the mouse on the canvas to draw some shapes. The
off-screen canvas holds the official copy of the picture, but it is not seen by the user. There is
also an on-screen canvas that the user sees. The off-screen canvas is copied to the on-screen
canvas whenever the picture is modified. While the user is dragging the mouse to draw a line,
oval, or rectangle, the new shape is actually drawn on-screen, over the contents of the off-screen
canvas. It is only added to the off-screen canvas when the user finishes the drag operation. For
the other tools, changes are made directly to the off-screen canvas, and the result is then copied
to the screen. This is an exact imitation of the Java program.

(The demo version mentioned above actually uses a somewhat different technique to
accomplish the same thing. It uses two on-screen canvases, one located exactly on top of the
other. The lower canvas holds the actual image. The upper canvas is completely transparent,
except when the user is drawing a line, oval, or rectangle. While the user is dragging the mouse
to draw such a shape, the new shape is drawn on the upper canvas, where it hides the part of
the lower canvas that is beneath the shape. When the user releases the mouse, the shape is

2.6. HTML CANVAS GRAPHICS 63

added to the lower canvas and the upper canvas is cleared to make it completely transparent
again. Again, the other tools operate directly on the lower canvas.)

2.6.6 Pixel Manipulation

The “Smudge” tool in the sample program and demo is implemented by computing with
the color component values of pixels in the image. The implementation requires some
way to read the colors of pixels in a canvas. That can be done with the function
graphics.getPixelData(x,y,w,h), where graphics is a 2D graphics context for the canvas. The
function reads the colors of a rectangle of pixels, where (x,y) is the upper left corner of the
rectangle, w is its width, and h is its height. The parameters are always expressed in pixel
coordinates. Consider, for example

colors = graphics.getImageData(0,0,20,10)

This returns the color data for a 20-by-10 rectangle in the upper left corner of the canvas. The
return value, colors, is an object with properties colors.width, colors.height, and colors.data.
The width and height give the number of rows and columns of pixels in the returned data.
(According to the documentation, on a high-resolution screen, they might not be the same as
the width and height in the function call. The data can be for real, physical pixels on the
display device, not the “nominal” pixels that are used in the pixel coordinate system on the
canvas. There might be several device pixels for each nominal pixel. I’m not sure whether this
can really happen in practice.)

The value of colors.data is an array, with four array elements for each pixel. The four
elements contain the red, blue, green, and alpha color components of the pixel, given as integers
in the range 0 to 255. For a pixel that lies outside the canvas, the four component values will
all be zero. The array is a value of type Uint8ClampedArray whose elements are 8-bit unsigned
integers limited to the range 0 to 255. This is one of JavaScript’s typed array datatypes,
which can only hold values of a specific numerical type. As an example, suppose that you just
want to read the RGB color of one pixel, at coordinates (x,y). You can set

pixel = graphics.getImageData(x,y,1,1);

Then the RGB color components for the pixel are R = pixel.data[0], G = pixel.data[1], and B
= pixel.data[2].

The function graphics.putImageData(imageData,x,y) is used to copy the colors from an
image data object into a canvas, placing it into a rectangle in the canvas with upper left corner
at (x,y). The imageData object can be one that was returned by a call to graphics.getImageData,
possibly with its color data modified. Or you can create a blank image data object by calling
graphics.createImageData(w,h) and fill it with data.

Let’s consider the “Smudge” tool in the sample program. When the user clicks the mouse
with this tool, I use OSG.getImageData to get the color data from a 9-by-9 square of pixels
surrounding the mouse location. OSG is the graphics context for the canvas that contains
the image. Since I want to do real-number arithmetic with color values, I copy the color
components into another typed array, one of type Float32Array, which can hold 32-bit floating
point numbers. Here is the function that I call to do this:

function grabSmudgeData(x, y) { // (x,y) gives mouse location

let colors = OSG.getImageData(x-5,y-5,9,9);

if (smudgeColorArray == null) {

// Make image data & array the first time this function is called.

64 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

smudgeImageData = OSG.createImageData(9,9);

smudgeColorArray = new Float32Array(colors.data.length);

}

for (let i = 0; i < colors.data.length; i++) {

// Copy the color component data into the Float32Array.

smudgeColorArray[i] = colors.data[i];

}

}

The floating point array, smudgeColorArray, will be used for computing new color values for
the image as the mouse moves. The color values from this array will be copied into the image
data object, smudgeImageData, which will then be used to put the color values into the image.
This is done in another function, which is called for each point that is visited as the user drags
the Smudge tool over the canvas:

function swapSmudgeData(x, y) { // (x,y) is new mouse location

let colors = OSG.getImageData(x-5,y-5,9,9); // get color data from image

for (let i = 0; i < smudgeColorArray.length; i += 4) {

// The color data for one pixel is in the next four array locations.

if (smudgeColorArray[i+3] && colors.data[i+3]) {

// alpha-components are non-zero; both pixels are in the canvas;

// (getImageData() gets 0 for the alpha value at pixel coordinates

// that are not actually part of the canvas).

for (let j = i; j < i+3; j++) { // compute new RGB values

let newSmudge = smudgeColorArray[j]*0.8 + colors.data[j]*0.2;

let newImage = smudgeColorArray[j]*0.2 + colors.data[j]*0.8;

smudgeImageData.data[j] = newImage;

smudgeColorArray[j] = newSmudge;

}

smudgeImageData.data[i+3] = 255; // alpha component

}

else {

// one of the alpha components is zero; set the output

// color to all zeros, "transparent black", which will have

// no effect on the color of the pixel in the canvas.

for (let j = i; j <= i+3; j++) {

smudgeImageData.data[j] = 0;

}

}

}

OSG.putImageData(smudgeImageData,x-5,y-5); // copy new colors into canvas

}

In this function, a new color is computed for each pixel in a 9-by-9 square of pixels around the
mouse location. The color is replaced by a weighted average of the current color of the pixel
and the color of the corresponding pixel in the smudgeColorArray. At the same time, the color
in smudgeColorArray is replaced by a similar weighted average.

It would be worthwhile to try to understand this example to see how pixel-by-pixel
processing of color data can be done. See the source code of the example for more details.

2.6. HTML CANVAS GRAPHICS 65

2.6.7 Images

For another example of pixel manipulation, we can look at image filters that modify an image
by replacing the color of each pixel with a weighted average of the color of that pixel and the
8 pixels that surround it. Depending on the weighting factors that are used, the result can be
as simple as a slightly blurred version of the image, or it can be something more interesting.

The on-line version of this section includes an interactive demo that lets you apply several
different image filters to a variety of images.

The filtering operation in the demo uses the image data functions getImageData, createIm-
ageData, and putImageData that were discussed above. Color data from the entire image is
obtained with a call to getImageData. The results of the averaging computation are placed
in a new image data object, and the resulting image data is copied back to the image using
putImageData.

The remaining question is, where do the original images come from, and how do they get
onto the canvas in the first place? An image on a web page is specified by an element in the
web page source such as

The src attribute specifies the URL from which the image is loaded. The optional id can be
used to reference the image in JavaScript. In the script,

image = document.getElementById("mypic");

gets a reference to the object that represents the image in the document structure. Once you
have such an object, you can use it to draw the image on a canvas. If graphics is a graphics
context for the canvas, then

graphics.drawImage(image, x, y);

draws the image with its upper left corner at (x,y). Both the point (x,y) and the image itself
are transformed by any transformation in effect in the graphics context. This will draw the
image using its natural width and height (scaled by the transformation, if any). You can also
specify the width and height of the rectangle in which the image is drawn:

graphics.drawImage(image, x, y, width, height);

With this version of drawImage, the image is scaled to fit the specified rectangle.
Now, suppose that the image you want to draw onto the canvas is not part of the web page?

In that case, it is possible to load the image dynamically. This is much like making an off-screen
canvas, but you are making an “off-screen image.” Use the document object to create an img
element:

newImage = document.createElement("img");

An img element needs a src attribute that specifies the URL from which it is to be loaded. For
example,

newImage.src = "pic2.jpg";

As soon as you assign a value to the src attribute, the browser starts loading the image. The
loading is done asynchronously; that is, the computer continues to execute the script without
waiting for the load to complete. This means that you can’t simply draw the image on the line
after the above assignment statement: The image is very likely not done loading at that time.
You want to draw the image after it has finished loading. For that to happen, you need to
assign a function to the image’s onload property before setting the src. That function will be

66 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

called when the image has been fully loaded. Putting this together, here is a simple JavaScript
function for loading an image from a specified URL and drawing it on a canvas after it has
loaded:

function loadAndDraw(imageURL, x, y) {

let image = document.createElement("img");

image.onload = doneLoading;

image.src = imageURL;

function doneLoading() {

graphics.drawImage(image, x, y);

}

}

A similar technique is used to load the images in the filter demo.

There is one last mystery to clear up. When discussing the use of an off-screen canvas in the
SimplePaintProgram example earlier in this section, I noted that the contents of the off-screen
canvas have to be copied to the main canvas, but I didn’t say how that can be done. In fact,
it is done using drawImage. In addition to drawing an image onto a canvas, drawImage can
be used to draw the contents of one canvas into another canvas. In the sample program, the
command

graphics.drawImage(OSC, 0, 0);

is used to draw the off-screen canvas to the main canvas. Here, graphics is a graphics context
for drawing on the main canvas, and OSC is the object that represents the off-screen canvas.

2.7 SVG: A Scene Description Language

We finish this chapter with a look at one more 2D graphics system: SVG, or Scalable
Vector Graphics. So far, we have been considering graphics programming APIs. SVG, on
the other hand is a scene description language rather than a programming language.
Where a programming language creates a scene by generating its contents procedurally, a
scene description language specifies a scene “declaratively,” by listing its content. Since SVG is
a vector graphics language, the content of of a scene includes shapes, attributes such as color
and line width, and geometric transforms. Most of this should be familiar to you, but it should
be interesting to see it in a new context.

SVG is an XML language, which means it has a very strict and somewhat verbose syntax.
This can make it a little annoying to write, but on the other hand, it makes it possible to read
and understand SVG documents even if you are not familiar with the syntax. It’s possible that
SVG originally stood for “Simple” Vector Graphics, but it is by no means a simple language
at this point. I will cover only a part of it here, and there are many parts of the language and
many options that I will not mention. My goal is to introduce the idea of a scene description
language and to show how such a language can use the same basic ideas that are used in the
rest of this chapter.

SVG can be used as a file format for storing vector graphics images, in much the same way
that PNG and JPEG are file formats for storing pixel-based images. That means that you
can open an SVG file with almost any web browser to view the image. An SVG image can
be included in a web page by using it as the src of an element. That’s how the SVG
examples in the web version of this section are displayed. Since SVG documents are written in
plain text, you can create SVG images using a regular text editor, and you can read the source

2.7. SVG: A SCENE DESCRIPTION LANGUAGE 67

for an SVG image by opening it in a text editor or by viewing the source of the image when it
is displayed in a web browser.

2.7.1 SVG Document Structure

An SVG file, like any XML document, starts with some standard code that almost no one
memorizes. It should just be copied into a new document. Here is some code that can be
copied as a starting point for SVG documents of the type discussed in this section (which,
remember use only a subset of the full SVG specification):

<?xml version="1.0"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="4in" height="4in"

viewBox="0 0 400 400"

preserveAspectRatio="xMidYMid">

<!-- The scene description goes here! -->

</svg>

The first three lines say that this is an XML SVG document. The rest of the document is an
<svg> element that acts as a container for the entire scene description. You’ll need to know a
little about XML syntax. First, an XML “element” in its general form looks like this:

<elementname attrib1="value1" attrib2="value2">

...content...

</elementname>

The element starts with a “start tag,” which begins with a “<” followed by an identifier that
is the name of the tag, and ending with a ”>”. The start tag can include “attributes,” which
have the form name=“value”. The name is an identifier; the value is a string. The value
must be enclosed in single or double quotation marks. The element ends with an “end tag,”
which has an element name that matches the element name in the start tag and has the form
</elementname>. Element names and attribute names are case-sensitive. Between the start
and end tags comes the “content” of the element. The content can consist of text and nested
elements. If an element has no content, you can replace the “>” at the end of the start tag with
“/>”, and leave out the end tag. This is called a “self-closing tag.” For example,

<circle cx="5" cy="5" r="4" fill="red"/>

This is an actual SVG element that specifies a circle. It’s easy to forget the “/” at the end of
a self-closing tag, but it has to be there to have a legal XML document.

Looking back at the SVG document, the five lines starting with <svg are just a long start
tag. You can use the tag as shown, and customize the values of the width, height, viewBox,
and preserveAspectRatio attributes. The next line is a comment; comments in XML start with
“<!--” and end with “-->”.

The width and height attributes of the <svg> tag specify a natural or preferred size for the
image. It can be forced into a different size, for example if it is used in an element on
a web page that specifies a different width and height. The size can be specified using units
of measure such as in for inches, cm for centimeters, and px, for pixels, with 90 pixels to the

68 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

inch. If no unit of measure is specified, pixels are used. There cannot be any space between
the number and the unit of measure.

The viewBox attribute sets up the coordinate system that will be used for drawing the
image. It is what I called the view window in Subsection 2.3.1. The value for viewBox is a
list of four numbers, giving the minimum x-value, the minimum y-value, the width, and the
height of the view window. The width and the height must be positive, so x increases from
left-to-right, and y increases from top-to-bottom. The four numbers in the list can be separated
either by spaces or by commas; this is typical for lists of numbers in SVG.

Finally, the preserveAspectRatio attribute tells what happens when the aspect ratio of the
viewBox does not match the aspect ratio of the rectangle in which the image is displayed.
The default value, “xMidYMid”, will extend the limts on the viewBox either horizontally or
vertically to preserve the aspect ratio, and the viewBox will appear in the center of the display
rectangle. If you would like your image to stretch to fill the display rectangle, ignoring the aspect
ratio, set the value of preserveAspectRatio to “none”. (The aspect ratio issue was discussed in
Subsection 2.3.7.)

Let’s look at a complete SVG document that draws a few simple shapes. Here’s the
document. You could probably figure out what it draws even without knowing any more
about SVG:

<?xml version="1.0"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="300px" height="200px"

viewBox="0 0 3 2"

preserveAspectRatio="xMidYMid">

<rect x="0" y="0" width="3" height="2"

stroke="blue" fill="none" stroke-width="0.05"/>

<text x="0.2" y="0.5" font-size="0.4" fill="red">Hello World!</text>

<line x1="0.1" y1="0.7" x2="2.9" y2="0.7" stroke-width="0.05" stroke="blue"/>

<ellipse cx="1.5" cy="1.4" rx=".6" ry=".4" fill="rgb(0,255,180)"/>

<circle cx="0.4" cy="1.4" r="0.3"

fill="magenta" stroke="black" stroke-width="0.03"/>

<polygon points="2.2,1.7 2.4,1 2.9,1.7"

fill="none" stroke="green" stroke-width="0.02"/>

</svg>

and here’s the image that is produced by this example:

Hello World!

2.7. SVG: A SCENE DESCRIPTION LANGUAGE 69

In the drawing coordinate system for this example, x ranges from 0 to 3, and y ranges from
0 to 2. All values used for drawing, including stroke width and font size, are given in terms
of this coordinate system. Remember that you can use any coordinate system that you find
convenient! Note, by the way, that parts of the image that are not covered by the shapes that
are drawn will be transparent.

Here’s another example, with a larger variety of shapes. The source code for this example
has a lot of comments. It uses features that we will discuss in the remainer of this section.

You can take a look at the source code, svg/svg-starter.svg. (For example, open it in a text
editor, or open it in a web browser and use the browser’s “view source” command.)

2.7.2 Shapes, Styles, and Transforms

In SVG, a basic shape is specified by an element in which the tag name gives the shape, and
attributes give the properties of the shape. There are attributes to specify the geometry, such
as the endpoints of a line or the radius of a circle. Other attributes specify style properties,
such as fill color and line width. (The style properties are what I call attributes elsewhere in
this book; in this section, I am using the term “attribute” in its XML sense.) And there is a
transform attribute that can be used to apply a geometric transform to the shape.

For a detailed example, consider the rect element, which specifies a rectangle. The geometry
of the rectangle is given by attributes named x, y, width and height in the usual way. The default
value for x and y is zero; that is, they are optional, and leaving them out is the same as setting
their value to zero. The width and the height are required attributes. Their values must be
non-negative. For example, the element

<rect width="3" height="2"/>

specifies a rectangle with corner at (0,0), width 3, and height 2, while

<rect x="100" y="200" height="480" width="640"/>

gives a rectangle with corner at (100,200), width 640, and height 480. (Note, by the way, that
the attributes in an XML element can be given in any order.) The rect element also has optional
attributes rx and ry that can be used to make “roundRects,” with their corners replaced by
elliptical arcs. The values of rx and ry give the horizontal and vertical radii of the elliptical
arcs.

70 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

Style attributes can be added to say how the shape should be stroked and filled. The default
is to use a black fill and no stroke. (More precisely, as we will see later, the default is for a
shape to inherit the values of style attributes from its environment. Black fill and no stroke is
the initial environment.) Here are some common style attributes:

• fill — specifies how to fill the shape. The value can be “none” to indicate that the shape
is not filled. It can be be a color, in the same format as the CSS colors that are used in
the HTML canvas API. For example, it can be a common color name such as “black” or
“red”, or an RGB color such as “rgb(255,200,180)”. There are also gradient and pattern
fills, though I will not discuss them here.

• stroke — specifies how to stroke the shape, with the same possible values as “fill”.

• stroke-opacity and fill-opacity — are numbers between 0.0 and 1.0 that specify the
opacity of the stroke and fill. Values less than 1.0 give a translucent stroke or fill. The
default value, 1.0, means fully opaque.

• stroke-width — is a number that sets the line width to use for the stroke. Note that the
line width is subject to transforms. The default value is ”1”, which is fine if the coordinate
system is using pixels as the unit of measure, but often too wide in custom coordinate
systems.

• stroke-linecap — determines the appearance of the endpoints of a stroke. The value
can be “square”, “round”, or “butt”. The default is “butt”. (See Subsection 2.2.1 for a
discussion of line caps and joins.)

• stroke-linejoin — determines the appearance of points where two segments of a stroke
meet. The values can be “miter”, “round”, or “bevel”. The default is “miter”.

As an example that uses many of these options, let’s make a square that is rounded rather than
pointed at the corners, with size 1, centered at the origin, and using a translucent red fill and
a gray stroke:

<rect x="-0.5" y="-0.5" width="1" height="1"

rx="0.1" ry="0.1"

fill="red" fill-opacity="0.5"

stroke="gray" stroke-width="0.05" stroke-linejoin="round"/>

and a simple outline of a rectangle with no fill:

<rect width="200" height="100" stroke="black" fill="none"/>

∗ ∗ ∗

The transform attribute can be used to apply a transform or a series of transforms to a
shape. As an example, we can make a rectangle tilted 30 degrees from the horizontal:

<rect width="100" height="50" transform="rotate(30)"/>

The value “rotate(30)” represents a rotation of 30 degrees (not radians!) about the origin, (0,0).
The positive direction of rotation, as usual, rotates the positive x-axis in the direction of the
positive y-axis. You can specify a different center of rotation by adding arguments to rotate.
For example, to rotate the same rectangle about its center

<rect width="100" height="50" transform="rotate(30,50,25)"/>

2.7. SVG: A SCENE DESCRIPTION LANGUAGE 71

Translation and scaling work as you probably expect, with transform values of the form
“translate(dx,dy)” and “scale(sx,sy)”. There are also shear transforms, but they go by the
names skewX and skewY, and the argument is a skew angle rather than a shear amount. For
example, the transform “skewX(45)” tilts the y-axis by 45 degrees and is equivalent to an
x-shear with shear factor 1. (The function that tilts the y-axis is called skewX because it
modifies, or skews, the x-coordinates of points while leaving their y-coordinates unchanged.)
For example, we can use skewX to tilt a rectangle and make it into a parallelogram:

<rect width="100" height="50" transform="skewX(-30)"/>

I used an angle of -30 degrees to make the rectangle tilt to the right in the usual pixel coordinate
system.

The value of the transform attribute can be a list of transforms, separated by spaces or
commas. The transforms are applied to the object, as usual, in the opposite of the order in
which they are listed. So,

<rect width="100" height="50"

transform="translate(0,50) rotate(45) skewX(-30)"/>

would first skew the rectangle into a parallelogram, then rotate the parallelogram by 45 degrees
about the origin, then translate it by 50 units in the y-direction.

∗ ∗ ∗

In addition to rectangles, SVG has lines, circles, ellipses, and text as basic shapes. Here
are some details. A <line> element represents a line segement and has geometric attributes
x1, y1, x2, and y2 to specify the coordinates of the endpoints of the line segment. These four
attributes have zero as default value, which makes it easier to specify horizontal and vertical
lines. For example,

<line x1="100" x2="300" stroke="black"/>

Without the stroke attribute, you wouldn’t see the line, since the default value for stoke is
“none”.

For a <circle> element, the geometric attributes are cx, cy, and r giving the coordinates
of the center of the circle and the radius. The center coordinates have default values equal to
zero. For an <ellipse> element, the attributes are cx, cy, rx, and ry, where rx and ry give the
radii of the ellipse in the x- and y-directions.

A <text> element is a little different. It has attributes x and y, with default values zero, to
specify the location of the basepoint of the text. However, the text itself is given as the content
of the element rather than as an attribute. That is, the element is divided into a start tag and
an end tag, and the text that will appear in the drawing comes between the start and end tags.
For example,

<text x="10" y="30">This text will appear in the image</text>

The usual stroke and fill attributes apply to text, but text has additional style attributes.
The font-family attribute specifies the font itself. Its value can be one of the generic font
names “serif”, “sans-serif”, “monospace”, or the name of a specific font that is available on the
system. The font-size can be a number giving the (approximate) height of the characters in the
coordinate system. (Font size is subject to coordinate and modeling transforms like any other
length.) You can get bold and italic text by setting font-weight equal to “bold” and font-style
equal to “italic”. Here is an example that uses all of these options, and applies some additional
styles and a transform for good measure:

72 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

<text x="10" y="30"

font-family="sans-serif" font-size="50"

font-style="italic" font-weight="bold"

stroke="black" stroke-width="1" fill="rgb(255,200,0)"

transform="rotate(20)">Hello World</text>

2.7.3 Polygons and Paths

SVG has some nice features for making more complex shapes. The <polygon> element makes
it easy to create a polygon from a list of coordinate pairs. For example,

<polygon points="0,0 100,0 100,75 50,100 0,75"/>

creates a five-sided polygon with vertices at (0,0), (100,0), (100,75), (50,100), and (0,75). Every
pair of numbers in the points attribute specifies a vertex. The numbers can be separated by
either spaces or commas. I’ve used a mixture of spaces and commas here to make it clear how
the numbers pair up. Of course, you can add the usual style attributes for stroke and fill to
the polygon element. A <polyline> is similar to a <polygon>, except that it leaves out the
last line from the final vertex back to the starting vertex. The difference only shows up when
a polyline is stroked; a polyline is filled as if the missing side were added.

The <path> element is much more interesting. In fact, all of the other basic shapes, except
text, could be made using path elements. A path can consist of line segments, Bezier curves,
and elliptical arcs (although I won’t discuss elliptical arcs here). The syntax for specifying a
path is very succinct, and it has some features that we have not seen before. A path element
has an attribute named d that contains the data for the path. The data consists of one or more
commands, where each command consists of a single letter followed by any data necessary for
the command. The moveTo, lineTo, cubic Bezier, and quadratic Bezier commands that you
are already familiar with are coded by the letters M, L, C, and Q. The command for closing a
path segment is Z, and it requires no data. For example the path data “M 10 20 L 100 200”
would draw a line segment from the point (10,20) to the point (100,200). You can combine
several connected line segments into one L command. For example, the <polygon> example
given above could be created using the <path> element

<path d="M 0,0 L 100,0 100,75 50,100 0,75 Z"/>

The Z at the end of the data closes the path by adding the final side to the polygon. (Note
that, as usual, you can use either commas or spaces in the data.)

The C command takes six numbers as data, to specify the two control points and the final
endpoint of the cubic Bezier curve segment. You can also give a multiple of six values to get
a connected sequence of curve segements. Similarly, the Q command uses four data values to
specify the control point and final endpoint of the quadratic Bezier curve segment. The large,
curvy, yellow shape shown in the picture earlier in this section was created as a path with two
line segments and two Bezier curve segments:

<path

d="M 20,70 C 150,70 250,350 380,350 L 380,380 C 250,380 150,100 20,100 Z"

fill="yellow" stroke-width="2" stroke="black"/>

SVG paths add flexibility by defining “relative” versions of the path commands, where the
data for the command is given relative to the current position. A relative move command, for
example, instead of telling where to move, tells how far to move from the current position. The
names of the relative versions of the path commands are lower case letters instead of upper

2.7. SVG: A SCENE DESCRIPTION LANGUAGE 73

case. “M 10,20” means to move to the point with coordinates (10,20), while “m 10,20” means
to move 10 units horizontally and 20 units vertically from the current position. Similarly, if the
current position is (x,y), then the command “l 3,5”, where the first character is a lower case L,
draws a line from (x,y) to (x+3,y+5).

2.7.4 Hierarchical Models

SVG would not be a very interesting language if it could only work with individual simple
shapes. For complex scenes, we want to be able to do hierarchical modeling, where objects can
be constructed from sub-objects, and a transform can be applied to an entire complex object.
We need a way to group objects so that they can be treated as a unit. For that, SVG has the
<g> element. The content of a <g> element is a list of shape elements, which can be simple
shapes or nested <g> elements.

You can add style and transform attributes to a <g> element. The main point of grouping
is that a group can be treated as a single object. A transform attribute in a <g> will transform
the entire group as a whole. A style attribute, such as fill or font-family, on a <g> element will
set a default value for the group, replacing the current default. Here is an example:

<g fill="none" stroke="black" stroke-width="2" transform="scale(1,-1)">

<circle r="98"/>

<ellipse cx="40" cy="40" rx="20" ry="7"/>

<ellipse cx="-40" cy="40" rx="20" ry="7"/>

<line y1="20" y2="-10"/>

<path d="M -40,-40 C -30,-50 30,-50 40,-40" stroke-width="4"/>

</g>

The nested shapes use fill=“none” stroke=“black” stroke-width=“2” for the default values
of the attributes. The default can be overridden by specifying a different value for the
element, as is done for the stroke-width of the <path> element in this example. Setting
transform=“scale(1,−1)” for the group flips the entire image vertically. I do this only because I
am more comfortable working in a coordinate system in which y increases from bottom-to-top
rather than top-to-bottom. Here is the simple line drawing of a face that is produced by this
group:

Now, suppose that we want to include multiple copies of an object in a scene. It shouldn’t
be necessary to repeat the code for drawing the object. It would be nice to have something like
reusable subroutines. In fact, SVG has something very similar: You can define reusable objects
inside a <defs> element. An object that is defined inside <defs> is not added to the scene, but
copies of the object can be added to the scene with a single command. For this to work, the
object must have an id attribute to identify it. For example, we could define an object that
looks like a plus sign:

74 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

<defs>

<g id="plus" stroke="black">

<line x1="-20" y1="0" x2="20" y2="0"/>

<line x1="0" y1="-20" x2="0" y2="20"/>

</g>

</defs>

A <use> element can then be used to add a copy of the plus sign object to the scene. The
syntax is

<use xlink:href="#plus"/>

The value of the xlink:href attribute must be the id of the object, with a “#” character added
at the beginning. (Don’t forget the #. If you leave it out, the <use> element will simply be
ignored.) You can add a transform attribute to the <use> element to apply a transformation
to the copy of the object. You can also apply style attributes, which will be used as default
values for the attributes in the copy. For example, we can draw several plus signs with different
transforms and stroke widths:

<use xlink:href="#plus" transform="translate(50,20)" stroke-width="5"/>

<use xlink:href="#plus" transform="translate(0,30) rotate(45)"/>

Note that we can’t change the color of the plus sign, since it already specifies its own stroke
color.

An object that has been defined in the <defs> section can also be used as a sub-object in
other object definitions. This makes it possible to create a hierarchy with multiple levels. Here
is an example from svg/svg-hierarchy.svg that defines a “wheel” object, then uses two copies of
the wheel as sub-objects in a “cart” object:

<defs>

<!-- Define an object that represents a wheel centered at (0,0) and with

radius 1. The wheel is made out of several filled circles, with

thin rectangles for the spokes. -->

<g id="wheel">

<circle cx="0" cy="0" r="1" fill="black"/>

<circle cx="0" cy="0" r="0.8" fill="lightGray"/>

<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"/>

<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"

transform="rotate(120)"/>

<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"

transform="rotate(240)"/>

<circle cx="0" cy="0" r="0.2" fill="black"/>

</g>

<!-- Define an object that represents a cart made out of two wheels,

with two rectangles for the body of the cart. -->

<g id="cart">

<use xlink:href="#wheel" transform="translate(-1.5,-0.1) scale(0.8,0.8)"/>

<use xlink:href="#wheel" transform="translate(1.5,-0.1) scale(0.8,0.8)"/>

<rect x="-3" y="0" width="6" height="2"/>

<rect x="-2.3" y="1.9" width="2.6" height="1"/>

</g>

</defs>

2.7. SVG: A SCENE DESCRIPTION LANGUAGE 75

The SVG file goes on to add one copy of the wheel and four copies of the cart to the image.
The four carts have different colors and transforms. Here is the image:

2.7.5 Animation

SVG has a number of advanced features that I won’t discuss here, but I do want to mention one:
animation. It is possible to animate almost any property of an SVG object, including geometry,
style, and transforms. The syntax for animation is itself fairly complex, and I will only do a few
examples. But I will tell you enough to produce a fairly complex hierarchical animation like
the “cart-and-windmills” example that was discussed and used as a demo in Subsection 2.4.1.
An SVG version of that animation can be found in svg/cart-and-windmills.svg. (But note that
some web browsers do not implement SVG animations correctly or at all.)

Many attributes of a shape element can be animated by adding an <animate> element to
the content of the shape element. Here is an example that makes a rectangle move across the
image from left to right:

<rect x="0" y="210" width="40" height="40">

<animate attributeName="x"

from="0" to="430" dur="7s"

repeatCount="indefinite"/>

</rect>

Note that the <animate> is nested inside the <rect>. The attributeName attribute tells which
attribute of the <rect> is being animated, in this case, x. The from and to attributes say that
x will take on values from 0 to 430. The dur attribute is the “duration”, that is, how long
the animation lasts; the value “7s” means “7 seconds.” The attribute repeatCount=“indefinite”
means that after the animation completes, it will start over, and it will repeat indefinitely, that
is, as long as the image is displayed. If the repeatCount attribute is omitted, then after the
animation runs once, the rectangle will jump back to its original position and remain there. If
repeatCount is replaced by fill=“freeze”, then after the animation runs, the rectangle will be
frozen in its final position, instead of jumping back to the starting position. The animation
begins when the image first loads. If you want the animation to start at a later time, you can
add a begin attribute whose value gives the time when the animation should start, as a number
of seconds after the image loads.

What if we want the rectangle to move back and forth between its initial and final position?
For that, we need something called keyframe animation , which is an important idea in its
own right. The from and to attributes allow you to specify values only for the beginning and
end of the animation. In a keyframe animation, values are specified at additional times in
the middle of the animation. For a keyframe animation in SVG, the from and to attributes

76 CHAPTER 2. TWO-DIMENSIONAL GRAPHICS

are replaced by keyTimes and values. Here is our moving rectangle example, modified to use
keyframes:

<rect x="0" y="210" width="40" height="40">

<animate attributeName="x"

keyTimes="0;0.5;1" values="0;430;0" dur="7s"

repeatCount="indefinite"/>

</rect>

The keyTimes attribute is a list of numbers, separated by semicolons. The numbers are in
the range 0 to 1, and should be in increasing order. The first number should be 0 and the
last number should be 1. A number specifies a time during the animation, as a fraction of the
complete animation. For example, 0.5 is a point half-way through the animation, and 0.75 is
three-quarters of the way. The values attribute is a list of values, with one value for each key
time. In this case, the value for x is 0 at the start of the animation, 430 half-way through the
animation, and 0 again at the end of the animation. Between the key times, the value for x
is obtained by interpolating between the values specified for the key times. The result in this
case is that the rectangle moves from left to right during the first half of the animation and
then back from right to left in the second half.

Transforms can also be animated, but you need to use the <animateTransform> tag instead
of <animate>, and you need to add a type attribute to specify which transform you are
animating, such as “rotate” or “translate”. Here, for example, is a transform animation applied
to a group:

<g transform="scale(0,0)">

<animateTransform attributeName="transform" type="scale"

from="0,0" to="0.4,0.7"

begin="3s" dur="15s" fill="freeze"/>

<rect x="-15" y="0" width="30" height="40" fill="rgb(150,100,0)"/>

<polygon points="-60,40 60,40 0,200" fill="green"/>

</g>

The animation shows a growing “tree” made from a green triangle and a brown rectangle. In
the animation, the transform goes from scale(0,0) to scale(0.4,0.7). The animation starts 3
seconds after the image loads and lasts 15 seconds. At the end of the animation, the tree
freezes at its final scale. The transform attribute on the <g> element specifies the scale that
is in effect until the animation starts. (A scale factor of 0 collapses the object to size zero, so
that it is invisible.) You can find this example, along with a moving rectangle and a keyframe
animation, in the sample file svg/first-svg-animation.svg.

You can create animated objects in the <defs> section of an SVG file, and you can apply
animation to <use> elements. This makes it possible to create hierarchical animations. A
simple example can be found in the sample file svg/hierarchical-animation.svg.

The example shows a rotating hexagon with a rotating square at each vertex of the hexagon.
The hexagon is constructed from six copies of one object, with a different rotation applied to
each copy. (A copy of the basic object is shown in the image to the right of the hexagon.) The
square is defined as an animated object with its own rotation. It is used as a sub-object in the
hexagon. The rotation that is applied to the hexagon applies to the square, on top of its own
built-in rotation. That’s what makes this an example of hierarchical animation.

If you look back at the cart-and-windmills example now, you can probably see how to do
the animation. Don’t forget to check out the source code, which is surprisingly short!

Chapter 3

OpenGL 1.1: Geometry

It is time to move on to computer graphics in three dimensions, although it won’t be until
Section 2 of this chapter that we really get into 3D. You will find that many concepts from
2D graphics carry over to 3D, but the move into the third dimension brings with it some new
features that take a while to get used to.

Our focus will be OpenGL, a graphics API that was introduced in 1992 and has gone
through many versions and many changes since then. OpenGL is a low-level graphics API,
similar to the 2D APIs we have covered. It is even more primitive in some ways, but of course
it is complicated by the fact that it supports 3D. OpenGL is the basis for WebGL, the current
standard for 3D applications on the Web that is covered in Chapter 6 and Chapter 7. There are
many competing frameworks for low-level 3D graphics, including Microsoft’s Direct3D, Apple’s
Metal, and Vulkan, which was designed by the creators of OpenGL as a more modern and
efficient replacement.

For the next two chapters, the discussion is limited to OpenGL 1.1. OpenGL 1.1 is a large
API, and we will only cover a part of it. The goal is to introduce 3D graphics concepts, not to
fully cover the API. A significant part of what we cover here has been removed from the most
modern versions of OpenGL, including WebGL. However, modern OpenGL in its pure form has
a very steep initial learning curve, and it is really not a good starting place for someone who is
encountering 3D graphics for the first time. Some additional support is needed—if not OpenGL
1.1 then some similar framework. Since OpenGL 1.1 is still supported, at least by all desktop
implementations of OpenGL, it’s a reasonable place to start learning about 3D graphics.

This chapter concentrates on the geometric aspects of 3D graphics, such as defining and
transforming objects and projecting 3D scenes into 2D images. The images that we produce will
look very unrealistic. In the next chapter, we will see how to add some realism by simulating
the effects of lighting and of the material properties of surfaces.

3.1 Shapes and Colors in OpenGL 1.1

This section introduces some of the core features of OpenGL. Much of the discussion in
this section is limited to 2D. For now, all you need to know about 3D is that it adds a third
direction to the x and y directions that are used in 2D. By convention, the third direction is
called z. In the default coordinate system, the x and y axes lie in the plane of the image, and
the positive direction of the z -axis points in a direction perpendicular to the image.

In the default coordinate system for OpenGL, the image shows a region of 3D space in which
x, y, and z all range from minus one to one. To show a different region, you have to apply a

77

78 CHAPTER 3. OPENGL 1.1: GEOMETRY

transform. For now, we will just use coordinates that lie between -1 and 1.

A note about programming: OpenGL can be implemented in many different programming
languages, but the API specification more or less assumes that the language is C. (See
Section A.2 for a short introduction to C.) For the most part, the C specification translates
directly into other languages. The main differences are due to the special characteristics of
arrays in the C language. My examples will follow the C syntax, with a few notes about
how things can be different in other languages. Since I’m following the C API, I will refer
to “functions” rather than “subroutines” or “methods.” Section 3.6 explains in detail how to
write OpenGL programs in C and in Java. You will need to consult that section before you
can do any actual programming. The live OpenGL 1.1 demos for this book are written using a
JavaScript simulator that implements a subset of OpenGL 1.1. That simulator is discussed in
Subsection 3.6.3.

3.1.1 OpenGL Primitives

OpenGL can draw only a few basic shapes, including points, lines, and triangles. There is no
built-in support for curves or curved surfaces; they must be approximated by simpler shapes.
The basic shapes are referred to as primitives. A primitive in OpenGL is defined by its vertices.
A vertex is simply a point in 3D, given by its x, y, and z coordinates. Let’s jump right in and
see how to draw a triangle. It takes a few steps:

glBegin(GL TRIANGLES);

glVertex2f(-0.7, -0.5);

glVertex2f(0.7, -0.5);

glVertex2f(0, 0.7);

glEnd();

Each vertex of the triangle is specified by a call to the function glVertex2f. Vertices must be
specified between calls to glBegin and glEnd. The parameter to glBegin tells which type of
primitive is being drawn. The GL TRIANGLES primitive allows you to draw more than one
triangle: Just specify three vertices for each triangle that you want to draw. Note that using
glBegin/glEnd is not the preferred way to specify primitives, even in OpenGL 1.1. However,
the alternative, which is covered in Subsection 3.4.2, is more complicated to use. You should
consider glBegin/glEnd to be a convenient way to learn about vertices and their properties, but
not the way that you will actually do things in modern graphics APIs.

(I should note that OpenGL functions actually just send commands to the GPU. OpenGL
can save up batches of commands to transmit together, and the drawing won’t actually be done
until the commands are transmitted. To ensure that that happens, the function glFlush() must
be called. In some cases, this function might be called automatically by an OpenGL API, but
you might well run into times when you have to call it yourself.)

For OpenGL, vertices have three coordinates. The function glVertex2f specifies the x and y
coordinates of the vertex, and the z coordinate is set to zero. There is also a function glVertex3f
that specifies all three coordinates. The “2” or “3” in the name tells how many parameters are
passed to the function. The “f” at the end of the name indicates that the parameters are of type
float. In fact, there are other “glVertex” functions, including versions that take parameters of
type int or double, with named like glVertex2i and glVertex3d. There are even versions that
take four parameters, although it won’t be clear for a while why they should exist. And, as we
will see later, there are versions that take an array of numbers instead of individual numbers
as parameters. The entire set of vertex functions is often referred to as “glVertex*”, with the

3.1. SHAPES AND COLORS IN OPENGL 1.1 79

“*” standing in for the parameter specification. (The proliferation of names is due to the fact
that the C programming language doesn’t support overloading of function names; that is, C
distinguishes functions only by their names and not by the number and type of parameters that
are passed to the function.)

OpenGL 1.1 has ten kinds of primitive. Seven of them still exist in modern OpenGL; the
other three have been dropped. The simplest primitive is GL POINTS, which simply renders
a point at each vertex of the primitive. By default, a point is rendered as a single pixel. The
size of point primitives can be changed by calling

glPointSize(size);

where the parameter, size, is of type float and specifies the diameter of the rendered point, in
pixels. By default, points are squares. You can get circular points by calling

glEnable(GL POINT SMOOTH);

The functions glPointSize and glEnable change the OpenGL “state.” The state includes
all the settings that affect rendering. We will encounter many state-changing functions. The
functions glEnable and glDisable can be used to turn many features on and off. In general, the
rule is that any rendering feature that requires extra computation is turned off by default. If you
want that feature, you have to turn it on by calling glEnable with the appropriate parameter.

There are three primitives for drawing line segments: GL LINES, GL LINE STRIP, and
GL LINE LOOP. GL LINES draws disconnected line segments; specify two vertices for each
segment that you want to draw. The other two primitives draw connected sequences of line
segments. The only difference is that GL LINE LOOP adds an extra line segment from the
final vertex back to the first vertex. Here is what you get if use the same six vertices with the
four primitives we have seen so far:

A
B

C
F

D
E

A
B

C
F

D
E

A
B

C
F

D
E

A
B

C
F

D
E

GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP

The points A, B, C, D, E, and F were specified in that order. In this illustration, all the points
lie in the same plane, but keep in mind that in general, points can be anywhere in 3D space.

The width for line primitives can be set by calling glLineWidth(width). The line width is
always specified in pixels. It is not subject to scaling by transformations.

Let’s look at an example. OpenGL does not have a circle primitive, but we can approximate
a circle by drawing a polygon with a large number of sides. To draw an outline of the polygon,
we can use a GL LINE LOOP primitive:

glBegin(GL LINE LOOP);

for (i = 0; i < 64; i++) {

angle = 6.2832 * i / 64; // 6.2832 represents 2*PI

x = 0.5 * cos(angle);

y = 0.5 * sin(angle);

glVertex2f(x, y);

}

glEnd();

80 CHAPTER 3. OPENGL 1.1: GEOMETRY

This draws an approximation for the circumference of a circle of radius 0.5 with center at (0,0).
Remember that to learn how to use examples like this one in a complete, running program,
you will have to read Section 3.6. Also, you might have to make some changes to the code,
depending on which OpenGL implementation you are using.

The next set of primitives is for drawing triangles. There are three of them:
GL TRIANGLES, GL TRIANGLE STRIP, and GL TRIANGLE FAN.

GL_TRIANGLES

A

B

C

F

D

E

G

H

I

A

B

C

F

D

E

G

H

I

GL_TRIANGLE_STRIP

A

B

C
D

E

F

A

B C

D

E

F

G

H

GL_TRIANGLE_FAN

The three triangles on the left make up one GL TRIANGLES primitive, with nine ver-
tices. With that primitive, every set of three vertices makes a separate triangle. For a
GL TRIANGLE STRIP primitive, the first three vertices produce a triangle. After that,
every new vertex adds another triangle to the strip, connecting the new vertex to the two
previous vertices. Two GL TRIANGLE FAN primitives are shown on the right. Again for a
GL TRIANGLE FAN, the first three vertices make a triangle, and every vertex after that adds
anther triangle, but in this case, the new triangle is made by connecting the new vertex to the
previous vertex and to the very first vertex that was specified (vertex “A” in the picture). Note
that Gl TRIANGLE FAN can be used for drawing filled-in polygons. In this picture, by the
way, the dots and lines are not part of the primitive; OpenGL would only draw the filled-in,
green interiors of the figures.

The three remaining primitives, which have been removed from modern OpenGL, are
GL QUADS, GL QUAD STRIP, and GL POLYGON. The name “quad” is short for quadrilat-
eral, that is, a four-sided polygon. A quad is determined by four vertices. In order for a quad
to be rendered correctly in OpenGL, all vertices of the quad must lie in the same plane. The
same is true for polygon primitives. Similarly, to be rendered correctly, quads and polygons
must be convex (see Subsection 2.2.3). Since OpenGL doesn’t check whether these conditions
are satisfied, the use of quads and polygons is error-prone. Since the same shapes can easily be
produced with the triangle primitives, they are not really necessary, but here for the record are
some examples:

GL_QUADS GL_QUAD_STRIP GL_POLYGON

A

B

C

F

D

E

G

H

I

J

L

K

A

B

C

F

D

E

G

H

I

J

L

K

A

B

C
D

E

F

A B

C

D

E

The vertices for these primitives are specified in the order A, B, C, Note how the order
differs for the two quad primitives: For GL QUADS, the vertices for each individual quad

3.1. SHAPES AND COLORS IN OPENGL 1.1 81

should be specified in counterclockwise order around the quad; for GL QUAD STRIP, the
vertices should alternate from one side of the strip to the other.

3.1.2 OpenGL Color

OpenGL has a large collection of functions that can be used to specify colors for the geometry
that we draw. These functions have names of the form glColor*, where the “*” stands for
a suffix that gives the number and type of the parameters. I should warn you now that for
realistic 3D graphics, OpenGL has a more complicated notion of color that uses a different
set of functions. You will learn about that in the next chapter, but for now we will stick to
glColor*.

For example, the function glColor3f has three parameters of type float. The parameters
give the red, green, and blue components of the color as numbers in the range 0.0 to 1.0. (In
fact, values outside this range are allowed, even negative values. When color values are used in
computations, out-of-range values will be used as given. When a color actually appears on the
screen, its component values are clamped to the range 0 to 1. That is, values less than zero are
changed to zero, and values greater than one are changed to one.)

You can add a fourth component to the color by using glColor4f (). The fourth component,
known as alpha, is not used in the default drawing mode, but it is possible to configure OpenGL
to use it as the degree of transparency of the color, similarly to the use of the alpha component in
the 2D graphics APIs that we have looked at. You need two commands to turn on transparency:

glEnable(GL BLEND);

glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

The first command enables use of the alpha component. It can be disabled by calling
glDisable(GL BLEND). When the GL BLEND option is disabled, alpha is simply ignored.
The second command tells how the alpha component of a color will be used. The parameters
shown here are the most common; they implement transparency in the usual way. I should
note that while transparency works fine in 2D, it is much more difficult to use transparency
correctly in 3D.

If you would like to use integer color values in the range 0 to 255, you can use glColor3ub()
or glColor4ub to set the color. In these function names, “ub” stands for “unsigned byte.”
Unsigned byte is an eight-bit data type with values in the range 0 to 255. Here are some
examples of commands for setting drawing colors in OpenGL:

glColor3f(0,0,0); // Draw in black.

glColor3f(1,1,1); // Draw in white.

glColor3f(1,0,0); // Draw in full-intensity red.

glColor3ub(1,0,0); // Draw in a color just a tiny bit different from

// black. (The suffix, "ub" or "f", is important!)

glColor3ub(255,0,0); // Draw in full-intensity red.

glColor4f(1, 0, 0, 0.5); // Draw in transparent red, but only if OpenGL

// has been configured to do transparency. By

// default this is the same as drawing in plain red.

Using any of these functions sets the value of a “current color,” which is part of the OpenGL
state. When you generate a vertex with one of the glVertex* functions, the current color is
saved along with the vertex coordinates, as an attribute of the vertex. We will see that vertices

82 CHAPTER 3. OPENGL 1.1: GEOMETRY

can have other kinds of attribute as well as color. One interesting point about OpenGL is
that colors are associated with individual vertices, not with complete shapes. By changing the
current color between calls to glBegin() and glEnd(), you can get a shape in which different
vertices have different color attributes. When you do this, OpenGL will compute the colors
of pixels inside the shape by interpolating the colors of the vertices. (Again, since OpenGL is
extremely configurable, I have to note that interpolation of colors is just the default behavior.)
For example, here is a triangle in which the three vertices are assigned the colors red, green,
and blue:

This image is often used as a kind of “Hello World” example for OpenGL. The triangle can be
drawn with the commands

glBegin(GL TRIANGLES);

glColor3f(1, 0, 0); // red

glVertex2f(-0.8, -0.8);

glColor3f(0, 1, 0); // green

glVertex2f(0.8, -0.8);

glColor3f(0, 0, 1); // blue

glVertex2f(0, 0.9);

glEnd();

Note that when drawing a primitive, you do not need to explicitly set a color for each vertex,
as was done here. If you want a shape that is all one color, you just have to set the current
color once, before drawing the shape (or just after the call to glBegin(). For example, we can
draw a solid yellow triangle with

glColor3ub(255,255,0); // yellow

glBegin(GL TRIANGLES);

glVertex2f(-0.5, -0.5);

glVertex2f(0.5, -0.5);

glVertex2f(0, 0.5);

glEnd();

Also remember that the color for a vertex is specified before the call to glVertex* that generates
the vertex.

The on-line version of this section has an interactive demo that draws the basic OpenGL
triangle, with different colored vertices. That demo is our first OpenGL example. The demo
actually uses WebGL, so you can use it as a test to check whether your web browser supports
WebGL.

3.1. SHAPES AND COLORS IN OPENGL 1.1 83

The sample program jogl/FirstTriangle.java draws the basic OpenGL triangle using Java.
The program glut/first-triangle.c does the same using the C programming language. And
glsim/first-triangle.html is a version that uses my JavaScript simulator, which implements just
the parts of OpenGL 1.1 that are covered in this book. Any of those programs could be used
to experiment with 2D drawing in OpenGL. And you can use them to test your OpenGL
programming environment.

∗ ∗ ∗

A common operation is to clear the drawing area by filling it with some background color.
It is be possible to do that by drawing a big colored rectangle, but OpenGL has a potentially
more efficient way to do it. The function

glClearColor(r,g,b,a);

sets up a color to be used for clearing the drawing area. (This only sets the color; the color
isn’t used until you actually give the command to clear the drawing area.) The parameters
are floating point values in the range 0 to 1. There are no variants of this function; you must
provide all four color components, and they must be in the range 0 to 1. The default clear color
is all zeros, that is, black with an alpha component also equal to zero. The command to do the
actual clearing is:

glClear(GL COLOR BUFFER BIT);

The correct term for what I have been calling the drawing area is the color buffer , where
“buffer” is a general term referring to a region in memory. OpenGL uses several buffers in
addition to the color buffer. We will encounter the “depth buffer” in just a moment. The
glClear command can be used to clear several different buffers at the same time, which can
be more efficient than clearing them separately since the clearing can be done in parallel. The
parameter to glClear tells it which buffer or buffers to clear. To clear several buffers at once,
combine the constants that represent them with an arithmetic OR operation. For example,

glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

This is the form of glClear that is generally used in 3D graphics, where the depth buffer plays
an essential role. For 2D graphics, the depth buffer is generally not used, and the appropriate
parameter for glClear is just GL COLOR BUFFER BIT.

3.1.3 glColor and glVertex with Arrays

We have see that there are versions of glColor* and glVertex* that take different numbers
and types of parameters. There are also versions that let you place all the data for the
command in a single array parameter. The names for such versions end with “v”. For example:
glColor3fv, glVertex2iv, glColor4ubv, and glVertex3dv. The “v” actually stands for “vector,”
meaning essentially a one-dimensional array of numbers. For example, in the function call
glVertex3fv(coords), coords would be an array containing at least three floating point numbers.

The existence of array parameters in OpenGL forces some differences between OpenGL
implementations in different programming languages. Arrays in Java are different from arrays
in C, and arrays in JavaScript are different from both. Let’s look at the situation in C first,
since that’s the language of the original OpenGL API.

In C, array variables are a sort of variation on pointer variables, and arrays and pointers can
be used interchangeably in many circumstances. In fact, in the C API, array parameters are
actually specified as pointers. For example, the parameter for glVertex3fv is of type “pointer to

84 CHAPTER 3. OPENGL 1.1: GEOMETRY

float.” The actual parameter in a call to glVertex3fv can be an array variable, but it can also be
any pointer that points to the beginning of a sequence of three floats. As an example, suppose
that we want to draw a square. We need two coordinates for each vertex of the square. In C,
we can put all 8 coordinates into one array and use glVertex2fv to pull out the coordinates that
we need:

float coords[] = { -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5 };

glBegin(GL TRIANGLE FAN);

glVertex2fv(coords); // Uses coords[0] and coords[1].

glVertex2fv(coords + 2); // Uses coords[2] and coords[3].

glVertex2fv(coords + 4); // Uses coords[4] and coords[5].

glVertex2fv(coords + 6); // Uses coords[6] and coords[7].

glEnd();

This example uses “pointer arithmetic,” in which coords + N represents a pointer to the N-th
element of the array. An alternative notation would be &coords[N], where “&” is the address
operator, and &coords[N] means “a pointer to coords[N]”. This will all seem very alien to
people who are only familiar with Java or JavaScript. In my examples, I will avoid using
pointer arithmetic, but I will occasionally use address operators.

As for Java, the people who designed JOGL wanted to preserve the ability to pull data
out of the middle of an array. However, it’s not possible to work with pointers in Java. The
solution was to replace a pointer parameter in the C API with a pair of parameters in the JOGL
API—one parameter to specify the array that contains the data and one to specify the starting
index of the data in the array. For example, here is how the square-drawing code translates
into Java:

float[] coords = { -0.5F, -0.5F, 0.5F, -0.5F, 0.5F, 0.5F, -0.5F, 0.5F };

gl2.glBegin(GL2.GL TRIANGLES);

gl2.glVertex2fv(coords, 0); // Uses coords[0] and coords[1].

gl2.glVertex2fv(coords, 2); // Uses coords[2] and coords[3].

gl2.glVertex2fv(coords, 4); // Uses coords[4] and coords[5].

gl2.glVertex2fv(coords, 6); // Uses coords[6] and coords[7].

gl2.glEnd();

There is really not much difference in the parameters, although the zero in the first glVertex2fv
is a little annoying. The main difference is the prefixes “gl2” and “GL2”, which are required
by the object-oriented nature of the JOGL API. I won’t say more about JOGL here, but if you
need to translate my examples into JOGL, you should keep in mind the extra parameter that
is required when working with arrays.

For the record, here are the glVertex* and glColor* functions that I will use in this book.
This is not the complete set that is available in OpenGL:

glVertex2f(x, y); glVertex2fv(xyArray);

glVertex2d(x, y); glVertex2dv(xyArray);

glVertex2i(x, y); glVertex2iv(xyArray);

glVertex3f(x, y, z); glVertex3fv(xyzArray);

glVertex3d(x, y, z); glVertex3dv(xyzArray);

glVertex3i(x, y, z); glVertex3iv(xyzArray);

glColor3f(r, g, b); glColor3f(rgbArray);

glColor3d(r, g, b); glColor3d(rgbArray);

glColor3ub(r, g, b); glColor3ub(rgbArray);

3.1. SHAPES AND COLORS IN OPENGL 1.1 85

glColor4f(r, g, b, a); glColor4f(rgbaArray);

glColor4d(r, g, b, a); glColor4d(rgbaArray);

glColor4ub(r, g, b, a); glColor4ub(rgbaArray);

For glColor*, keep in mind that the “ub” variations require integers in the range 0 to 255, while
the “f” and “d” variations require floating-point numbers in the range 0.0 to 1.0.

3.1.4 The Depth Test

An obvious point about viewing in 3D is that one object can be behind another object. When
this happens, the back object is hidden from the viewer by the front object. When we create an
image of a 3D world, we have to make sure that objects that are supposed to be hidden behind
other objects are in fact not visible in the image. This is the hidden surface problem .

The solution might seem simple enough: Just draw the objects in order from back to front.
If one object is behind another, the back object will be covered up later when the front object
is drawn. This is called the painter’s algorithm . It’s essentially what you are used to doing
in 2D. Unfortunately, it’s not so easy to implement. First of all, you can have objects that
intersect, so that part of each object is hidden by the other. Whatever order you draw the
objects in, there will be some points where the wrong object is visible. To fix this, you would
have to cut the objects into pieces, along the intersection, and treat the pieces as separate
objects. In fact, there can be problems even if there are no intersecting objects: It’s possible to
have three non-intersecting objects where the first object hides part of the second, the second
hides part of the third, and the third hides part of the first. The painter’s algorithm will fail
regardless of the order in which the three objects are drawn. The solution again is to cut the
objects into pieces, but now it’s not so obvious where to cut.

Even though these problems can be solved, there is another issue. The correct drawing order
can change when the point of view is changed or when a geometric transformation is applied,
which means that the correct drawing order has to be recomputed every time that happens. In
an animation, that would mean for every frame.

So, OpenGL does not use the painter’s algorithm. Instead, it uses a technique called the
depth test . The depth test solves the hidden surface problem no matter what order the objects
are drawn in, so you can draw them in any order you want! The term “depth” here has to do
with the distance from the viewer to the object. Objects at greater depth are farther from the
viewer. An object with smaller depth will hide an object with greater depth. To implement
the depth test algorithm, OpenGL stores a depth value for each pixel in the image. The extra
memory that is used to store these depth values makes up the depth buffer that I mentioned
earlier. During the drawing process, the depth buffer is used to keep track of what is currently
visible at each pixel. When a second object is drawn at that pixel, the information in the depth
buffer can be used to decide whether the new object is in front of or behind the object that
is currently visible there. If the new object is in front, then the color of the pixel is changed
to show the new object, and the depth buffer is also updated. If the new object is behind the
current object, then the data for the new object is discarded and the color and depth buffers
are left unchanged.

By default, the depth test is not turned on, which can lead to very bad results when drawing
in 3D. You can enable the depth test by calling

glEnable(GL DEPTH TEST);

It can be turned off by calling glDisable(GL DEPTH TEST). If you forget to enable the depth
test when drawing in 3D, the image that you get will likely be confusing and will make no

86 CHAPTER 3. OPENGL 1.1: GEOMETRY

sense physically. You can also get quite a mess if you forget to clear the depth buffer, using
the glClear command shown earlier in this section, at the same time that you clear the color
buffer.

The demo c3/first-cube.html in the online version of this section lets you experiment with
the depth test. It also lets you see what happens when part of your geometry extends outside
the visible range of z -values.

Here are are a few details about the implementation of the depth test: For each pixel,
the depth buffer stores a representation of the distance from the viewer to the point that is
currently visible at that pixel. This value is essentially the z -coordinate of the point, after any
transformations have been applied. (In fact, the depth buffer is often called the “z-buffer”.)
The range of possible z -coordinates is scaled to the range 0 to 1. The fact that there is only a
limited range of depth buffer values means that OpenGL can only display objects in a limited
range of distances from the viewer. A depth value of 0 corresponds to the minimal distance; a
depth value of 1 corresponds to the maximal distance. When you clear the depth buffer, every
depth value is set to 1, which can be thought of as representing the background of the image.

You get to choose the range of z -values that is visible in the image, by the transformations
that you apply. The default range, in the absence of any transformations, is -1 to 1. Points
with z -values outside the range are not visible in the image. It is a common problem to use
too small a range of z -values, so that objects are missing from the scene, or have their fronts
or backs cut off, because they lie outside of the visible range. You might be tempted to use a
huge range, to make sure that the objects that you want to include in the image are included
within the range. However, that’s not a good idea: The depth buffer has a limited number
of bits per pixel and therefore a limited amount of accuracy. The larger the range of values
that it must represent, the harder it is to distinguish between objects that are almost at the
same depth. (Think about what would happen if all objects in your scene have depth values
between 0.499999 and 0.500001—the depth buffer might see them all as being at exactly the
same depth!)

There is another issue with the depth buffer algorithm. It can give some strange results
when two objects have exactly the same depth value. Logically, it’s not even clear which object
should be visible, but the real problem with the depth test is that it might show one object
at some points and the second object at some other points. This is possible because numerical
calculations are not perfectly accurate. Here an actual example:

In the two pictures shown here, a gray square was drawn, followed by a white square, followed
by a black square. The squares all lie in the same plane. A very small rotation was applied,
to force the computer do some calculations before drawing the objects. The picture on the left
was drawn with the depth test disabled, so that, for example, when a pixel of the white square
was drawn, the computer didn’t try to figure out whether it lies in front of or behind the gray

3.2. 3D COORDINATES AND TRANSFORMS 87

square; it simply colored the pixel white. On the right, the depth test was enabled, and you
can see the strange result.

Finally, by the way, note that the discussion here assumes that there are no transparent ob-
jects. Unfortunately, the depth test does not handle transparency correctly, since transparency
means that two or more objects can contribute to the color of the pixel, but the depth test
assumes that the pixel color is the color of the object nearest to the viewer at that point. To
handle 3D transparency correctly in OpenGL, you pretty much have to resort to implementing
the painter’s algorithm by hand, at least for the transparent objects in the scene.

3.2 3D Coordinates and Transforms

In Chapter 2, we looked fairly closely at coordinate systems and transforms in two-
dimensional computer graphics. In this section and the next, we will move that discussion into
3D. Things are more complicated in three dimensions, but a lot of the basic concepts remain
the same.

3.2.1 3D Coordinates

A coordinate system is a way of assigning numbers to points. In two dimensions, you need a
pair of numbers to specify a point. The coordinates are often referred to as x and y, although
of course, the names are arbitrary. More than that, the assignment of pairs of numbers to
points is itself arbitrary to a large extent. Points and objects are real things, but coordinates
are just numbers that we assign to them so that we can refer to them easily and work with
them mathematically. We have seen the power of this when we discussed transforms, which are
defined mathematically in terms of coordinates but which have real, useful physical meanings.

In three dimensions, you need three numbers to specify a point. (That’s essentially what
it means to be three dimensional.) The third coordinate is often called z. The z -axis is
perpendicular to both the x -axis and the y-axis.

This image illustrates a 3D coordinate system. The positive directions of the x, y, and z
axes are shown as big arrows. The x -axis is green, the y-axis is blue, and the z -axis is red. The
on-line version of this section has a demo version of this image in which you drag on the axes
to rotate the image.

This example is a 2D image, but it has a 3D look. (The illusion is much stronger if you can
rotate the image.) Several things contribute to the effect. For one thing, objects that are farther
away from the viewer in 3D look smaller in the 2D image. This is due to the way that the 3D
scene is “projected” onto 2D. We will discuss projection in the next section. Another factor

88 CHAPTER 3. OPENGL 1.1: GEOMETRY

is the “shading” of the objects. The objects are shaded in a way that imitates the interaction
of objects with the light that illuminates them. We will put off a discussion of lighting until
Chapter 4. In this section, we will concentrate on how to construct a scene in 3D—what we
have referred to as modeling.

OpenGL programmers usually think in terms of a coordinate system in which the x - and
y-axes lie in the plane of the screen, and the z -axis is perpendicular to the screen with the
positive direction of the z -axis pointing out of the screen towards the viewer. Now, the default
coordinate system in OpenGL, the one that you are using if you apply no transformations at
all, is similar but has the positive direction of the z -axis pointing into the screen. This is not
a contradiction: The coordinate system that is actually used is arbitrary. It is set up by a
transformation. The convention in OpenGL is to work with a coordinate system in which the
positive z -direction points toward the viewer and the negative z -direction points away from the
viewer. The transformation into default coordinates reverses the direction of the z -axis.

This conventional arrangement of the axes produces a right-handed coordinate system .
This means that if you point the thumb of your right hand in the direction of the positive
z -axis, then when you curl the fingers of that hand, they will curl in the direction from the
positive x -axis towards the positive y-axis. If you are looking at the tip of your thumb, the curl
will be in the counterclockwise direction. Another way to think about it is that if you curl the
figures of your right hand from the positive x to the positive y-axis, then your thumb will point
in the direction of the positive z -axis. The default OpenGL coordinate system (which, again,
is hardly ever used) is a left-handed system. You should spend some time trying to visualize
right- and left-handed coordinates systems. Use your hands!

All of that describes the natural coordinate system from the viewer’s point of view, the
so-called “eye” or “viewing” coordinate system. However, these eye coordinates are not
necessarily the natural coordinates on the world. The coordinate system on the world—the
coordinate system in which the scene is assembled—is referred to as world coordinates.

Recall that objects are not usually specified directly in world coordinates. Instead, objects
are specified in their own coordinate system, known as object coordinates, and then modeling
transforms are applied to place the objects into the world, or into more complex objects. In
OpenGL, object coordinates are the numbers that are used in the glVertex* function to specify
the vertices of the object. However, before the objects appear on the screen, they are usually
subject to a sequence of transformations, starting with a modeling transform.

3.2.2 Basic 3D Transforms

The basic transforms in 3D are extensions of the basic transforms that you are already familiar
with from 2D: rotation, scaling, and translation. We will look at the 3D equivalents and see
how they affect objects when applied as modeling transforms. We will also discuss how to use
the transforms in OpenGL.

Translation is easiest. In 2D, a translation adds some number onto each coordinate. The
same is true in 3D; we just need three numbers, to specify the amount of motion in the direction
of each of the coordinate axes. A translation by (dx,dy,dz) transforms a point (x,y,z) to the
point (x+dx, y+dy, z+dz). In OpenGL, this translation would be specified by the command

glTranslatef(dx, dy, dz);

or by the command

glTranslated(dx, dy, dz);

3.2. 3D COORDINATES AND TRANSFORMS 89

The translation will affect any drawing that is done after the command is given. Note that
there are two versions of the command. The first, with a name ending in “f”, takes three float

values as parameters. The second, with a name ending in “d”, takes parameters of type double.
As an example,

glTranslatef(0, 0, 1);

would translate objects by one unit in the z direction.

Scaling works in a similar way: Instead of one scaling factor, you need three. The OpenGL
command for scaling is glScale*, where the “*” can be either “f” or “d”. The command

glScalef(sx, sy, sz);

transforms a point (x,y,z) to (x*sx, y*sy, z*sz). That is, it scales by a factor of sx in the x
direction, sy in the y direction, and sz in the z direction. Scaling is about the origin; that is, it
moves points farther from or closer to the origin, (0,0,0). For uniform scaling, all three factors
would be the same. You can use scaling by a factor of minus one to apply a reflection. For
example,

glScalef(1, 1, -1);

reflects objects through the xy-plane by reversing the sign of the z coordinate. Note that a
reflection will convert a right-handed coordinate system into a left-handed coordinate system,
and vice versa. Remember that the left/right handed distinction is not a property of the world,
just of the way that one chooses to lay out coordinates on the world.

Rotation in 3D is harder. In 2D, rotation is rotation about a point, which is usually taken
to be the origin. In 3D, rotation is rotation about a line, which is called the axis of rotation .
Think of the Earth rotating about its axis. The axis of rotation is the line that passes through
the North Pole and the South Pole. The axis stays fixed as the Earth rotates around it, and
points that are not on the axis move in circles about the axis. Any line can be an axis of rotation,
but we generally use an axis that passes through the origin. The most common choices for axis
of rotation are the coordinates axes, that is, the x -axis, the y-axis, or the z -axis. Sometimes,
however, it’s convenient to be able to use a different line as the axis.

There is an easy way to specify a line that passes through the origin: Just specify one other
point that is on the line, in addition to the origin. That’s how things are done in OpenGL: An
axis of rotation is specified by three numbers, (ax,ay,az), which are not all zero. The axis is
the line through (0,0,0) and (ax,ay,az). To specify a rotation transformation in 3D, you have
to specify an axis and the angle of rotation about that axis.

We still have to account for the difference between positive and negative angles. We can’t
just say clockwise or counterclockwise. If you look down on the rotating Earth from above the
North pole, you see a counterclockwise rotation; if you look down on it from above the South
pole, you see a clockwise rotation. So, the difference between the two is not well-defined. To
define the direction of rotation in 3D, we use the right-hand rule , which says: Point the
thumb of your right hand in the direction of the axis — from the point (0,0,0) towards the
point (ax,ay,az) that determines the axis. Then the direction of rotation for positive angles is
given by the direction in which your fingers curl. I should emphasize that the right-hand rule
only works if you are working in a right-handed coordinate system. If you have switched to a
left-handed coordinate system, then you need to use a left-hand rule to determine the positive
direction of rotation.

The demo c3/rotation-axis.html can help you to understand rotation in three-dimensional
space.

90 CHAPTER 3. OPENGL 1.1: GEOMETRY

The rotation function in OpenGL is glRotatef (r,ax,ay,az). You can also use glRotated. The
first parameter specifies the angle of rotation, measured in degrees. The other three parameters
specify the axis of rotation, which is the line from (0,0,0) to (ax,ay,az).

Here are a few examples of scaling, translation, and scaling in OpenGL:

glScalef(2,2,2); // Uniform scaling by a factor of 2.

glScalef(0.5,1,1); // Shrink by half in the x-direction only.

glScalef(-1,1,1); // Reflect through the yz-plane.

// Reflects the positive x-axis onto negative x.

glTranslatef(5,0,0); // Move 5 units in the positive x-direction.

glTranslatef(3,5,-7.5); // Move each point (x,y,z) to (x+3, y+5, z-7.5).

glRotatef(90,1,0,0); // Rotate 90 degrees about the x-axis.

// Moves the +y axis onto the +z axis

// and the +z axis onto the -y axis.

glRotatef(-90,-1,0,0); // Has the same effect as the previous rotation.

glRotatef(90,0,1,0); // Rotate 90 degrees about the y-axis.

// Moves the +z axis onto the +x axis

// and the +x axis onto the -z axis.

glRotatef(90,0,0,1); // Rotate 90 degrees about the z-axis.

// Moves the +x axis onto the +y axis

// and the +y axis onto the -x axis.

glRotatef(30,1.5,2,-3); // Rotate 30 degrees about the line through

// the points (0,0,0) and (1.5,2,-3).

Remember that transforms are applied to objects that are drawn after the transformation
function is called, and that transformations apply to objects in the opposite order of the order
in which they appear in the code.

Of course, OpenGL can draw in 2D as well as in 3D. For 2D drawing in OpenGL, you can
draw on the xy-plane, using zero for the z coordinate. When drawing in 2D, you will probably
want to apply 2D versions of rotation, scaling, and translation. OpenGL does not have 2D
transform functions, but you can just use the 3D versions with appropriate parameters:

• For translation by (dx,dy) in 2D, use glTranslatef (dx, dy, 0). The zero translation in the
z direction means that the transform doesn’t change the z coordinate, so it maps the
xy-plane to itself. (Of course, you could use glTranslated instead of glTranslatef.)

• For scaling by (sx,sy) in 2D, use glScalef (sx, sy, 1), which scales only in the x and y
directions, leaving the z coordinate unchanged.

• For rotation through an angle r about the origin in 2D, use glRotatef (r, 0, 0, 1). This
is rotation about the z -axis, which rotates the xy-plane into itself. In the usual OpenGL
coordinate system, the z -axis points out of the screen, and the right-hand rule says that
rotation by a positive angle will be in the counterclockwise direction in the xy-plane.
Since the x -axis points to the right and the y-axis points upwards, a counterclockwise
rotation rotates the positive x -axis in the direction of the positive y-axis. This is the same
convention that we have used previously for the positive direction of rotation.

3.2. 3D COORDINATES AND TRANSFORMS 91

3.2.3 Hierarchical Modeling

Modeling transformations are often used in hierarchical modeling, which allows complex objects
to be built up out of simpler objects. See Section 2.4. To review briefly: In hierarchical
modeling, an object can be defined in its own natural coordinate system, usually using (0,0,0)
as a reference point. The object can then be scaled, rotated, and translated to place it into
world coordinates or into a more complex object. To implement this, we need a way of limiting
the effect of a modeling transformation to one object or to part of an object. That can be done
using a stack of transforms. Before drawing an object, push a copy of the current transform
onto the stack. After drawing the object and its sub-objects, using any necessary temporary
transformations, restore the previous transform by popping it from the stack.

OpenGL 1.1 maintains a stack of transforms and provides functions for manipulating that
stack. (In fact it has several transform stacks, for different purposes, which introduces some
complications that we will postpone to the next section.) Since transforms are represented as
matrices, the stack is actually a stack of matrices. In OpenGL, the functions for operating on
the stack are named glPushMatrix () and glPopMatrix ().

These functions do not take parameters or return a value. OpenGL keeps track of a current
matrix, which is the composition of all transforms that have been applied. Calling a function
such as glScalef simply modifies the current matrix. When an object is drawn, using the
glVertex* functions, the coordinates that were specified for the object are transformed by the
current matrix. There is another function that affects the current matrix: glLoadIdentity().
Calling glLoadIdentity sets the current matrix to be the identity transform, which represents
no change of coordinates at all and is the usual starting point for a series of transformations.

When the function glPushMatrix () is called, a copy of the current matrix is pushed onto
the stack. Note that this does not change the current matrix; it just saves a copy on the
stack. When glPopMatrix () is called, the matrix on the top of the stack is popped from the
stack, and that matrix replaces the current matrix. Note that glPushMatrix and glPopMatrix
must always occur in corresponding pairs; glPushMatrix saves a copy of the current matrix,
and a corresponding call to glPopMatrix restores that copy. Between a call to glPushMatrix
and the corresponding call to glPopMatrix, there can be additional calls of these functions, as
long as they are properly paired. Usually, you will call glPushMatrix before drawing an object
and glPopMatrix after finishing that object. In between, drawing sub-objects might require
additional pairs of calls to those functions.

As an example, suppose that we want to draw a cube. It’s not hard to draw each face
using glBegin/glEnd, but let’s do it with transformations. We can start with a function that
draws a square in the position of the front face of the cube. For a cube of size 1, the front face
would sit one-half unit in front of the screen, in the plane z = 0.5, and it would have vertices
at (-0.5, -0.5, 0.5), (0.5, -0.5, 0.5), (0.5, 0.5, 0.5), and (-0.5, 0.5, 0.5). Here is a function that
draws the square. The function’s parameters are floating point numbers in the range 0.0 to 1.0
that give the RGB color of the square:

void square(float r, float g, float b) {

glColor3f(r,g,b); // Set the color for the square.

glBegin(GL TRIANGLE FAN);

glVertex3f(-0.5, -0.5, 0.5);

glVertex3f(0.5, -0.5, 0.5);

glVertex3f(0.5, 0.5, 0.5);

glVertex3f(-0.5, 0.5, 0.5);

glEnd();

92 CHAPTER 3. OPENGL 1.1: GEOMETRY

}

To make a red front face for the cube, we just need to call square(1,0,0). Now, consider the
right face, which is perpendicular to the x -axis, in the plane x = 0.5. To make a right face, we
can start with a front face and rotate it 90 degrees about the y-axis. Think about rotating the
front face (red) to the position of the right face (green) in this illustration by rotating the red
square about the y-axis:

x

y

z

So, we can draw a green right face for the cube with

glPushMatrix();

glRotatef(90, 0, 1, 0);

square(0, 1, 0);

glPopMatrix();

The calls to glPushMatrix and glPopMatrix ensure that the rotation that is applied to the
square will not carry over to objects that are drawn later. The other four faces can be made in
a similar way, by rotating the front face about the coordinate axes. You should try to visualize
the rotation that you need in each case. We can combine it all into a function that draws a
cube. To make it more interesting, the size of the cube is a parameter:

void cube(float size) { // Draws a cube with side length = size.

glPushMatrix(); // Save a copy of the current matrix.

glScalef(size,size,size); // Scale unit cube to desired size.

square(1, 0, 0); // red front face

glPushMatrix();

glRotatef(90, 0, 1, 0);

square(0, 1, 0); // green right face

glPopMatrix();

glPushMatrix();

glRotatef(-90, 1, 0, 0);

square(0, 0, 1); // blue top face

glPopMatrix();

glPushMatrix();

glRotatef(180, 0, 1, 0);

square(0, 1, 1); // cyan back face

glPopMatrix();

glPushMatrix();

glRotatef(-90, 0, 1, 0);

square(1, 0, 1); // magenta left face

3.3. PROJECTION AND VIEWING 93

glPopMatrix();

glPushMatrix();

glRotatef(90, 1, 0, 0);

square(1, 1, 0); // yellow bottom face

glPopMatrix();

glPopMatrix(); // Restore matrix to its state before cube() was called.

}

The sample program glut/unlit-cube.c uses this function to draw a cube, and lets you rotate
the cube by pressing the arrow keys. A Java version is jogl/UnlitCube.java, and a web version
is glsim/unlit-cube.html. Here is an image of the cube, rotated by 15 degrees about the x -axis
and -15 degrees about the y-axis to make the top and right sides visible:

For a more complex example of hierarchical modeling with glPushMatrix and glPopMatrix,
you can check out an OpenGL equivalent of the “cart and windmills” animation that
was used as an example in Subsection 2.4.1. The three versions of the example are:
glut/opengl-cart-and-windmill-2d.c, jogl/CartAndWindmillJogl2D.java, and glsim/opengl-cart-
and-windmill.html. This program is an example of hierarchical 2D graphics in OpenGL.

∗ ∗ ∗

Keep in mind that transformation and matrix functions such as glRotated() and glPush-
Matrix () are old-fashioned OpenGL. In WebGL and other modern graphics APIs, you will be
responsible for managing transforms and matrices on your own. You are quite likely to do
that using a software library that provides functions very similar to those that are built into
OpenGL 1.1.

3.3 Projection and Viewing

In the previous section, we looked at the modeling transformation, which transforms from
object coordinates to world coordinates. However, for 3D computer graphics, you need to know
about several other coordinate systems and the transforms between them. We discuss them in
this section.

We start with an overview of the various coordinate systems. Some of this is review, and
some of it is new.

94 CHAPTER 3. OPENGL 1.1: GEOMETRY

3.3.1 Many Coordinate Systems

The coordinates that you actually use for drawing an object are called object coordinates. The
object coordinate system is chosen to be convenient for the object that is being drawn. A
modeling transformation can then be applied to set the size, orientation, and position of the
object in the overall scene (or, in the case of hierarchical modeling, in the object coordinate
system of a larger, more complex object). The modeling transformation is the first that is
applied to the vertices of an object.

The coordinates in which you build the complete scene are called world coordinates. These
are the coordinates for the overall scene, the imaginary 3D world that you are creating. The
modeling transformation maps from object coordinates to world coordinates.

In the real world, what you see depends on where you are standing and the direction in
which you are looking. That is, you can’t make a picture of the scene until you know the
position of the “viewer” and where the viewer is looking—and, if you think about it, how the
viewer’s head is tilted. For the purposes of OpenGL, we imagine that the viewer is attached to
their own individual coordinate system, which is known as eye coordinates. In this coordinate
system, the viewer is at the origin, (0,0,0), looking in the direction of the negative z -axis; the
positive direction of the y-axis is pointing straight up; and the x -axis is pointing to the right.
This is a viewer-centric coordinate system. In other words, eye coordinates are (almost) the
coordinates that you actually want to use for drawing on the screen. The transform from world
coordinates to eye coordinates is called the viewing transformation .

If this is confusing, think of it this way: We are free to use any coordinate system that we
want on the world. Eye coordinates are the natural coordinate system for making a picture
of the world as seen by a viewer. If we used a different coordinate system (world coordinates)
when building the world, then we have to transform those coordinates to eye coordinates to
find out what the viewer actually sees. That transformation is the viewing transform.

Note, by the way, that OpenGL doesn’t keep track of separate modeling and viewing
transforms. They are combined into a single transform, which is known as the modelview

transformation . In fact, even though world coordinates might seem to be the most important
and natural coordinate system, OpenGL doesn’t have any representation for them and doesn’t
use them internally. For OpenGL, only object and eye coordinates have meaning. OpenGL goes
directly from object coordinates to eye coordinates by applying the modelview transformation.

We are not done. The viewer can’t see the entire 3D world, only the part that fits into the
viewport , which is the rectangular region of the screen or other display device where the image
will be drawn. We say that the scene is “clipped” by the edges of the viewport. Furthermore,
in OpenGL, the viewer can see only a limited range of z -values in the eye coordinate system.
Points with larger or smaller z -values are clipped away and are not rendered into the image.
(This is not, of course, the way that viewing works in the real world, but it’s required by the
use of the depth test in OpenGL. See Subsection 3.1.4.) The volume of space that is actually
rendered into the image is called the view volume . Things inside the view volume make it
into the image; things that are not in the view volume are clipped and cannot be seen. For
purposes of drawing, OpenGL applies a coordinate transform that maps the view volume onto
a cube. The cube is centered at the origin and extends from -1 to 1 in the x-direction, in
the y-direction, and in the z-direction. The coordinate system on this cube is referred to as
clip coordinates. The transformation from eye coordinates to clip coordinates is called the
projection transformation . At this point, we haven’t quite projected the 3D scene onto a
2D surface, but we can now do so simply by discarding the z-coordinate. (The z-coordinate,
however, is still needed to provide the depth information that is needed for the depth test.)

3.3. PROJECTION AND VIEWING 95

Note that clip coordinates are the coordinates will be used if you apply no transformation
at all, that is if both the modelview and the projection transforms are the identity. It is a left-
handed coordinate system, with the positive direction of the z -axis pointing into the screen.

We still aren’t done. In the end, when things are actually drawn, there are device

coordinates, the 2D coordinate system in which the actual drawing takes place on a physical
display device such as the computer screen. Ordinarily, in device coordinates, the pixel is the
unit of measure. The drawing region is a rectangle of pixels. This is the rectangle that is called
the viewport. The viewport transformation takes x and y from the clip coordinates and
scales them to fit the viewport.

Let’s go through the sequence of transformations one more time. Think of a primitive, such
as a line or triangle, that is part of the scene and that might appear in the image that we want
to make of the scene. The primitive goes through the following sequence of operations:

O�����
������!"��#

World

������!"��#
E$�

������!"��#
�%�&

������!"��#
D�'���

������!"��#

Modeling

Transform

Viewing

Transform

Viewport

Transform

Projection

Transform

Modelview Transform

1. The points that define the primitive are specified in object coordinates, using methods
such as glVertex3f.

2. The points are first subjected to the modelview transformation, which is a combination of
the modeling transform that places the primitive into the world and the viewing transform
that maps the primitive into eye coordinates.

3. The projection transformation is then applied to map the view volume that is visible to
the viewer onto the clip coordinate cube. If the transformed primitive lies outside that
cube, it will not be part of the image, and the processing stops. If part of the primitive
lies inside and part outside, the part that lies outside is clipped away and discarded, and
only the part that remains is processed further.

4. Finally, the viewport transform is applied to produce the device coordinates that will
actually be used to draw the primitive on the display device. After that, it’s just a matter
of deciding how to color the individual pixels that are part of the primitive.

We need to consider these transforms in more detail and see how to use them in OpenGL 1.1.

3.3.2 The Viewport Transformation

The simplest of the transforms is the viewport transform. It transforms x and y clip coordinates
to the coordinates that are used on the display device. To specify the viewport transform, it is
only necessary to specify the rectangle on the device where the scene will be rendered. This is
done using the glViewport function.

OpenGL must be provided with a drawing surface by the environment in which it is running,
such as JOGL for Java or the GLUT library for C. That drawing surface is a rectangular grid
of pixels, with a horizontal size and a vertical size. OpenGL uses a coordinate system on the
drawing surface that puts (0,0) at the lower left, with y increasing from bottom to top and x
increasing from left to right. When the drawing surface is first given to OpenGL, the viewport
is set to be the entire drawing surface. However, it is possible for OpenGL to draw to a different
rectangle by calling

96 CHAPTER 3. OPENGL 1.1: GEOMETRY

glViewport(x, y, width, height);

where (x,y) is the lower left corner of the viewport, in the drawing surface coordinate system,
and width and height are the size of the viewport. Clip coordinates from -1 to 1 will then be
mapped to the specified viewport. Note that this means in particular that drawing is limited
to the viewport. It is not an error for the viewport to extend outside of the drawing surface,
though it would be unusual to set up that situation deliberately.

When the size of the drawing surface changes, such as when the user resizes a window that
contains the drawing surface, OpenGL does not automatically change the viewport to match
the new size. However, the environment in which OpenGL is running might do that for you.
(See Section 3.6 for information about how this is handled by JOGL and GLUT.)

glViewport is often used to draw several different scenes, or several views of the same scene,
on the same drawing surface. Suppose, for example, that we want to draw two scenes, side-by-
side, and that the drawing surface is 600-by-400 pixels. An outline for how to do that is very
simple:

glViewport(0,0,300,400); // Draw to left half of the drawing surface.

.

. // Draw the first scene.

.

glViewport(300,0,300,400); // Draw to right half of the drawing surface.

.

. // Draw the second scene.

.

The first glViewport command establishes a 300-by-400 pixel viewport with its lower left corner
at (0,0). That is, the lower left corner of the viewport is at the lower left corner of the drawing
surface. This viewport fills the left half of the drawing surface. Similarly, the second viewport,
with its lower left corner at (300,0), fills the right half of the drawing surface.

3.3.3 The Projection Transformation

We turn next to the projection transformation. Like any transform, the projection is represented
in OpenGL as a matrix. OpenGL keeps track of the projection matrix separately from the
matrix that represents the modelview transformation. The same transform functions, such
as glRotatef, can be applied to both matrices, so OpenGL needs some way to know which
matrix those functions apply to. This is determined by an OpenGL state property called the
matrix mode . The value of the matrix mode is a constant such as GL PROJECTION or
GL MODELVIEW. When a function such as glRotatef is called, it modifies a matrix; which
matrix is modified depends on the current value of the matrix mode. The value is set by calling
the function glMatrixMode. The initial value is GL MODELVIEW. This means that if you want
to work on the projection matrix, you must first call

glMatrixMode(GL PROJECTION);

If you want to go back to working on the modelview matrix, you must call

glMartrixMode(GL MODELVIEW);

In my programs, I generally set the matrix mode to GL PROJECTION, set up the projection
transformation, and then immediately set the matrix mode back to GL MODELVIEW.
This means that anywhere else in the program, I can be sure that the matrix mode is
GL MODELVIEW.

3.3. PROJECTION AND VIEWING 97

∗ ∗ ∗

To help you to understand projection, remember that a 3D image can show only a part
of the infinite 3D world. The view volume is the part of the world that is visible in the
image. The view volume is determined by a combination of the viewing transformation and the
projection transformation. The viewing transform determines where the viewer is located and
what direction the viewer is facing, but it doesn’t say how much of the world the viewer can
see. The projection transform does that: It specifies the shape and extent of the region that
is in view. Think of the viewer as a camera, with a big invisible box attached to the front of
the camera that encloses the part of the world that that camera has in view. The inside of the
box is the view volume. As the camera moves around in the world, the box moves with it, and
the view volume changes. But the shape and size of the box don’t change. The shape and size
of the box correspond to the projection transform. The position and orientation of the camera
correspond to the viewing transform.

This is all just another way of saying that, mathematically, the OpenGL projection
transformation transforms eye coordinates to clip coordinates, mapping the view volume onto
the 2-by-2-by-2 clipping cube that contains everything that will be visible in the image. To
specify a projection just means specifying the size and shape of the view volume, relative to
the viewer.

There are two general types of projection, perspective projection and orthographic

projection . Perspective projection is more physically realistic. That is, it shows what you
would see if the OpenGL display rectangle on your computer screen were a window into an
actual 3D world (one that could extend in front of the screen as well as behind it). It shows
a view that you could get by taking a picture of a 3D world with an ordinary camera. In a
perspective view, the apparent size of an object depends on how far it is away from the viewer.
Only things that are in front of the viewer can be seen. In fact, ignoring clipping in the z -
direction for the moment, the part of the world that is in view is an infinite pyramid, with the
viewer at the apex of the pyramid, and with the sides of the pyramid passing through the sides
of the viewport rectangle.

However, OpenGL can’t actually show everything in this pyramid, because of its use of the
depth test to solve the hidden surface problem. Since the depth buffer can only store a finite
range of depth values, it can’t represent the entire range of depth values for the infinite pyramid
that is theoretically in view. Only objects in a certain range of distances from the viewer can
be part of the image. That range of distances is specified by two values, near and far. For a
perspective transformation, both of these values must be positive numbers, and far must be
greater than near. Anything that is closer to the viewer than the near distance or farther away
than the far distance is discarded and does not appear in the rendered image. The volume of
space that is represented in the image is thus a “truncated pyramid.” This pyramid is the view
volume for a perspective projection:

98 CHAPTER 3. OPENGL 1.1: GEOMETRY

EYE

near

far

View volume is the

"truncated pyramid"

between the near and

far clipping planes.

The view volume is bounded by six planes—the four sides plus the top and bottom of the
truncated pyramid. These planes are called clipping planes because anything that lies on the
wrong side of each plane is clipped away. The projection transformation maps the six sides of
the truncated pyramid in eye coordinates to the six sides of the clipping cube in clip coordinates.

In OpenGL, setting up the projection transformation is equivalent to defining the view
volume. For a perspective transformation, you have to set up a view volume that is a truncated
pyramid. A rather obscure term for this shape is a frustum . A perspective transformation
can be set up with the glFrustum command:

glFrustum(xmin, xmax, ymin, ymax, near, far);

The last two parameters specify the near and far distances from the viewer, as already discussed.
The viewer is assumed to be at the origin, (0,0,0), facing in the direction of the negative z-axis.
(This is the eye coordinate system.) So, the near clipping plane is at z = −near, and the far
clipping plane is at z = −far. (Notice the minus signs!) The first four parameters specify the
sides of the pyramid: xmin, xmax, ymin, and ymax specify the horizontal and vertical limits of
the view volume at the near clipping plane. For example, the coordinates of the upper-left
corner of the small end of the pyramid are (xmin, ymax, -near). The x and y limits at the
far clipping plane are larger, usually much larger, than the limits specified in the glFrustum
command.

Note that x and y limits in glFrustum are usually symmetrical about zero. That is, xmin
is usually equal to the negative of xmax and ymin is usually equal to the negative of ymax.
However, this is not required. It is possible to have asymmetrical view volumes where the z-axis
does not point directly down the center of the view.

Since the matrix mode must be set to GL PROJECTION to work on the projection
transformation, glFrustum is often used in a code segment of the form

glMatrixMode(GL PROJECTION);

glLoadIdentity();

glFrustum(xmin, xmax, ymin, ymax, near, far);

glMatrixMode(GL MODELVIEW);

The call to glLoadIdentity ensures that the starting point is the identity transform. This is
important since glFrustum modifies the existing projection matrix rather than replacing it, and
although it is theoretically possible, you don’t even want to try to think about what would
happen if you combine several projection transformations into one.

∗ ∗ ∗

Compared to perspective projections, orthographic projections are easier to understand:
In an orthographic projection, the 3D world is projected onto a 2D image by discarding the

3.3. PROJECTION AND VIEWING 99

z -coordinate of the eye-coordinate system. This type of projection is unrealistic in that it is not
what a viewer would see. For example, the apparent size of an object does not depend on its
distance from the viewer. Objects in back of the viewer as well as in front of the viewer can be
visible in the image. Orthographic projections are still useful, however, especially in interactive
modeling programs where it is useful to see true sizes and angles, undistorted by perspective.

In fact, it’s not really clear what it means to say that there is a viewer in the case
of orthographic projection. Nevertheless, for orthographic projection in OpenGL, there is
considered to be a viewer. The viewer is located at the eye-coordinate origin, facing in the
direction of the negative z-axis. Theoretically, a rectangular corridor extending infinitely in
both directions, in front of the viewer and in back, would be in view. However, as with
perspective projection, only a finite segment of this infinite corridor can actually be shown in
an OpenGL image. This finite view volume is a parallelepiped—a rectangular solid—that is cut
out of the infinite corridor by a near clipping plane and a far clipping plane. The value of far
must be greater than near, but for an orthographic projection, the value of near is allowed to
be negative, putting the “near” clipping plane behind the viewer, as shown in the lower section
of this illustration:

EYE

-near
far

EYE

near

far

View volume is the

rectangular solid

between the near and

far clipping planes.

(ith an orthographic projection,

the EYE can be inside the view

volume. In that case, the near

clipping plane lies behind the eye,

and the value of near is negative.

Note that a negative value for near puts the near clipping plane on the positive z -axis, which
is behind the viewer.

An orthographic projection can be set up in OpenGL using the glOrtho method, which is
has the following form:

glOrtho(xmin, xmax, ymin, ymax, near, far);

The first four parameters specify the x - and y-coordinates of the left, right, bottom, and top
of the view volume. Note that the last two parameters are near and far, not zmin and zmax.

100 CHAPTER 3. OPENGL 1.1: GEOMETRY

In fact, the minimum z-value for the view volume is −far and the maximum z-value is −near.
However, it is often the case that near = −far, and if that is true then the minimum and
maximum z-values turn out to be near and far after all!

As with glFrustum, glOrtho should be called when the matrix mode is GL PROJECTION.
As an example, suppose that we want the view volume to be the box centered at the origin
containing x, y, and z values in the range from -10 to 10. This can be accomplished with

glMatrixMode(GL PROJECTION);

glLoadIdentity();

glOrtho(-10, 10, -10, 10, -10, 10);

glMatrixMode(GL MODELVIEW);

Now, as it turns out, the effect of glOrtho in this simple case is exactly the same as the effect
of glScalef (0.1, 0.1, -0.1), since the projection just scales the box down by a factor of 10. But
it’s usually better to think of projection as a different sort of thing from scaling. (The minus
sign on the z scaling factor is there because projection reverses the direction of the z -axis,
transforming the conventionally right-handed eye coordinate system into OpenGL’s left-handed
default coordinate system.)

∗ ∗ ∗

The glFrustum method is not particularly easy to use. There is a library known as GLU

that contains some utility functions for use with OpenGL. The GLU library includes the method
gluPerspective as an easier way to set up a perspective projection. The command

gluPerspective(fieldOfViewAngle, aspect, near, far);

can be used instead of glFrustum. The fieldOfViewAngle is the vertical angle, measured in
degrees, between the upper side of the view volume pyramid and the lower side. Typical values
are in the range 30 to 60 degrees. The aspect parameter is the aspect ratio of the view, that
is, the width of a cross-section of the pyramid divided by its height. The value of aspect
should generally be set to the aspect ratio of the viewport. The near and far parameters in
gluPerspective have the same meaning as for glFrustum.

3.3.4 The Modelview Transformation

“Modeling” and “viewing” might seem like very different things, conceptually, but OpenGL
combines them into a single transformation. This is because there is no way to distinguish
between them in principle; the difference is purely conceptual. That is, a given transformation
can be considered to be either a modeling transformation or a viewing transformation,
depending on how you think about it. (One significant difference, conceptually, is that the
same viewing transformation usually applies to every object in the 3D scene, while each object
can have its own modeling transformation. But this is not a difference in principle.) We have
already seen something similar in 2D graphics (Subsection 2.3.1), but let’s think about how it
works in 3D.

For example, suppose that there is a model of a house at the origin, facing towards the
direction of the positive z -axis. Suppose the viewer is on the positive z -axis, looking back
towards the origin. The viewer is looking directly at the front of the house. Now, you might
apply a modeling transformation to the house, to rotate it by 90 degrees about the y-axis. After
this transformation, the house is facing in the positive direction of the x -axis, and the viewer is
looking directly at the left side of the house. On the other hand, you might rotate the viewer

by minus 90 degrees about the y-axis. This would put the viewer on the negative x -axis, which

3.3. PROJECTION AND VIEWING 101

would give it a view of the left side of the house. The net result after either transformation is
that the viewer ends up with exactly the same view of the house. Either transformation can be
implemented in OpenGL with the command

glRotatef(90,0,1,0);

That is, this command represents either a modeling transformation that rotates an object by
90 degrees or a viewing transformation that rotates the viewer by -90 degrees about the y-axis.
Note that the effect on the viewer is the inverse of the effect on the object. Modeling and
viewing transforms are always related in this way. For example, if you are looking at an object,
you can move yourself 5 feet to the left (viewing transform), or you can move the object 5 feet
to the right (modeling transform). In either case, you end up with the same view of the object.
Both transformations would be represented in OpenGL as

glTranslatef(5,0,0);

This even works for scaling: If the viewer shrinks, it will look to the viewer exactly the same
as if the world is expanding, and vice-versa.

∗ ∗ ∗

Although modeling and viewing transformations are the same in principle, they remain very
different conceptually, and they are typically applied at different points in the code. In general
when drawing a scene, you will do the following: (1) Load the identity matrix, for a well-defined
starting point; (2) apply the viewing transformation; and (3) draw the objects in the scene,
each with its own modeling transformation. Remember that OpenGL keeps track of several
transformations, and that this must all be done while the modelview transform is current; if you
are not sure of that then before step (1), you should call glMatrixMode(GL MODELVIEW).
During step (3), you will probably use glPushMatrix () and glPopMatrix () to limit each modeling
transform to a particular object.

After loading the identity matrix, the viewer is in the default position, at the origin, looking
down the negative z -axis, with the positive y-axis pointing upwards in the view. Suppose, for
example, that we would like to move the viewer from its default location at the origin back
along the positive z-axis to the point (0,0,20). This operation has exactly the same effect as
moving the world, and the objects that it contains, 20 units in the negative direction along
the z-axis. Whichever operation is performed, the viewer ends up in exactly the same position
relative to the objects. Both operations are implemented by the same OpenGL command,
glTranslatef (0,0,-20). For another example, suppose that we use two commands

glRotatef(90,0,1,0);

glTranslatef(10,0,0);

to establish the viewing transformation. As a modeling transform, these commands would first
translate an object 10 units in the positive x -direction, then rotate the object 90 degrees about
the y-axis. This would move an object originally at (0,0,0) to (0,0,-10), placing the object 10
units directly in front of the viewer. (Remember that modeling transformations are applied
to objects in the order opposite to their order in the code.) What do these commands do as
a viewing transformation? The effect on the view is the inverse of the effect on objects. The
inverse of “translate 90 then rotate 10” is “rotate -10 then translate -90.” That is, to do the
inverse, you have to undo the rotation before you undo the translation. The effect as a viewing
transformation is first to rotate the view by -90 degrees about the y-axis (which would leave the
viewer at the origin, but now looking along the positive x -axis), then to translate the viewer
by -10 along the x -axis (backing up the viewer to the point (-10,0,0)). An object at the point

102 CHAPTER 3. OPENGL 1.1: GEOMETRY

(0,0,0) would thus be 10 units directly in front of the viewer. (You should think about how the
two interpretations affect the view of a house that starts out at (0,0,0). The transformation
affects which side of the house the viewer is looking at, as well as how far away from the house
the viewer is located).

Note, by the way, that the order in which viewing transformations are applied is the same

as the order in which they occur in the code.
The on-line version of this section includes the live demo c3/transform-equivalence-3d.html

that can help you to understand the equivalence between modeling and viewing. This picture,
taken from that demo, visualizes the view volume as a translucent gray box. The scene contains
eight cubes, but not all of them are inside the view volume, so not all of them would appear in
the rendered image:

In this case, the projection is a perspective projection, and the view volume is a frustum.
This picture might have been made either by rotating the frustum towards the right (viewing
transformation) or by rotating the cubes towards the left (modeling transform). Read the help
text in the demo for more information

It can be difficult to set up a view by combining rotations, scalings, and translations, so
OpenGL provides an easier way to set up a typical view. The command is not part of OpenGL
itself but is part of the GLU library.

The GLU library provides the following convenient method for setting up a viewing
transformation:

gluLookAt(eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ);

This method places the viewer at the point (eyeX,eyeY,eyeZ), looking towards the point
(refX,refY,refZ). The viewer is oriented so that the vector (upX,upY,upZ) points upwards in
the viewer’s view. For example, to position the viewer on the negative x -axis, 10 units from
the origin, looking back at the origin, with the positive direction of the y-axis pointing up as
usual, use

gluLookAt(-10,0,0, 0,0,0, 0,1,0);

∗ ∗ ∗

With all this, we can give an outline for a typical display routine for drawing an image of a
3D scene with OpenGL 1.1:

// possibly set clear color here, if not set elsewhere

glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

3.3. PROJECTION AND VIEWING 103

// possibly set up the projection here, if not done elsewhere

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

gluLookAt(eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ); // Viewing transform

glPushMatrix();

.

. // apply modeling transform and draw an object

.

glPopMatrix();

glPushMatrix();

.

. // apply another modeling transform and draw another object

.

glPopMatrix();

.

.

.

3.3.5 A Camera Abstraction

Projection and viewing are often discussed using the analogy of a camera . A real camera is
used to take a picture of a 3D world. For 3D graphics, it useful to imagine using a virtual
camera to do the same thing. Setting up the viewing transformation is like positioning and
pointing the camera. The projection transformation determines the properties of the camera:
What is its field of view, what sort of lens does it use? (Of course, the analogy breaks for
OpenGL in at least one respect, since a real camera doesn’t do clipping in its z -direction.)

I have written a camera utility to implement this idea. The camera is meant to take over the
job of setting the projection and view. Instead of doing that by hand, you set properties of the
camera. The API is available for both C and Java. The two versions are somewhat different
because the Java version is object-oriented. I will discuss the C implementation first. (See
Section 3.6 for basic information about programming OpenGL in C and Java. For an example
of using a camera in a program, see the polyhedron viewer example in the next section. Note
also that there is a version of the camera for use with my JavaScript simulator for OpenGL;
it is part of the simulator library glsim/glsim.js and has an API almost identical to the Java
API.)

In C, the camera is defined by the sample .c file, glut/camera.c and a corresponding header
file, glut/camera.h. Full documentation for the API can be found in the header file. To use the
camera, you should #include "camera.h" at the start of your program, and when you compile
the program, you should include camera.c in the list of files that you want to compile. The
camera depends on the GLU library and on C’s standard math library, so you have to make
sure that those libraries are available when it is compiled. To use the camera, you should call

cameraApply();

104 CHAPTER 3. OPENGL 1.1: GEOMETRY

to set up the projection and viewing transform before drawing the scene. Calling this function
replaces the usual code code for setting up the projection and viewing transformations. It leaves
the matrix mode set to GL MODELVIEW.

The remaining functions in the API are used to configure the camera. This would usually
be done as part of initialization, but it is possible to change the configuration at any time.
However, remember that the settings are not used until you call cameraApply(). Available
functions include:

cameraLookAt(eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ);

// Determines the viewing transform, just like gluLookAt

// Default is cameraLookAt(0,0,30, 0,0,0, 0,1,0);

cameraSetLimits(xmin, xmax, ymin, ymax, zmin, zmax);

// Sets the limits on the view volume, where zmin and zmax are

// given with respect to the view reference point, NOT the eye,

// and the xy limits are measured at the distance of the

// view reference point, NOT the near distance.

// Default is cameraSetLimits(-5,5, -5,5, -10,10);

cameraSetScale(limit);

// a convenience method, which is the same as calling

// cameraSetLimits(-limit,limit, -limit,limit, -2*limit, 2*limit);

cameraSetOrthographic(ortho);

// Switch between orthographic and perspective projection.

// The parameter should be 0 for perspective, 1 for

// orthographic. The default is perspective.

cameraSetPreserveAspect(preserve);

// Determine whether the aspect ratio of the viewport should

// be respected. The parameter should be 0 to ignore and

// 1 to respect the viewport aspect ratio. The default

// is to preserve the aspect ratio.

In many cases, the default settings are sufficient. Note in particular how cameraLookAt
and cameraSetLimits work together to set up the view and projection. The parameters
to cameraLookAt represent three points in world coordinates. The view reference point,
(refX,refY,refZ), should be somewhere in the middle of the scene that you want to render.
The parameters to cameraSetLimits define a box about that view reference point that should
contain everything that you want to appear in the image.

∗ ∗ ∗

For use with JOGL in Java, the camera API is implemented as a class named Camera,
defined in the file jogl/Camera.java. The camera is meant for use with a GLPanel or GLCanvas
that is being used as an OpenGL drawing surface. To use a camera, create an object of type
Camera as an instance variable:

camera = new Camera();

Before drawing the scene, call

camera.apply(gl2);

where gl2 is the OpenGL drawing context of type GL2. (Note the presence of the parameter
gl2, which was not necessary in C; it is required because the OpenGL drawing context in
JOGL is implemented as an object.) As in the C version, this sets the viewing and projection

3.4. POLYGONAL MESHES AND GLDRAWARRAYS 105

transformations and can replace any other code that you would use for that purpose. The
functions for configuring the camera are the same in Java as in C, except that they become
methods in the camera object, and true/false parameters are boolean instead of int :

camera.lookAt(eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ);

camera.setLimits(xmin,xmax, ymin,ymax, zmin,zmax);

camera.setScale(limit);

camera.setOrthographic(ortho); // ortho is of type boolean

camera.setPreserveAspect(preserve); // preserve is of type boolean

∗ ∗ ∗

The camera comes with a simulated “trackball.” The trackball allows the user to rotate the
view by clicking and dragging the mouse on the display. To use it with GLUT in C, you just
need to install a mouse function and a mouse motion function by calling

glutMouseFunc(trackballMouseFunction);

glutMotionFunc(trackballMotionFunction);

The functions trackballMouseFunction and trackballMotionFunction are defined as part of the
camera API and are declared and documented in camera.h. The trackball works by modifying
the viewing transformation associated with the camera, and it only works if cameraApply() is
called at the beginning of the display function to set the viewing and projection transformations.
To install a trackball for use with a Camera object in JOGL, call

camera.installTrackball(drawSurface);

where drawSurface is the component on which the camera is used.

3.4 Polygonal Meshes and glDrawArrays

We have drawn only very simple shapes with OpenGL. In this section, we look at how
more complex shapes can be represented in a way that is convenient for rendering in OpenGL,
and we introduce a new, more efficient way to draw OpenGL primitives.

OpenGL can only directly render points, lines, and polygons. (In fact, in modern OpenGL,
the only polygons that are used are triangles.) A polyhedron , the 3D analog of a polygon,
can be represented exactly, since a polyhedron has faces that are polygons. On the other hand,
if only polygons are available, then a curved surface, such as the surface of a sphere, can only
be approximated. A polyhedron can be represented, or a curved surface can be approximated,
as a polygonal mesh , that is, a set of polygons that are connected along their edges. If the
polygons are small, the approximation can look like a curved surface. (We will see in the next
chapter how lighting effects can be used to make a polygonal mesh look more like a curved
surface and less like a polyhedron.)

So, our problem is to represent a set of polygons—most often a set of triangles. We start
by defining a convenient way to represent such a set as a data structure.

3.4.1 Indexed Face Sets

The polygons in a polygonal mesh are also referred to as “faces” (as in the faces of a polyhedron),
and one of the primary means for representing a polygonal mesh is as an indexed face set ,
or IFS.

The data for an IFS includes a list of all the vertices that appear in the mesh, giving the
coordinates of each vertex. A vertex can then be identified by an integer that specifies its index,

106 CHAPTER 3. OPENGL 1.1: GEOMETRY

or position, in the list. As an example, consider this “house,” a polyhedron with 10 vertices
and 9 faces:

v0=(2,-1,2)

v1=(2,-1,-2)

v2=(2,1,-2)

v4=(1.5,1.5,0)v5=(-1.5,1.5,0)

v7=(-2,1,2)

v6=(-2,-1,2)

v9=(-2,-1,-2)

v8=(-2,1,-2)

v3=(2,1,2)

The vertex list for this polyhedron has the form

Vertex #0. (2, -1, 2)

Vertex #1. (2, -1, -2)

Vertex #2. (2, 1, -2)

Vertex #3. (2, 1, 2)

Vertex #4. (1.5, 1.5, 0)

Vertex #5. (-1.5, 1.5, 0)

Vertex #6. (-2, -1, 2)

Vertex #7. (-2, 1, 2)

Vertex #8. (-2, 1, -2)

Vertex #9. (-2, -1, -2)

The order of the vertices is completely arbitrary. The purpose is simply to allow each vertex to
be identified by an integer.

To describe one of the polygonal faces of a mesh, we just have to list its vertices, in order
going around the polygon. For an IFS, we can specify a vertex by giving its index in the list.
For example, we can say that one of the triangular faces of the pyramid is the polygon formed
by vertex #3, vertex #2, and vertex #4. So, we can complete our data for the mesh by giving
a list of vertex indices for each face. Here is the face data for the house. Remember that the
numbers in parenthese are indices into the vertex list:

Face #0: (0, 1, 2, 3)

Face #1: (3, 2, 4)

Face #2: (7, 3, 4, 5)

Face #3: (2, 8, 5, 4)

Face #4: (5, 8, 7)

Face #5: (0, 3, 7, 6)

Face #6: (0, 6, 9, 1)

Face #7: (2, 1, 9, 8)

Face #8: (6, 7, 8, 9)

Again, the order in which the faces are listed in arbitrary. There is also some freedom in how
the vertices for a face are listed. You can start with any vertex. Once you’ve picked a starting
vertex, there are two possible orderings, corresponding to the two possible directions in which
you can go around the circumference of the polygon. For example, starting with vertex 0, the
first face in the list could be specified either as (0,1,2,3) or as (0,3,2,1). However, the first
possibility is the right one in this case, for the following reason. A polygon in 3D can be viewed
from either side; we can think of it as having two faces, facing in opposite directions. It turns

3.4. POLYGONAL MESHES AND GLDRAWARRAYS 107

out that it is often convenient to consider one of those faces to be the “front face” of the polygon
and one to be the “back face.” For a polyhedron like the house, the front face is the one that
faces the outside of the polyhedron. The usual rule is that the vertices of a polygon should be
listed in counterclockwise order when looking at the front face of the polygon. When looking
at the back face, the vertices will be listed in clockwise order. This is the default rule used by
OpenGL.

0

12

3

Front face.

0

1 2

3

Back face.

FLIP

Vertex order 0,1,2,3 is counter-clockwise

from the front and clockwise from the back

The vertex and face data for an indexed face set can be represented as a pair of two-
dimensional arrays. For the house, in a version for Java, we could use

double[][] vertexList =

{ {2,-1,2}, {2,-1,-2}, {2,1,-2}, {2,1,2}, {1.5,1.5,0},

{-1.5,1.5,0}, {-2,-1,2}, {-2,1,2}, {-2,1,-2}, {-2,-1,-2} };

int[][] faceList =

{ {0,1,2,3}, {3,2,4}, {7,3,4,5}, {2,8,5,4}, {5,8,7},

{0,3,7,6}, {0,6,9,1}, {2,1,9,8}, {6,7,8,9} };

In most cases, there will be additional data for the IFS. For example, if we want to color the
faces of the polyhedron, with a different color for each face, then we could add another array,
faceColors, to hold the color data. Each element of faceColors would be an array of three
double values in the range 0.0 to 1.0, giving the RGB color components for one of the faces.
With this setup, we could use the following code to draw the polyhedron, using Java and JOGL:

for (int i = 0; i < faceList.length; i++) {

gl2.glColor3dv(faceColors[i], 0); // Set color for face number i.

gl2.glBegin(GL2.GL TRIANGLE FAN);

for (int j = 0; j < faceList[i].length; j++) {

int vertexNum = faceList[i][j]; // Index for vertex j of face i.

double[] vertexCoords = vertexList[vertexNum]; // The vertex itself.

gl2.glVertex3dv(vertexCoords, 0);

}

gl2.glEnd();

}

Note that every vertex index is used three or four times in the face data. With the IFS
representation, a vertex is represented in the face list by a single integer. This representation
uses less memory space than the alternative, which would be to write out the vertex in full each
time it occurs in the face data. For the house example, the IFS representation uses 64 numbers
to represent the vertices and faces of the polygonal mesh, as opposed to 102 numbers for the
alternative representation.

Indexed face sets have another advantage. Suppose that we want to modify the shape of
the polygon mesh by moving its vertices. We might do this in each frame of an animation, as a
way of “morphing” the shape from one form to another. Since only the positions of the vertices
are changing, and not the way that they are connected together, it will only be necessary to
update the 30 numbers in the vertex list. The values in the face list will remain unchanged.

108 CHAPTER 3. OPENGL 1.1: GEOMETRY

∗ ∗ ∗

There are other ways to store the data for an IFS. In C, for example, where two-dimensional
arrays are more problematic, we might use one dimensional arrays for the data. In that case,
we would store all the vertex coordinates in a single array. The length of the vertex array would
be three times the number of vertices, and the data for vertex number N will begin at index
3*N in the array. For the face list, we have to deal with the fact that not all faces have the
same number of vertices. A common solution is to add a -1 to the array after the data for each
face. In C, where it is not possible to determine the length of an array, we also need variables
to store the number of vertices and the number of faces. Using this representation, the data for
the house becomes:

int vertexCount = 10; // Number of vertices.

double vertexData[] =

{ 2,-1,2, 2,-1,-2, 2,1,-2, 2,1,2, 1.5,1.5,0,

-1.5,1.5,0, -2,-1,2, -2,1,2, -2,1,-2, -2,-1,-2 };

int faceCount = 9; // Number of faces.

int[][] faceData =

{ 0,1,2,3,-1, 3,2,4,-1, 7,3,4,5,-1, 2,8,5,4,-1, 5,8,7,-1,

0,3,7,6,-1, 0,6,9,1,-1, 2,1,9,8,-1, 6,7,8,9,-1 };

After adding a faceColors array to hold color data for the faces, we can use the following C
code to draw the house:

int i,j;

j = 0; // index into the faceData array

for (i = 0; i < faceCount; i++) {

glColor3dv(&faceColors[i*3]); // Color for face number i.

glBegin(GL TRIANGLE FAN);

while (faceData[j] != -1) { // Generate vertices for face number i.

int vertexNum = faceData[j]; // Vertex number in vertexData array.

glVertex3dv(&vertexData[vertexNum*3]);

j++;

}

j++; // increment j past the -1 that ended the data for this face.

glEnd();

}

Note the use of the C address operator, &. For example, &faceColors[i*3] is a pointer
to element number i*3 in the faceColors array. That element is the first of the three color
component values for face number i. This matches the parameter type for glColor3dv in C,
since the parameter is a pointer type.

∗ ∗ ∗

We could easily draw the edges of the polyhedron instead of the faces simply by using
GL LINE LOOP instead of GL TRIANGLE FAN in the drawing code (and probably leaving
out the color changes). An interesting issue comes up if we want to draw both the faces and
the edges. This can be a nice effect, but we run into a problem with the depth test: Pixels
along the edges lie at the same depth as pixels on the faces. As discussed in Subsection 3.1.4,
the depth test cannot handle this situation well. However, OpenGL has a solution: a feature
called “polygon offset.” This feature can adjust the depth, in clip coordinates, of a polygon, in
order to avoid having two objects exactly at the same depth. To apply polygon offset, you need
to set the amount of offset by calling

3.4. POLYGONAL MESHES AND GLDRAWARRAYS 109

glPolygonOffset(1,1);

The second parameter gives the amount of offset, in units determined by the first parameter.
The meaning of the first parameter is somewhat obscure; a value of 1 seems to work in all cases.
You also have to enable the GL POLYGON OFFSET FILL feature while drawing the faces.
An outline for the procedure is

glPolygonOffset(1,1);

glEnable(GL POLYGON OFFSET FILL);

.

. // Draw the faces.

.

glDisable(GL POLYGON OFFSET FILL);

.

. // Draw the edges.

.

There is a sample program that can draw the house and a number of other polyhedra.
It uses drawing code very similar to what we have looked at here, including polygon offset.
The program is also an example of using the camera and trackball API that was discussed in
Subsection 3.3.5, so that the user can rotate a polyhedron by dragging it with the mouse. The
program has menus that allow the user to turn rendering of edges and faces on and off, plus
some other options. The Java version of the program is jogl/IFSPolyhedronViewer.java, and the
C version is glut/ifs-polyhedron-viewer.c. To get at the menu in the C version, right-click on the
display. The data for the polyhedra are created in jogl/Polyhedron.java and glut/polyhedron.c.
There is also a live demo version of the program in this section on line.

3.4.2 glDrawArrays and glDrawElements

All of the OpenGL commands that we have seen so far were part of the original OpenGL 1.0.
OpenGL 1.1 added some features to increase performance. One complaint about the original
OpenGL was the large number of function calls needed to draw a primitive using functions
such as glVertex2d and glColor3fv with glBegin/glEnd. To address this issue, OpenGL 1.1
introduced the functions glDrawArrays and glDrawElements. These functions are still used
in modern OpenGL, including WebGL. We will look at glDrawArrays first. There are some
differences between the C and the Java versions of the API. We consider the C version first and
will deal with the changes necessary for the Java version in the next subsection.

When using glDrawArrays, all of the data that is needed to draw a primitive, including
vertex coordinates, colors, and other vertex attributes, can be packed into arrays. Once that
is done, the primitive can be drawn with a single call to glDrawArrays. Recall that a primitive
such as a GL LINE LOOP or a GL TRIANGLES can include a large number of vertices, so
that the reduction in the number of function calls can be substantial.

To use glDrawArrays, you must store all of the vertex coordinates for a primitive in a single
one-dimensional array. You can use an array of int, float, or double, and you can have 2, 3, or
4 coordinates for each vertex. The data in the array are the same numbers that you would pass
as parameters to a function such as glVertex3f, in the same order. You need to tell OpenGL
where to find the data by calling

void glVertexPointer(int size, int type, int stride, void* array)

The size parameter is the number of coordinates per vertex. (You have to provide the same
number of coordinates for each vertex.) The type is a constant that tells the data type of each

110 CHAPTER 3. OPENGL 1.1: GEOMETRY

of the numbers in the array. The possible values are GL FLOAT, GL INT, and GL DOUBLE.
The constant that you provide here must match the data type of the numbers in the array.
The stride is usually 0, meaning that the data values are stored in consecutive locations in the
array; if that is not the case, then stride gives the distance in bytes between the location of
the data for one vertex and location for the next vertex. (This would allow you to store other
data, along with the vertex coordinates, in the same array.) The final parameter is the array
that contains the data. It is listed as being of type “void*”, which is a C data type for a pointer
that can point to any type of data. (Recall that an array variable in C is a kind of pointer, so
you can just pass an array variable as the fourth parameter.) For example, suppose that we
want to draw a square in the xy-plane. We can set up the vertex array with

float coords[8] = { -0.5,-0.5, 0.5,-0.5, 0.5,0.5, -0.5,0.5 };

glVertexPointer(2, GL FLOAT, 0, coords);

In addition to setting the location of the vertex coordinates, you have to enable use of the array
by calling

glEnableClientState(GL VERTEX ARRAY);

OpenGL ignores the vertex pointer except when this state is enabled. You can use
glDisableClientState to disable use of the vertex array. Finally, in order to actually draw the
primitive, you would call the function

void glDrawArrays(int primitiveType, int firstVertex, int vertexCount)

This function call corresponds to one use of glBegin/glEnd. The primitiveType tells which
primitive type is being drawn, such as GL QUADS or GL TRIANGLE STRIP. The same ten
primitive types that can be used with glBegin can be used here. The parameter firstVertex is the
number of the first vertex that is to be used for drawing the primitive. Note that the position
is given in terms of vertex number; the corresponding array index would be the vertex number
times the number of coordinates per vertex, which was set in the call to glVertexPointer. The
vertexCount parameter is the number of vertices to be used, just as if glVertex* were called
vertexCount times. Often, firstVertex will be zero, and vertexCount will be the total number
of vertices in the array. The command for drawing the square in our example would be

glDrawArrays(GL TRIANGLE FAN, 0, 4);

Often there is other data associated with each vertex in addition to the vertex coordinates.
For example, you might want to specify a different color for each vertex. The colors for the
vertices can be put into another array. You have to specify the location of the data by calling

void glColorPointer(int size, int type, int stride, void* array)

which works just like gVertexPointer. And you need to enable the color array by calling

glEnableClientState(GL COLOR ARRAY);

With this setup, when you call glDrawArrays, OpenGL will pull a color from the color array for
each vertex at the same time that it pulls the vertex coordinates from the vertex array. Later,
we will encounter other kinds of vertex data besides coordinates and color that can be dealt
with in much the same way.

Let’s put this together to draw the standard OpenGL red/green/blue triangle, which we
drew using glBegin/glEnd in Subsection 3.1.2. Since the vertices of the triangle have different
colors, we will use a color array in addition to the vertex array.

3.4. POLYGONAL MESHES AND GLDRAWARRAYS 111

float coords[6] = { -0.9,-0.9, 0.9,-0.9, 0,0.7 }; // two coords per vertex.

float colors[9] = { 1,0,0, 0,1,0, 1,0,0 }; // three RGB values per vertex.

glVertexPointer(2, GL FLOAT, 0, coords); // Set data type and location.

glColorPointer(3, GL FLOAT, 0, colors);

glEnableClientState(GL VERTEX ARRAY); // Enable use of arrays.

glEnableClientState(GL COLOR ARRAY);

glDrawArrays(GL TRIANGLES, 0, 3); // Use 3 vertices, starting with vertex 0.

In practice, not all of this code has to be in the same place. The function that does the actual
drawing, glDrawArrays, must be in the display routine that draws the image. The rest could
be in the display routine, but could also be done, for example, in an initialization routine.

∗ ∗ ∗

The function glDrawElements is similar to glDrawArrays, but it is designed for use with data
in a format similar to an indexed face set. With glDrawArrays, OpenGL pulls data from the
enabled arrays in order, vertex 0, then vertex 1, then vertex 2, and so on. With glDrawElements,
you provide a list of vertex numbers. OpenGL will go through the list of vertex numbers, pulling
data for the specified vertices from the arrays. The advantage of this comes, as with indexed
face sets, from the fact that the same vertex can be reused several times.

To use glDrawElements to draw a primitive, you need an array to store the vertex numbers.
The numbers in the array can be 8, 16, or 32 bit integers. (They are supposed to be unsigned
integers, but arrays of regular positive integers will also work.) You also need arrays to store
the vertex coordinates and other vertex data, and you must enable those arrays in the same
way as for glDrawArrays, using functions such as glVertexArray and glEnableClientState. To
actually draw the primitive, call the function

void glDrawElements(int primitiveType, vertexCount, dataType, void *array)

Here, primitiveType is one of the ten primitive types such as GL LINES, vertexCount is the
number of vertices to be drawn, dataType specifies the type of data in the array, and array is the
array that holds the list of vertex numbers. The dataType must be given as one of the constants
GL UNSIGNED BYTE, GL UNSIGNED SHORT, or GL UNSIGNED INT to specify 8, 16, or
32 bit integers respectively.

As an example, we can draw a cube. We can draw all six faces of the cube as one primitive
of type GL QUADS. We need the vertex coordinates in one array and the vertex numbers for
the faces in another array. I will also use a color array for vertex colors. The vertex colors will
be interpolated to pixels on the faces, just like the red/green/blue triangle. Here is code that
could be used to draw the cube. Again, all this would not necessarily be in the same part of a
program:

float vertexCoords[24] = { // Coordinates for the vertices of a cube.

1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1,

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 };

float vertexColors[24] = { // An RGB color value for each vertex

1,1,1, 1,0,0, 1,1,0, 0,1,0,

0,0,1, 1,0,1, 0,0,0, 0,1,1 };

int elementArray[24] = { // Vertex numbers for the six faces.

0,1,2,3, 0,3,7,4, 0,4,5,1,

6,2,1,5, 6,5,4,7, 6,7,3,2 };

112 CHAPTER 3. OPENGL 1.1: GEOMETRY

glVertexPointer(3, GL FLOAT, 0, vertexCoords);

glColorPointer(3, GL FLOAT, 0, vertexColors);

glEnableClientState(GL VERTEX ARRAY);

glEnableClientState(GL COLOR ARRAY);

glDrawElements(GL QUADS, 24, GL UNSIGNED INT, elementArray);

Note that the second parameter is the number of vertices, not the number of quads.
The sample program glut/cubes-with-vertex-arrays.c uses this code to draw a cube. It draws

a second cube using glDrawArrays. The Java version is jogl/CubesWithVertexArrays.java, but
you need to read the next subsection before you can understand it. There is also a JavaScript
version, glsim/cubes-with-vertex-arrays.html.

3.4.3 Data Buffers in Java

Ordinary Java arrays are not suitable for use with glDrawElements and glDrawArrays, partly
because of the format in which data is stored in them and partly because of inefficiency in
transfer of data between Java arrays and the Graphics Processing Unit. These problems are
solved by using direct nio buffers. The term “nio” here refers to the package java.nio, which
contains classes for input/output. A “buffer” in this case is an object of the class java.nio.Buffer
or one of its subclasses, such as FloatBuffer or IntBuffer. Finally, “direct” means that the buffer
is optimized for direct transfer of data between memory and other devices such as the GPU. Like
an array, an nio buffer is a numbered sequence of elements, all of the same type. A FloatBuffer,
for example, contains a numbered sequence of values of type float. There are subclasses of
Buffer for all of Java’s primitive data types except boolean.

Nio buffers are used in JOGL in several places where arrays are used in the C API. For
example, JOGL has the following glVertexPointer method in the GL2 class:

public void glVertexPointer(int size, int type, int stride, Buffer buffer)

Only the last parameter differs from the C version. The buffer can be of type FloatBuffer,
IntBuffer, or DoubleBuffer. The type of buffer must match the type parameter in the method.
Functions such as glColorPointer work the same way, and glDrawElements takes the form

public void glDrawElements(int primitiveType, vertexCount,

dataType, Buffer buffer)

where the buffer can be of type IntBuffer, ShortBuffer, or ByteBuffer to match the dataType
UNSIGNED INT, UNSIGNED SHORT, or UNSIGNED BYTE.

The class com.jogamp.common.nio.Buffers contains static utility methods for working with
direct nio buffers. The easiest to use are methods that create a buffer from a Java array. For
example, the method Buffers.newDirectFloatBuffer(array) takes a float array as its parameter
and creates a FloatBuffer of the same length and containing the same data as the array. These
methods are used to create the buffers in the sample program jogl/CubesWithVertexArrays.java.
For example,

float[] vertexCoords = { // Coordinates for the vertices of a cube.

1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1,

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 };

int[] elementArray = { // Vertex numbers for the six faces.

0,1,2,3, 0,3,7,4, 0,4,5,1,

6,2,1,5, 6,5,4,7, 6,7,3,2 };

3.4. POLYGONAL MESHES AND GLDRAWARRAYS 113

// Buffers for use with glVertexPointer and glDrawElements:

FloatBuffer vertexCoordBuffer = Buffers.newDirectFloatBuffer(vertexCoords);

IntBuffer elementBuffer = Buffers.newDirectIntBuffer(elementArray);

The buffers can then be used when drawing the cube:

gl2.glVertexPointer(3, GL2.GL FLOAT, 0, vertexCoordBuffer);

gl2.glDrawElements(GL2.GL QUADS, 24, GL2.GL UNSIGNED INT, elementBuffer);

There are also methods such as Buffers.newDirectFloatBuffer(n), which creates a FloatBuffer
of length n. Remember that an nio Buffer, like an array, is simply a linear sequence of elements
of a given type. In fact, just as for an array, it is possible to refer to items in a buffer by their
index or position in that sequence. Suppose that buffer is a variable of type FloatBuffer, i is an
int and x is a float. Then

buffer.put(i,x);

copies the value of x into position number i in the buffer. Similarly, buffer.get(i) can be used
to retrieve the value at index i in the buffer. These methods make it possible to work with
buffers in much the same way that you can work with arrays.

3.4.4 Display Lists and VBOs

All of the OpenGL drawing commands that we have considered so far have an unfortunate
inefficiency when the same object is going be drawn more than once: The commands and data
for drawing that object must be transmitted to the GPU each time the object is drawn. It should
be possible to store information on the GPU, so that it can be reused without retransmitting
it. We will look at two techniques for doing this: display lists and vertex buffer objects

(VBOs). Display lists were part of the original OpenGL 1.0, but they are not part of the
modern OpenGL API. VBOs were introduced in OpenGL 1.5 and are still important in modern
OpenGL; we will discuss them only briefly here and will consider them more fully when we get
to WebGL.

Display lists are useful when the same sequence of OpenGL commands will be used several
times. A display list is a list of graphics commands and the data used by those commands. A
display list can be stored in a GPU. The contents of the display list only have to be transmitted
once to the GPU. Once a list has been created, it can be “called.” The key point is that calling
a list requires only one OpenGL command. Although the same list of commands still has to
be executed, only one command has to be transmitted from the CPU to the graphics card,
and then the full power of hardware acceleration can be used to execute the commands at the
highest possible speed.

Note that calling a display list twice can result in two different effects, since the effect can
depend on the OpenGL state at the time the display list is called. For example, a display list
that generates the geometry for a sphere can draw spheres in different locations, as long as
different modeling transforms are in effect each time the list is called. The list can also produce
spheres of different colors, as long as the drawing color is changed between calls to the list.

If you want to use a display list, you first have to ask for an integer that will identify that
list to the GPU. This is done with a command such as

listID = glGenLists(1);

The return value is an int which will be the identifier for the list. The parameter to
glGenLists is also an int, which is usually 1. (You can actually ask for several list IDs at once;

114 CHAPTER 3. OPENGL 1.1: GEOMETRY

the parameter tells how many you want. The list IDs will be consecutive integers, so that if
listA is the return value from glGenLists(3), then the identifiers for the three lists will be listA,
listA + 1, and listA + 2.)

Once you’ve allocated a list in this way, you can store commands into it. If listID is the ID
for the list, you would do this with code of the form:

glNewList(listID, GL COMPILE);

... // OpenGL commands to be stored in the list.

glEndList();

The parameter GL COMPILE means that you only want to store commands into the list, not
execute them. If you use the alternative parameter GL COMPILE AND EXECUTE, then the
commands will be executed immediately as well as stored in the list for later reuse.

Once you have created a display list in this way, you can call the list with the command

glCallList(listID);

The effect of this command is to tell the GPU to execute a list that it has already stored. You
can tell the graphics card that a list is no longer needed by calling

gl.glDeleteLists(listID, 1);

The second parameter in this method call plays the same role as the parameter in glGenLists;
that is, it allows you delete several sequentially numbered lists. Deleting a list when you are
through with it allows the GPU to reuse the memory that was used by that list.

∗ ∗ ∗

Vertex buffer objects take a different approach to reusing information. They only store data,
not commands. A VBO is similar to an array. In fact, it is essentially an array that can be
stored on the GPU for efficiency of reuse. There are OpenGL commands to create and delete
VBOs and to transfer data from an array on the CPU side into a VBO on the GPU. You can
configure glDrawArrays() and glDrawElements() to take the data from a VBO instead of from
an ordinary array (in C) or from an nio Buffer (in JOGL). This means that you can send the
data once to the GPU and use it any number of times.

I will not discuss how to use VBOs here, since it was not a part of OpenGL 1.1. However,
there is a sample program that lets you compare different techniques for rendering a complex
image. The C version of the program is glut/color-cube-of-spheres.c, and the Java version is
jogl/ColorCubeOfSpheres.java. The program draws 1331 spheres, arranged in an 11-by-11-by-
11 cube. The spheres are different colors, with the amount of red in the color varying along
one axis, the amount of green along a second axis, and the amount of blue along the third.
Each sphere has 66 vertices, whose coordinates can be computed using the math functions sin
and cos. The program allows you to select from five different rendering methods, and it shows
the time that it takes to render the spheres using the selected method. (The Java version has
a drop-down menu for selecting the method; in the C version, right-click the image to get the
menu.) You can use your mouse to rotate the cube of spheres, both to get a better view and to
generate more data for computing the average render time. The five rendering techniques are:

• Direct Draw, Recomputing Vertex Data — A remarkably foolish way to draw 1331 spheres,
by recomputing all of the vertex coordinates every time a sphere is drawn.

• Direct Draw, Precomputed Data — The vertex coordinates are computed once and stored
in an array. The spheres are drawn using glBegin/glEnd, but the data used in the calls to
glVertex* are taken from the array rather than recomputed each time they are needed.

3.5. SOME LINEAR ALGEBRA 115

• Display List — A display list is created containing all of the commands and data needed
to draw a sphere. Each sphere can then be drawn by a single call of that display list.

• DrawArrays with Arrays — The data for the sphere is stored in a vertex array (or, for
Java, in an nio buffer), and each sphere is drawn using a call to glDrawArrays, using the
techniques discussed earlier in this section. The data has to be sent to the GPU every
time a sphere is drawn.

• DrawArrays with VBOs — Again, glDrawArrays is used to draw the spheres, but this time
the data is stored in a VBO instead of in an array, so the data only has to be transmitted
to the GPU once.

In my own experiments, I found, as expected, that display lists and VBOs gave the shortest
rendering times, with little difference between the two. There were some interesting differences
between the results for the C version and the results for the Java version, which seem to be due
to the fact that function calls in C are more efficient than method calls in Java. You should try
the program on your own computer, and compare the rendering times for the various rendering
methods.

3.5 Some Linear Algebra

Linear algebra is a branch of mathematics that is fundamental to computer graphics. It
studies vectors, linear transformations, and matrices. We have already encountered these topics
in Subsection 2.3.8 in a two-dimensional context. In this section, we look at them more closely
and extend the discussion to three dimensions.

It is not essential that you know the mathematical details that are covered in this section,
since they can be handled internally in OpenGL or by software libraries. However, you will
need to be familiar with the concepts and the terminology. This is especially true for modern
OpenGL, which leaves many of the details up to your programs. Even when you have a software
library to handle the details, you still need to know enough to use the library. You might want
to skim this section and use it later for reference.

3.5.1 Vectors and Vector Math

A vector is a quantity that has a length and a direction. A vector can be visualized as an arrow,
as long as you remember that it is the length and direction of the arrow that are relevant, and
that its specific location is irrelevant. Vectors are often used in computer graphics to represent
directions, such as the direction from an object to a light source or the direction in which a
surface faces. In those cases, we are more interested in the direction of a vector than in its
length.

If we visualize a 3D vector V as an arrow starting at the origin, (0,0,0), and ending at a
point P, then we can, to a certain extent, identify V with P—at least as long as we remember
that an arrow starting at any other point could also be used to represent V. If P has coordinates
(a,b,c), we can use the same coordinates for V. When we think of (a,b,c) as a vector, the value
of a represents the change in the x -coordinate between the starting point of the arrow and its
ending point, b is the change in the y-coordinate, and c is the change in the z -coordinate. For
example, the 3D point (x,y,z) = (3,4,5) has the same coordinates as the vector (dx,dy,dz) =
(3,4,5). For the point, the coordinates (3,4,5) specify a position in space in the xyz coordinate
system. For the vector, the coordinates (3,4,5) specify the change in the x, y, and z coordinates
along the vector. If we represent the vector with an arrow that starts at the origin (0,0,0), then

116 CHAPTER 3. OPENGL 1.1: GEOMETRY

the head of the arrow will be at (3,4,5). But we could just as well visualize the vector as an
arrow that starts at the point (1,1,1), and in that case the head of the arrow would be at the
point (4,5,6).

The distinction between a point and a vector is subtle. For some purposes, the distinction
can be ignored; for other purposes, it is important. Often, all that we have is a sequence of
numbers, which we can treat as the coordinates of either a vector or a point, whichever is more
appropriate in the context.

One of the basic properties of a vector is its length . In terms of its coordinates, the length
of a 3D vector (x,y,z) is given by sqrt(x 2+y2+z 2). (This is just the Pythagorean theorem in
three dimensions.) If v is a vector, its length is denoted by |v|. The length of a vector is also
called its norm . (We are considering 3D vectors here, but concepts and formulas are similar
for other dimensions.)

Vectors of length 1 are particularly important. They are called unit vectors. If v = (x,y,z)
is any vector other than (0,0,0), then there is exactly one unit vector that points in the same
direction as v. That vector is given by

(x/length, y/length, z/length)

where length is the length of v. Dividing a vector by its length is said to normalize the vector:
The result is a unit vector that points in the same direction as the original vector.

Two vectors can be added. Given two vectors v1 = (x1,y1,z1) and v2 = (x2,y2,z2), their
sum is defined as

v1 + v2 = (x1+x2, y1+y2, z1+z2);

The sum has a geometric meaning:

v1

v2

T)* +*,-./ sum of +1 234 +5 ,an be

obtained by placing the starting point

of v2 at the ending point of v1. The

sum is the vector from the starting

point of v1 to the ending point of v2.

Remember that vectors have length

and direction, but no set position.

Multiplication is more complicated. The obvious definition of the product of two vectors,
similar to the definition of the sum, does not have geometric meaning and is rarely used.
However, there are three kinds of vector multiplication that are used: the scalar product, the
dot produt, and the cross product.

If v = (x,y,z) is a vector and a is a number, then the scalar product of a and v is defined
as

av = (a*x, a*y, a*z);

Assuming that a is positive and v is not zero, av is a vector that points in the same direction as
v, whose length is a times the length of v. If a is negative, av points in the opposite direction
from v, and its length is |a| times the length of v. This type of product is called a scalar product
because a number like a is also referred to as a “scalar,” perhaps because multiplication by a
scales v to a new length.

Given two vectors v1 = (x1,y1,z1) and v2 = (x2,y2,z2), the dot product of v1 and v2 is
denoted by v1 ·v2 and is defined by

v1·v2 = x1*x2 + y1*y2 + z1*z2

3.5. SOME LINEAR ALGEBRA 117

Note that the dot product is a number, not a vector. The dot product has several very important
geometric meanings. First of all, note that the length of a vector v is just the square root of
v ·v. Furthermore, the dot product of two non-zero vectors v1 and v2 has the property that

cos(angle) = v1·v2 / (|v1|*|v2|)

where angle is the measure of the angle between v1 and v2. In particular, in the case of two
unit vectors, whose lengths are 1, the dot product of two unit vectors is simply the cosine
of the angle between them. Furthermore, since the cosine of a 90-degree angle is zero, two
non-zero vectors are perpendicular if and only if their dot product is zero. Because of these
properties, the dot product is particularly important in lighting calculations, where the effect
of light shining on a surface depends on the angle that the light makes with the surface.

The scalar product and dot product are defined in any dimension. For vectors in 3D, there
is another type of product called the cross product , which also has an important geometric
meaning. For vectors v1 = (x1,y1,z1) and v2 = (x2,y2,z2), the cross product of v1 and v2 is
denoted v1×v2 and is the vector defined by

v1×v2 = (y1*z2 - z1*y2, z1*x2 - x1*z2, x1*y2 - y1*x2)

If v1 and v2 are non-zero vectors, then v1×v2 is zero if and only if v1 and v2 point in the same
direction or in exactly opposite directions. Assuming v1×v2 is non-zero, then it is perpendicular
both to v1 and to v2 ; furthermore, the vectors v1, v2, v1×v2 follow the right-hand rule (in
a right-handed coordinate system); that is, if you curl the fingers of your right hand from v1
to v2, then your thumb points in the direction of v1×v2. If v1 and v2 are perpendicular unit
vectors, then the cross product v1×v2 is also a unit vector, which is perpendicular both to v1
and to v2.

Finally, I will note that given two points P1 = (x1,y1,z1) and P2 = (x2,y2,z2), the difference
P2−P1 is defined by

P2 − P1 = (x2 − x1, y2 − y1, z2 − z1)

This difference is a vector that can be visualized as an arrow that starts at P1 and ends at P2.

Now, suppose that P1, P2, and P3 are vertices of a polygon. Then the vectors P1−P2 and
P3−P2 lie in the plane of the polygon, and so the cross product

(P3−P2) × (P1−P2)

is a vector that is perpendicular to the polygon.

P1

P2

P3

P3-P2P
1
-P

2

(P3-P2) X (P1-P2)

 Try to visualize this in 3D!

A vector that is perpendicular to

the triangle is obtained by taking

the cross product of P3-P2 and

P1-P2, which are vectors that lie

along two sides of the triangle.

This vector is said to be a normal vector for the polygon. A normal vector of length one is
called a unit normal . Unit normals will be important in lighting calculations, and it will be
useful to be able to calculate a unit normal for a polygon from its vertices.

118 CHAPTER 3. OPENGL 1.1: GEOMETRY

3.5.2 Matrices and Transformations

A matrix is just a two-dimensional array of numbers. A matrix with r rows and c columns is
said to be an r -by-c matrix. If A and B are matrices, and if the number of columns in A is
equal to the number of rows in B, then A and B can be multiplied to give the matrix product
AB. If A is an n-by-m matrix and B is an m-by-k matrix, then AB is an n-by-k matrix. In
particular, two n-by-n matrices can be multiplied to give another n-by-n matrix.

An n-dimensional vector can be thought of an n-by-1 matrix. If A is an n-by-n matrix and
v is a vector in n dimensions, thought of as an n-by-1 matrix, then the product Av is again an
n-dimensional vector. The product of a 3-by-3 matrix A and a 3D vector v = (x,y,z) is often
displayed like this:

a1 a2 a3

b1 b2 b3

c1 c2 c3

x

y

z

=

a1*x + a2*y + a3*z

b1*x + b2*y +b3*z

c1*x +c2*y + c3*z

Note that the i -th coordinate in the product Av is simply the dot product of the i -th row of
the matrix A and the vector v.

Using this definition of the multiplication of a vector by a matrix, a matrix defines a
transformation that can be applied to one vector to yield another vector. Transformations
that are defined in this way are linear transformations, and they are the main object of study
in linear algebra. A linear transformation L has the properties that for two vectors v and w,
L(v+w) = L(v) + L(w), and for a number s, L(sv) = sL(v).

Rotation and scaling are linear transformations, but translation is not a linear transfor-
maton. To include translations, we have to widen our view of transformation to include affine
transformations. An affine transformation can be defined, roughly, as a linear transformation
followed by a translation. Geometrically, an affine transformation is a transformation that
preserves parallel lines; that is, if two lines are parallel, then their images under an affine
transformation will also be parallel lines. For computer graphics, we are interested in affine
transformations in three dimensions. However—by what seems at first to be a very odd trick—
we can narrow our view back to the linear by moving into the fourth dimension.

Note first of all that an affine transformation in three dimensions transforms a vector
(x1,y1,z1) into a vector (x2,y2,z2) given by formulas

x2 = a1*x1 + a2*y1 + a3*z1 + t1

y2 = b1*x1 + b2*y1 + b3*z1 + t2

z2 = c1*x1 + c2*y1 + c3*z1 + t3

These formulas express a linear transformation given by multiplication by the 3-by-3 matrix

a1 a2 a3

b1 b2 b3

c1 c2 c3

followed by translation by t1 in the x direction, t2 in the y direction and t3 in the z direction.
The trick is to replace each three-dimensional vector (x,y,z) with the four-dimensional vector

3.5. SOME LINEAR ALGEBRA 119

(x,y,z,1), adding a “1” as the fourth coordinate. And instead of the 3-by-3 matrix, we use the
4-by-4 matrix

a1 a2 a3 t1

b1 b2 b3 t2

c1 c2 c3 t3

0 0 0 1

If the vector (x1,y1,z1,1) is multiplied by this 4-by-4 matrix, the result is precisely the vector
(x2,y2,z2,1). That is, instead of applying an affine transformation to the 3D vector (x1,y1,z1),
we can apply a linear transformation to the 4D vector (x1,y1,z1,1).

This might seem pointless to you, but nevertheless, that is what is done in OpenGL
and other 3D computer graphics systems: An affine transformation is represented as a 4-
by-4 matrix in which the bottom row is (0,0,0,1), and a three-dimensional vector is changed
into a four dimensional vector by adding a 1 as the final coordinate. The result is that all
the affine transformations that are so important in computer graphics can be implemented as
multiplication of vectors by matrices.

The identity transformation, which leaves vectors unchanged, corresponds to multiplication
by the identity matrix , which has ones along its descending diagonal and zeros elsewhere. The
OpenGL function glLoadIdentity() sets the current matrix to be the 4-by-4 identity matrix. An
OpenGL transformation function, such as glTranslatef (tx,ty,tz), has the effect of multiplying
the current matrix by the 4-by-4 matrix that represents the transformation. Multiplication
is on the right; that is, if M is the current matrix and T is the matrix that represents the
transformation, then the current matrix will be set to the product matrix MT. For the record,
the following illustration shows the identity matrix and the matrices corresponding to various
OpenGL transformation functions:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

cos(d) -sin(d) 0 0

sin(d) cos(d) 0 0

0 0 1 0

0 0 0 1

Identity Matrix glTranslatef(tx,ty,tz) glScalef(sx,sy,sz)

glRotatef(d,0,0,1)

cos(d) sin(d)0 0

-sin(d) cos(d)

1 0

0 0

0 0

0 0

0 1

glRotatef(d,0,1,0)

cos(d) -sin(d)

1 0

sin(d) cos(d)

0 0

0 0

0 0

0 0

0 1

glRotatef(d,1,0,0)

It is even possible to use an arbitrary transformation matrix in OpenGL, using the function
glMultMatrixf (T) or glMultMatrixd(T). The parameter, T, is an array of numbers of type
float or double, representing a transformation matrix. The array is a one-dimensional array of
length 16. The items in the array are the numbers from the transformation matrix, stored in

120 CHAPTER 3. OPENGL 1.1: GEOMETRY

column-major order, that is, the numbers in the fist column, followed by the numbers in the
second column, and so on. These functions multiply the current matrix by the matrix T, on
the right. You could use them, for example, to implement a shear transform, which is not easy
to represent as a sequence of scales, rotations, and translations.

3.5.3 Homogeneous Coordinates

We finish this section with a bit of mathematical detail about the implementation of
transformations. There is one common transformation in computer graphics that is not an
affine transformation: In the case of a perspective projection, the projection transformation is
not affine. In a perspective projection, an object will appear to get smaller as it moves farther
away from the viewer, and that is a property that no affine transformation can express, since
affine transforms preserve parallel lines and parallel lines will seem to converge in the distance
in a perspective projection.

Surprisingly, we can still represent a perspective projection as a 4-by-4 matrix, provided
we are willing to stretch our use of coordinates even further than we have already. We have
already represented 3D vectors by 4D vectors in which the fourth coordinate is 1. We now
allow the fourth coordinate to be anything at all, except for requiring that at least one of
the four coordinates is non-zero. When the fourth coordinate, w, is non-zero, we consider the
coordinates (x,y,z,w) to represent the three-dimensional vector (x/w,y/w,z/w). Note that this
is consistent with our previous usage, since it considers (x,y,z,1) to represent (x,y,z), as before.
When the fourth coordinate is zero, there is no corresponding 3D vector, but it is possible to
think of (x,y,z,0) as representing a 3D “point at infinity” in the direction of (x,y,z).

Coordinates (x,y,z,w) used in this way are referred to as homogeneous coordinates. If
we use homogeneous coordinates, then any 4-by-4 matrix can be used to transform three-
dimensional vectors, including matrices whose bottom row is not (0,0,0,1). Among the
transformations that can be represented in this way is the projection transformation for a
perspective projection. And in fact, this is what OpenGL does internally. It represents
all three-dimensional points and vectors using homogeneous coordinates, and it represents
all transformations as 4-by-4 matrices. You can even specify vertices using homogeneous
coordinates. For example, the command

glVertex4f(x,y,z,w);

with a non-zero value for w, generates the 3D point (x/w,y/w,z/w). Fortunately, you will almost
never have to deal with homogeneous coordinates directly. The only real exception to this is
that homogeneous coordinates are used, surprisingly, when configuring OpenGL lighting, as
we’ll see in the next chapter.

3.6 Using GLUT and JOGL

OpenGL is an API for graphics only, with no support for things like windows or events.
OpenGL depends on external mechanisms to create the drawing surfaces on which it will draw.
Windowing APIs that support OpenGL often do so as one library among many others that are
used to produce a complete application. We will look at two cross-platform APIs that make it
possible to use OpenGL in applications, one for C/C++ and one for Java.

For simple applications written in C or C++, one possible windowing API is GLUT

(OpenGL Utility Toolkit). GLUT is a small API. It is used to create windows that serve
as simple frames for OpenGL drawing surfaces. It has support for handling mouse and

3.6. USING GLUT AND JOGL 121

keyboard events, and it can do basic animation. It does not support controls such as buttons
or input fields, but it does allow for a menu that pops up in response to a mouse action.
The original version of GLUT is no longer actively supported, and a version called freeglut
(http://freeglut.sourceforge.net/) is recommended instead. For example, the version included
in Linux is actually freeglut. For details of the freeglut API, see

http://freeglut.sourceforge.net/docs/api.php

JOGL (Java OpenGL) is a collection of classes that make it possible to use OpenGL in
Java applications. JOGL is integrated into Swing and AWT, the standard Java graphical user
interface APIs. With JOGL, you can create Java GUI components on which you can draw
using OpenGL. These OpenGL components can be used in any Java application, in much the
same way that you would use a Canvas or JPanel as a drawing surface. Like many things Java,
JOGL is immensely complicated. We will use it only in fairly simple applications. JOGL is not
a standard part of Java. It’s home web site is

http://jogamp.org/jogl/www/

This section contains information to get you started using GLUT and JOGL, assuming that
you already know the basics of programming with C and Java. It also briefly discusses glsim.js,
a JavaScript library that I have written to simulate the subset of OpenGL 1.1 that is used in
this book.

3.6.1 Using GLUT

To work with GLUT, you will need a C compiler and copies of the OpenGL and GLUT (or
freeglut) development libraries. I can’t tell you exactly that means on your own computer. On
my computer, which runs Linux Mint, for example, the free C compiler gcc is already available.
To do OpenGL development, I installed several packages, including freeglut3-dev and libgl1-
mesa-dev. (Mesa is a Linux implementation of OpenGL.) If glutprog.c contains a complete C
program that uses GLUT, I can compile it using a command such as

gcc -o glutprog glutprog.c -lGL -lglut

The “-o glutprog” tells the compiler to use “glutprog” as the name of its output file, which
can then be run as a normal executable file; without this option, the executable file would be
named “a.out”. The “-lglut” and “-lGL” options tell the compiler to link the program with
the GLUT and OpenGL libraries. (The character after the “-” is a lower case “L”.) Without
these options, the linker won’t recognize any GLUT or OpenGL functions. If the program also
uses the GLU library, compiling it would require the option “-lGLU, and if it uses the math
library, it would need the option “-lm”. If a program requires additional .c files, they should
be included as well. For example, the sample program glut/color-cube-of-spheres.c depends on
camera.c, and it can be compiled with the Linux gcc compiler using the command:

gcc -o cubes color-cube-of-spheres.c camera.c -lGL -lglut -lGLU -lm

The sample program glut/glut-starter.c can be used as a starting point for writing programs
that use GLUT. While it doesn’t do anything except open a window, the program contains the
framework needed to do OpenGL drawing, including doing animation, responding to mouse
and keyboard events, and setting up a menu. The source code contains comments that tell you
how to use it.

On Windows, you might consider installing the WSL, or Windows Subsystem for Linux,
(https://docs.microsoft.com/en-us/windows/wsl/), which as I write this should soon include
the ability to work with GUI programs. WSL is an official Microsoft system lets you install

122 CHAPTER 3. OPENGL 1.1: GEOMETRY

a version of Linux inside Windows. Another option is the older open source project, Cygwin
(https://cygwin.com/). (Using Cygwin, I installed the packages gcc-core, xinit, xorg-server,
libglut-devel, libGLU-devel, and libGL-devel. After starting the X11 window system with the
startxwin command, I was able to compile and run OpenGL examples from this textbook in a
Cygwin terminal window using the same commands that I would use in Linux.)

For MacOS, the situation is more complicated, because OpenGL has been deprecated in
favor of Metal, Apple’s own proprietary API. However, as I write this, OpenGL can still be
used on MacOS with Apple’s XCode developer tools. The examples from this textbook require
some modification to work with XCode tools, since the OpenGL and GLUT libraries are not
loaded in the same way on Mac as they are on Linux. Modified programs for use on MacOS
can be found in the source folder glut/glut-mac. See the README.txt file in that folder for
more information.

∗ ∗ ∗

The GLUT library makes it easy to write basic OpenGL applications in C. GLUT uses
event-handling functions. You write functions to handle events that occur when the display
needs to be redrawn or when the user clicks the mouse or presses a key on the keyboard.

To use GLUT, you need to include the header file glut.h (or freeglut.h) at the start of any
source code file that uses it, along with the general OpenGL header file, gl.h. The header files
should be installed in a standard location, in a folder named GL. (But note that the folder
name could be different, or omitted entirely.) So, the program usually begins with something
like

#include <GL/gl.h>

#include <GL/glut.h>

On my computer, saying #include <GL/glut.h> actually includes the subset of FreeGLUT
that corresponds to GLUT. To get access to all of FreeGLUT, I would substitute #in-
clude <GL/freeglut.h>. Depending on the features that it uses, a program might need other
header files, such as #include <GL/glu.h> and #include <math.h>.

The program’s main() function must contain some code to initialize GLUT, to create and
open a window, and to set up event handling by registering the functions that should be called
in response to various events. After this setup, it must call a function that runs the GLUT
event-handling loop. That function waits for events and processes them by calling the functions
that have been registered to handle them. The event loop runs until the program ends, which
happens when the user closes the window or when the program calls the standard exit() function.

To set up the event-handling functions, GLUT uses the fact that in C, it is possible to pass a
function name as a parameter to another function. For example, if display() is the function that
should be called to draw the content of the window, then the program would use the command

glutDisplayFunc(display);

to install this function as an event handler for display events. A display event occurs when the
contents of the window need to be redrawn, including when the window is first opened. Note
that display must have been previously defined, as a function with no parameters:

void display() {

.

. // OpenGL drawing code goes here!

.

}

3.6. USING GLUT AND JOGL 123

Keep in mind that it’s not the name of this function that makes it an OpenGL display
function. It has to be set as the display function by calling glutDisplayFunc(display). All
of the GLUT event-handling functions work in a similar way (except many of them do need to
have parameters).

There are a lot of possible event-handling functions, and I will only cover some of them
here. Let’s jump right in and look at a possible main() routine for a GLUT program that uses
most of the common event handlers:

int main(int argc, char** argv) {

glutInit(&argc, argv); // Required initialization!

glutInitDisplayMode(GLUT DOUBLE | GLUT DEPTH);

glutInitWindowSize(500,500); // size of display area, in pixels

glutInitWindowPosition(100,100); // location in screen coordinates

glutCreateWindow("OpenGL Program"); // the parameter is the window title

glutDisplayFunc(display); // called when window needs to be redrawn

glutReshapeFunc(reshape); // called when size of the window changes

glutKeyboardFunc(keyFunc); // called when user types a character

glutSpecialFunc(specialKeyFunc);// called when user presses a special key

glutMouseFunc(mouseFunc); // called for mousedown and mouseup events

glutMotionFunc(mouseDragFunc); // called when mouse is dragged

glutIdleFunc(idleFun); // called when there are no other events

glutMainLoop(); // Run the event loop! This function never returns.

return 0; // (This line will never actually be reached.)

}

The first five lines do some necessary initialization, the next seven lines install event handlers,
and the call to glutMainLoop() runs the GLUT event loop. I will discuss all of the functions
that are used here. The first GLUT function call must be glutInit, with the parameters as
shown. (Note that argc and argv represent command-line arguments for the program. Passing
them to glutInit allows it to process certain command-line arguments that are recognized
by GLUT. I won’t discuss those arguments here.) The functions glutInitWindowSize and
glutInitWindowPosition do the obvious things; size is given in pixels, and window position is
given in terms of pixel coordinates on the computer screen, with (0,0) at the upper left corner
of the screen. The function glutCreateWindow creates the window, but note that nothing can
happen in that window until glutMainLoop is called. Often, an additional, user-defined function
is called in main() to do whatever initialization of global variables and OpenGL state is required
by the program. OpenGL initialization can be done after calling glutCreateWindow and before
calling glutMainLoop. Turning to the other functions used in main(),

glutInitDisplayMode(GLUT DOUBLE | GLUT DEPTH) — Must be called to define some
characteristics of the OpenGL drawing context. The parameter specifies features that you
would like the OpenGL context to have. The features are represented by constants that are
OR’ed together in the parameter. GLUT DEPTH says that a depth buffer should be created;
without it, the depth test won’t work. If you are doing 2D graphics, you wouldn’t include this
option. GLUT DOUBLE asks for double buffering , which means that drawing is actually
done off-screen, and the off-screen copy has to copied to the screen to be seen. The copying is
done by glutSwapBuffers(), which must be called at the end of the display function. (You
can use GLUT SINGLE instead of GLUT DOUBLE to get single buffering ; in that case, you
have to call glFlush() at the end of the display function instead of glutSwapBuffers(). However,
all of the examples in this book use GLUT DOUBLE.)

124 CHAPTER 3. OPENGL 1.1: GEOMETRY

glutDisplayFunc(display) — The display function should contain OpenGL drawing code
that can completely redraw the scene. This is similar to paintComponent() in the Java Swing
API. The display function can have any name, but it must be declared as a void function with
no parameters: void display().

glutReshapeFunc(reshape) — The reshape function is called when the user changes the
size of the window. Its parameters tell the new width and height of the drawing area:

void reshape(int width, int height)

For example, you might use this method to set up the projection transform, if the projection
depends only on the window size. A reshape function is not required, but if one is provided,
it should always set the OpenGL viewport, which is the part of the window that is used for
drawing. Do this by calling

glViewport(0,0,width,height);

The viewport is set automatically if no reshape function is specified.
glutKeyboardFunc(keyFunc) — The keyboard function is called when the user types a

character such as ’b’ or ’A’ or a space. It is not called for special keys such as arrow keys
that do not produce characters when pressed. The keyboard function has a parameter of type
unsigned char which represents the character that was typed. It also has two int parameters
that give the location of the mouse when the key was pressed, in pixel coordinates with (0,0)
at the upper left corner of the display area. So, the definition of the key function must have
the form:

void keyFunc(unsigned char ch, int x, int y)

Whenever you make any changes to the program’s data that require the display to be redrawn,
you should call glutPostRedisplay(). This is similar to calling repaint() in Java. It is better to
call glutPostRedisplay() than to call the display function directly. (I also note that it’s possible
to call OpenGL drawing commands directly in the event-handling functions, but it probably
only makes sense if you are using single buffering; if you do this, call glFlush() to make sure
that the drawing appears on the screen.)

glutSpecialFunc(specialKeyFunc) — The “special” function is called when the user
presses certain special keys, such as an arrow key or the Home key. The parameters are an
integer code for the key that was pressed, plus the mouse position when the key was pressed:

void specialKeyFunc(int key, int x, int y)

GLUT has constants to represent the possible key codes, including GLUT KEY LEFT,
GLUT KEY RIGHT, GLUT KEY UP, and GLUT KEY DOWN for the arrow keys and
GLUT KEY HOME for the Home key. For example, you can check whether the user pressed
the left arrow key by testing if (key == GLUT KEY LEFT).

glutMouseFunc(mouseFunc) — The mouse function is called both when the user presses
and when the user releases a button on the mouse, with a parameter to tell which of these
occurred. The function will generally look like this:

void mouseFunc(int button, int buttonState, int x, int y) {

if (buttonState == GLUT DOWN) {

// handle mousePressed event

}

else { // buttonState is GLUT UP

// handle mouseReleased event

}

}

3.6. USING GLUT AND JOGL 125

The first parameter tells which mouse button was pressed or released; its value is the
constant GLUT LEFT BUTTON for the left, GLUT MIDDLE BUTTON for the middle, and
GLUT RIGHT BUTTON for the right mouse button. The other two parameters tell the
position of the mouse. The mouse position is given in pixel coordinates with (0,0) in the
top left corner of the display area and with y increasing from top to bottom.

glutMotionFunc(mouseDragFunc) — The motion function is called when the user moves
the mouse while dragging, that is, while a mouse button is pressed. After the user presses the
mouse in the OpenGL window, this function will continue to be called even if the mouse moves
outside the window, and the mouse release event will also be sent to the same window. The
function has two parameters to specify the new mouse position:

void mouseDragFunc(int x, int y)

glutIdleFunc(idleFunction) — The idle function is called by the GLUT event loop
whenever there are no events waiting to be processed. The idle function has no parameters. It
is called as often as possible, not at periodic intervals. GLUT also has a timer function, which
schedules some function to be called once, after a specified delay. To set a timer, call

glutTimerFunc(delayInMilliseconds, timerFunction, userSelectedID)

and define timerFunction as

void timerFunction(int timerID) { ...

The parameter to timerFunction when it is called will be the same integer that was passed as
the third parameter to glutTimerFunc. If you want to use glutTimerFunc for animation, then
timerFunction should end with another call to glutTimerFunc.

∗ ∗ ∗

A GLUT window does not have a menu bar, but it is possible to add a hidden popup menu
to the window. The menu will appear in response to a mouse click on the display. You can set
whether it is triggered by the left, middle, or right mouse button.

A menu is created using the function glutCreateMenu(menuHandler), where the parameter
is the name of a function that will be called when the user selects a command from the menu.
The function must be defined with a parameter of type int that identifies the command that
was selected:

void menuHandler(int commandID) { ...

Once the menu has been created, commands are added to the menu by calling the function
glutAddMenuEntry(name,commandID). The first parameter is the string that will appear in
the menu. The second is an int that identifies the command; it is the integer that will be
passed to the menu-handling function when the user selects the command from the menu.

Finally, the function glutAttachMenu(button) attaches the menu to the window. The
parameter specifies which mouse button will trigger the menu. Possible values are
GLUT LEFT BUTTON, GLUT MIDDLE BUTTON, and GLUT RIGHT BUTTON. As far
as I can tell, if a mouse click is used to trigger the popup menu, than the same mouse click will
not also produce a call to the mouse-handler function.

Note that a call to glutAddMenuEntry doesn’t mention the menu, and a call to glutAttach-
Menu doesn’t mention either the menu or the window. When you call glutCreateMenu, the
menu that is created becomes the “current menu” in the GLUT state. When glutAddMenu-
Entry is called, it adds a command to the current menu. When glutAttachMenu is called, it
attaches the current menu to the current window, which was set by a call to glutCreateWindow.

126 CHAPTER 3. OPENGL 1.1: GEOMETRY

All this is consistent with the OpenGL “state machine” philosophy, where functions act by
modifying the current state.

As an example, suppose that we want to let the user set the background color for the display.
We need a function to carry out commands that we will add to the menu. For example, we
might define

function doMenu(int commandID) {

if (commandID == 1)

glClearColor(0,0,0,1); // BLACK

else if (commandID == 2)

glClearColor(1,1,1,1); // WHITE

else if (commandID == 3)

glClearColor(0,0,0.5,1); // DARK BLUE

else if (commandID == 10)

exit(0); // END THE PROGRAM

glutPostRedisplay(); // redraw the display, with the new background color

}

We might have another function to create the menu. This function would be called in main(),
after calling glutCreateWindow :

function createMenu() {

glutCreateMenu(doMenu); // Call doMenu() in response to menu commands.

glutAddMenuEntry("Black Background", 1);

glutAddMenuEntry("White Background", 2);

glutAddMenuEntry("Blue Background", 3);

glutAddMenuEntry("EXIT", 10);

glutAttachMenu(GLUT RIGHT BUTTON); // Show menu on right-click.

}

It’s possible to have submenus in a menu. I won’t discuss the procedure here, but you can
look at the sample program glut/ifs-polyhedron-viewer.c for an example of using submenus.

∗ ∗ ∗

In addition to window and event handling, GLUT includes some functions for drawing basic
3D shapes such as spheres, cones, and regular polyhedra. It has two functions for each shape,
a “solid” version that draws the shape as a solid object, and a wireframe version that draws
something that looks like it’s made of wire mesh. (The wireframe is produced by drawing just
the outlines of the polygons that make up the object.) For example, the function

void glutSolidSphere(double radius, int slices, int stacks)

draws a solid sphere with the given radius, centered at the origin. Remember that this is just an
approximation of a sphere, made up of polygons. For the approximation, the sphere is divided
by lines of longitude, like the slices of an orange, and by lines of latitude, like a stack of disks.
The parameters slices and stacks tell how many subdivisions to use. Typical values are 32 and
16, but the number that you need to get a good approximation for a sphere depends on the size
of the sphere on the screen. The function glutWireframeSphere has the same parameters but
draws only the lines of latitude and longitude. Functions for a cone, a cylinder, and a torus

(doughnut) are similar:

void glutSolidCone(double base, double height,

int slices, int stacks)

void glutSolidTorus(double innerRadius, double outerRadius,

3.6. USING GLUT AND JOGL 127

int slices, int rings)

void glutSolidCylinder(double radius, double height,

int slices, int stacks)

// NOTE: Cylinders are available in FreeGLUT and in Java,

// but not in the original GLUT library.

For a torus, the innerRadius is the size of the doughnut hole. The function

void glutSolidCube(double size)

draws a cube of a specified size. There are functions for the other regular polyhedra
that have no parameters and draw the object at some fixed size: glutSolidTetrahedron(),
glutSolidOctahedron(), glutSolidDodecahedron(), and glutSolidIcosahedron(). There is also
glutSolidTeapot(size) that draws a famous object that is often used as an example. Here’s
what the teapot looks like:

Wireframe versions of all of the shapes are also available. For example, glutWireTeapot(size)
draws a wireframe teapot. Note that GLUT shapes come with normal vectors that are required
for lighting calculations. However, except for the teapot, they do not come with texture
coordinates, which are required for applying textures to objects.

GLUT also includes some limited support for drawing text in an OpenGL drawing context. I
won’t discuss that possibility here. You can check the API documentation if you are interested,
and you can find an example in the sample program glut/color-cube-of-spheres.c.

3.6.2 Using JOGL

JOGL is a framework for using OpenGL in Java programs. It is a large and complex API that
supports all versions of OpenGL, but it is fairly easy to use for basic applications. You should
use JOGL 2.4 or later. Version 2.4.0 is still under development, but I have used it to run the
sample programs from this textbook without any problems. The previous version, Jogl 2.3.2,
has some problems with modern versions of Java, but it might work for you.

The sample program jogl/JoglStarter.java can be used as a starting point for writing
OpenGL programs using JOGL. While it doesn’t do anything except open a window, the
program contains the framework needed to do OpenGL drawing, including doing animation,
responding to mouse and keyboard events, and setting up a menu. The source code contains
comments that tell you how to use it.

To use JOGL, you will need two .jar files containing the Java classes for JOGL: jogl-all.jar
and gluegen-rt.jar. In addition, you will need two native library files. A native library is a

128 CHAPTER 3. OPENGL 1.1: GEOMETRY

collection of routines that can be called from Java but are not written in Java. Routines in a
native library will work on only one kind of computer; you need a different native library for
each type of computer on which your program is to be used. The native libraries for JOGL
are stored in additional .jar files, which are available in several versions for different computers.
For example, for 64-bit Linux on Intel or AMD CPUs, you need jogl-all-natives-linux-amd64.jar
and gluegen-rt-natives-linux-amd64.jar. It is unfortunate that there are different versions for
different platforms, since many people don’t know exactly which one they are using. However,
if you are in doubt, you can get more than one version; JOGL will figure out which one to use.

JOGL software can be found at https://jogamp.org/. You can download the jar files from
the most recent release, which can be found at the very end of the list at

https://jogamp.org/deployment/archive/rc/

I downloaded the files from the release v2.4.0-rc-20210111. Click on the release name, then
click on the jar/ link to see the full list of jar files. Find and download jogl-all.jar and gluegen-
rt.jar and the corresponding native library files. I have also made jogl-all.jar and gluegen-rt.jar
available on my own web site, along with the native libraries for some of the most common
platforms, at

http://math.hws.edu/eck/cs424/jogl 2 4 support/

JOGL is open-source, and the files are freely redistributable, according to their license.

To do JOGL development, you should create a directory somewhere on your computer to
hold the jar files. Place the two JOGL jar files in that directory, along with the two native
library jar files for your platform. (Having extra native library jar files doesn’t hurt, as long as
you have the ones that you need.)

It is possible to do JOGL development on the command line. You have to tell the javac
command where to find the two JOGL jar files. You do that in the classpath (“-cp”) option to
the javac command. For example, if you are working in Linux or MacOS, and if the jar files
happen to be in the same directory where you are working, you might say:

javac -cp jogl-all.jar:gluegen-rt.jar:. MyOpenGLProg.java

It’s similar for Windows, except that the classpath uses a “;” instead of a “:” to separate the
items in the list:

javac -cp jogl-all.jar;gluegen-rt.jar;. MyOpenGLProg.java

There is an essential period at the end of the classpath, which makes it possible for Java to find
.java files in the current directory. If the jar files are not in the current directory, you can use
full path names or relative path names to the files. For example,

javac -cp ../jogl/jogl-all.jar:../jogl/gluegen-rt.jar:. MyOpenGLProg.java

Running a program with the java command is exactly similar. For example:

java -cp jogl-all.jar:gluegen-rt.jar:. MyOpenGLProg

Note that you don’t have to explicitly reference the native library jar files. They just have to
be in the same directory with the JOGL jar files.

∗ ∗ ∗

I do most of my Java development using the Eclipse IDE (http://eclipse.org). To do
development with JOGL in Eclipse, you will have to configure Eclipse with information about
the jar files. To do that, start up Eclipse. You want to create a “User Library” to contain the jar
files: Open the Eclipse Preferences window, and select “Java” / “Build Path” / “User Libraries”
on the left. Click the “New” button on the right. Enter “JOGL” (or any name you like) as

3.6. USING GLUT AND JOGL 129

the name of the user library. Make sure that the new user library is selected in the list of
libraries, then click the “Add External Jars” button. In the file selection box, navigate to the
directory that contains the JOGL jar files, and select the two jar files that are needed for JOGL,
jogl-all.jar and gluegen-rt.jar. (Again, you do not need to add the native libraries; they just
need to be in the same directory as the JOGL jar files.) Click “Open.” The selected jars will
be added to the user library. (You could also add them one at a time, if you don’t know how
to select multiple files.) It should look something like this:

Click “OK.” The user library has been created. You will only have to do this once, and then
you can use it in all of your JOGL projects.

Now, to use OpenGL in a project, create a new Java project as usual in Eclipse. (If you are
asked whether you want to create a module-info.java file for the project, say “Don’t Create”.
Sample programs for this textbook do not use Java modules.) Right-click the new project in
the Project Explorer view, and select “Build Path” / “Configure Build Path” from the menu.
You will see the project Properties dialog, with “Java Build Path” selected on the left. (You
can also access this through the “Properties” command in the “Project” menu.) Select the
“Libraries” tab at the top of the window, and then click on “Class Path” in the “Libraries”
tab to select it. Click the “Add Library” button, on the right. In the popup window, select
“User Library” and click “Next.” In the next window, select your JOGL User Library and click
“Finish.” Finally, click “Apply and Close” in the main Properties window. Your project should
now be set up to do JOGL development. You should see the JOGL User Library listed as part
of the project in the Project Explorer. Any time you want to start a new JOGL project, you
can go through the same setup to add the JOGL User Library to the build path in the project.

∗ ∗ ∗

With all that setup out of the way, it’s time to talk about actually writing OpenGL programs
with Java. With JOGL, we don’t have to talk about mouse and keyboard handling or animation,
since that can be done in the same way as in any Java Swing program. You will only need to
know about a few classes from the JOGL API.

130 CHAPTER 3. OPENGL 1.1: GEOMETRY

First, you need a GUI component on which you can draw using OpenGL. For that, you can
use GLJPanel, which is a subclass of JPanel. (GLJPanel is for use in programs based on the
Swing API; an alternative is GLCanvas, which is a subclass of the older AWT class Canvas.)
The class is defined in the package com.jogamp.opengl.awt. All of the other classes that we will
need for basic OpenGL programming are in the package com.jogamp.opengl.

JOGL uses Java’s event framework to manage OpenGL drawing contexts, and it defines
a custom event listener interface, GLEventListener, to manage OpenGL events. To draw on
a GLJPanel with OpenGL, you need to create an object that implements the GLEventListener

interface, and register that listener with your GLJPanel. The GLEventListener interface defines
the following methods:

public void init(GLAutoDrawable drawable)

public void display(GLAutoDrawable drawable)

public void dispose(GLAutoDrawable drawable)

public void reshape(GLAutoDrawable drawable,

int x, int y, int width, int height)

The drawable parameter in these methods tells which OpenGL drawing surface is involved. It
will be a reference to the GLJPanel. (GLAutoDrawable is an interface that is implemented by
GLJPanel and other OpenGL drawing surfaces.) The init() method is a place to do OpenGL
initialization. (According to the documentation, it can actually be called several times, if the
OpenGL context needs to be recreated for some reason. So init() should not be used to do
initialization that shouldn’t be done more than once.) The dispose() method will be called to
give you a chance to do any cleanup before the OpenGL drawing context is destroyed. The
reshape() method is called when the window first opens and whenever the size of the GLJPanel

changes. OpenGL’s glViewport() function is called automatically before reshape() is called, so
you won’t need to do it yourself. Usually, you won’t need to write any code in dispose() or
reshape(), but they have to be there to satisfy the definition of the GLEventListener interface.

The display() method is where the actual drawing is done and where you will do most of
your work. It should ordinarily clear the drawing area and completely redraw the scene. Take
a minute to study an outline for a minimal JOGL program. It creates a GLJPanel which also
serves as the GLEventListener :

import com.jogamp.opengl.*;

import com.jogamp.opengl.awt.GLJPanel;

import java.awt.Dimension;

import javax.swing.JFrame;

public class JOGLProgram extends GLJPanel implements GLEventListener {

public static void main(String[] args) {

JFrame window = new JFrame("JOGL Program");

JOGLProgram panel = new JOGLProgram();

window.setContentPane(panel);

window.pack();

window.setLocation(50,50);

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

window.setVisible(true);

}

public JOGLProgram() {

3.6. USING GLUT AND JOGL 131

setPreferredSize(new Dimension(500,500));

addGLEventListener(this);

}

// --------------- Methods of the GLEventListener interface -----------

public void init(GLAutoDrawable drawable) {

// called when the panel is created

GL2 gl = drawable.getGL().getGL2();

// Add initialization code here!

}

public void display(GLAutoDrawable drawable) {

// called when the panel needs to be drawn

GL2 gl = drawable.getGL().getGL2();

// Add drawing code here!

}

public void reshape(GLAutoDrawable drawable,

int x, int y, int width, int height) {

// called when user resizes the window

}

public void dispose(GLAutoDrawable drawable) {

// called when the panel is being disposed

}

}

∗ ∗ ∗

At this point, the only other thing you need to know is how to use OpenGL functions in the
program. In JOGL, the OpenGL 1.1 functions are collected into an object of type GL2. (There
are different classes for different versions of OpenGL; GL2 contains OpenGL 1.1 functionality,
along with later versions that are compatible with 1.1.) An object of type GL2 is an OpenGL
graphics context, in the same way that an object of type Graphics2D is a graphics context for
ordinary Java 2D drawing. The statement

GL2 gl = drawable.getGL().getGL2();

in the above program obtains the drawing context for the GLAutoDrawable, that is, for the
GLJPanel in that program. The name of the variable could, of course, be anything, but gl or
gl2 is conventional.

For the most part, using OpenGL functions in JOGL is the same as in C, except that
the functions are now methods in the object gl. For example, a call to glClearColor(r,g,b,a)
becomes

gl.glClearColor(r,g,b,a);

The redundant “gl.gl” is a little annoying, but you get used to it. OpenGL constants such as
GL TRIANGLES are static members of GL2, so that, for example, GL TRIANGLES becomes
GL2.GL TRIANGLES in JOGL. Parameter lists for OpenGL functions are the same as in
the C API in most cases. One exception is for functions such as glVertex3fv() that take an
array/pointer parameter in C. In JOGL, the parameter becomes an ordinary Java array, and
an extra integer parameter is added to give the position of the data in the array. Here, for
example, is how one might draw a triangle in JOGL, with all the vertex coordinates in one
array:

132 CHAPTER 3. OPENGL 1.1: GEOMETRY

float[] coords = { 0,0.5F, -0.5F,-0.5F, 0.5F,-0.5F };

gl.glBegin(GL2.GL TRIANGLES);

gl.glVertex2fv(coords, 0); // first vertex data starts at index 0

gl.glVertex2fv(coords, 2); // second vertex data starts at index 2

gl.glVertex2fv(coords, 4); // third vertex data starts at index 4

gl.glEnd();

The biggest change in the JOGL API is the use of nio buffers instead of arrays in functions
such as glVertexPointer. This is discussed in Subsection 3.4.3. We will see in Subsection 4.3.9
that texture images also get special treatment in JOGL.

∗ ∗ ∗

The JOGL API includes a class named GLUT that makes GLUT’s shape-drawing functions
available in Java. (Since you don’t need GLUT’s window or event functions in Java, only the
shape functions are included.) Class GLUT is defined in the package com.jogamp.opengl.util.gl2.
To draw shapes using this class, you need to create an object of type GLUT. It’s only necessary
to make one of these for use in a program:

GLUT glut = new GLUT();

The methods in this object include all the shape-drawing functions from the GLUT C API,
with the same names and parameters. For example:

glut.glutSolidSphere(2, 32, 16);

glut.glutWireTeapot(5);

glut.glutSolidIcosahedron();

(I don’t know why these are instance methods in an object rather than static methods in a
class; logically, there is no need for the object.)

The GLU library is available through the class com.jogamp.opengl.glu.GLU, and it works
similarly to GLUT. That is, you have to create an object of type GLU, and the GLU functions
will be available as methods in that object. We have encountered GLU only for the functions
gluLookAt and gluPerspective, which are discussed in Section 3.3. For example,

GLU glu = new GLU();

glu.gluLookAt(5,15,7, 0,0,0, 0,1,0);

3.6.3 About glsim.js

The JavaScript library glsim.js was written to accompany and support this textbook. It
implements the subset of OpenGL 1.1 that is discussed in Chapter 3 and Chapter 4, except for
display lists (Subsection 3.4.4). It is used in the demos that appear in the on-line versions of
those chapters. Many of the sample programs that are discussed in those chapters are available
in JavaScript versions that use glsim.js.

If you would like to experiment with OpenGL 1.1, but don’t want to go through the trouble
of setting up a C or Java environment that supports OpenGL programming, you can consider
writing your programs as web pages using glsim.js. Note that glsim is meant for experimentation
and practice only, not for serious applications.

The OpenGL API that is implemented by glsim.js is essentially the same as the C API,
although some of the details of semantics are different. Of course the techniques for creating
a drawing surface and an OpenGL drawing context are specific to JavaScript and differ from
those used in GLUT or JOGL.

3.6. USING GLUT AND JOGL 133

To use glsim.js, you need to create an HTML document with a <canvas> element to serve as
the drawing surface. The HTML file has to import the script; if glsim.js is in the same directory
as the HTML file, you can do that with

<script src="glsim.js"></script>

To create the OpenGL drawing context, use the JavaScript command

glsimUse(canvas);

where canvas is either a string giving the id of the <canvas> element or is the JavaScript DOM
object corresponding to the <canvas> element. Once you have created the drawing context in
this way, any OpenGL commands that you give will apply to the canvas. To run the program,
you just need to open the HTML document in a web browser that supports WebGL 1.0.

The easiest way to get started programming is to modify a program that already exists. The
sample program glsim/first-triangle.html, from Subsection 3.1.2 is a very minimal example of
using glsim.js. The sample web page glsim/glsim-starter.html can be used as a starting point for
writing longer programs that use glsim.js. It provides a framework for doing OpenGL drawing,
with support for animation and mouse and keyboard events. The code contains comments that
tell you how to use it. Some documentation for the glsim.js library can be found in glsim/glsim-
doc.html. All of these files are part of the web site for this textbook and can be found in the
web site download in a folder named glsim inside the source folder.

134 CHAPTER 3. OPENGL 1.1: GEOMETRY

Chapter 4

OpenGL 1.1: Light and Material

One of the goals of computer graphics is physical realism, that is, making images that
look like they could be photographs of reality. This is not the only goal. For example, for
scientific visualization, the goal is to use computer graphics to present information accurately
and clearly. Artists can use computer graphics to create abstract rather than realistic art.
However, realism is a major goal of some of the most visible uses of computer graphics, such as
video games, movies, and advertising.

One important aspect of physical realism is lighting: the play of light and shadow, the
way that light reflects from different materials, the way it can bend or be diffracted as it passes
through translucent objects. The techniques that are used to produce the most realistic graphics
can take all these factors and more into account.

However, another goal of computer graphics is speed. OpenGL, in particular, was designed
for real-time graphics, where the time that is available for rendering an image is a fraction
of a second. For an animated movie, it’s OK if it takes hours to render each frame. But a
video game is expected to render sixty frames every second. Even with the incredible speed of
modern computer graphics hardware, compromises are necessary to get that speed. And thirty
years ago, when OpenGL was still new, the compromises were a lot bigger

In this chapter, we look at light and material in OpenGL 1.1. You will learn how to configure
light sources and how to assign material properties to objects. Material properties determine
how the objects interact with light. And you will learn how to apply an image to a surface as
a texture. The support for light, material, and texture in OpenGL 1.1 is relatively crude and
incomplete, by today’s standards. But the concepts that it uses still serve as the foundation
for modern real-time graphics and, to a significant extent, even for the most realistic computer
graphics.

4.1 Introduction to Lighting

Lighting is one of the most important considerations for realistic 3D graphics. The goal is
to simulate light sources and the way that the light that they emit interacts with objects in the
scene. Lighting calculations are disabled by default in OpenGL. This means that when OpenGL
applies color to a vertex, it simply uses the current color value as set by the one of the functions
glColor*. In order to get OpenGL to do lighting calculations, you need to enable lighting by
calling glEnable(GL LIGHTING). If that’s all you do, you will find that your objects are all
completely black. If you want to see them, you have to turn on some lights.

The properties of a surface that determine how it interacts light are referred to as the

135

136 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

material of the surface. A surface can have several different material properties. Before we
study the OpenGL API for light and material, there are a few general ideas about light and
material properties that you need to understand. Those ideas are introduced in this section.
We postpone discussion of how lighting is actually done in OpenGL 1.1 until the next section.

4.1.1 Light and Material

When light strikes a surface, some of it will be reflected. Exactly how it reflects depends in a
complicated way on the nature of the surface, what I am calling the material properties of the
surface. In OpenGL 1.1, the complexity is approximated—very crudely—by two general types
of reflection, specular reflection and diffuse reflection . These two types of reflection are
important in other 3D graphics systems as well. (But see Section 8.2 for a more modern view
of materials.)

Viewer
Incoming

rays of light

Viewer sees a

re6ection at

just one point

Viewer
Incoming

rays of light

L789: ;<om all

points on the

surface reaches

the viewer.

=>?@ABFG IeJection KMPAu? IeJection

In perfect specular (“mirror-like”) reflection, an incoming ray of light is reflected from the
surface intact. The reflected ray makes the same angle with the surface as the incoming ray. A
viewer can see the reflected ray only if the viewer is in exactly the right position, somewhere
along the path of the reflected ray. Even if the entire surface is illuminated by the light source,
the viewer will only see the reflection of the light source at those points on the surface where
the geometry is right. Such reflections are referred to as specular highlights. In practice, we
think of a ray of light as being reflected not as a single perfect ray, but as a cone of light, which
can be more or less narrow.

QRUVXYZ[\e]ection ^_`U

Viewer at center of cone

saas bcdebcl refedxeghi
Incoming

ray of light

Viewer farther from center

sees less intense refedxeghi

Specular reflection from a very shiny surface produces very narrow cones of reflected light;
specular highlights on such a material are small and sharp. A duller surface will produce wider
cones of reflected light and bigger, fuzzier specular highlights. In OpenGL, the material property
that determines the size and sharpness of specular highlights is called shininess. Shininess in
OpenGL is a number in the range 0 to 128. As the number increases, specular highlights get
smaller. This image shows eight spheres that differ only in the value of the shininess material
property:

4.1. INTRODUCTION TO LIGHTING 137

For the sphere on the left, the shininess is 0, which leads to an ugly specular “highlight” that
almost covers an entire hemisphere. Going from left to right, the shininess increases by 16 from
one sphere to the next.

In pure diffuse reflection, an incoming ray of light is scattered in all directions equally. A
viewer would see reflected light from all points on the surface. If the incoming light arrives in
parallel rays that evenly illuminate the surface, then the surface would appear to the viewer to
be evenly illuminated. (If different rays strike the surface at different angles, as they would if
they come from a nearby lamp or if the surface is curved, then the amount of illumination at
a point depends on the angle at which the ray hits the surface at that point, but not on the
angle of the line from that point to the user.)

When light strikes a surface, some of the light can be absorbed, some can be reflected
diffusely, and some can be reflected specularly. The amount of reflection can be different for
different wavelengths. The degree to which a material reflects light of various wavelengths is
what constitutes the color of the material. We now see that a material can have two different
colors—a diffuse color that tells how the material reflects light diffusely, and a specular color

that tells how it reflects light specularly. The diffuse color is the basic color of the object. The
specular color determines the color of specular highlights. The diffuse and specular colors can
be the same; for example, this is often true for metallic surfaces. Or they can be different; for
example, a plastic surface will often have white specular highlights no matter what the diffuse
color.

(The demo c4/materials-demo.html in the on-line version of this section lets the user
experiment with the material properties that we have discussed so far.)

∗ ∗ ∗

OpenGL goes even further. In fact, there are two more colors associated with a material.
The third color is the ambient color of the material, which tells how the surface reflects
ambient light . Ambient light refers to a general level of illumination that does not come
directly from a light source. It consists of light that has been reflected and re-reflected so many
times that it is no longer coming from any particular direction. Ambient light is why shadows
are not absolutely black. In fact, ambient light is only a crude approximation for the reality of
multiply reflected light, but it is better than ignoring multiple reflections entirely. The ambient
color of a material determines how it will reflect various wavelengths of ambient light. Ambient
color is generally set to be the same as the diffuse color.

The fourth color associated with a material is an emission color , which is not really a
color in the same sense as the first three color properties. That is, it has nothing to do with
how the surface reflects light. The emission color is color that does not come from any external
source, and therefore seems to be emitted by the material itself. This does not mean that the
object is giving off light that will illuminate other objects, but it does mean that the object
can be seen even if there is no source of light (not even ambient light). In the presence of light,
the object will be brighter than can be accounted for by the light that illuminates it, and in
that sense it appears to glow. The emission color is usually black; that is, the object has no
emission at all.

Each of the four material color properties is specified in terms of three numbers giving

138 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

the RGB (red, green, and blue) components of the color. Real light can contain an infinite
number of different wavelengths. An RGB color is made up of just three components, but
the nature of human color vision makes this a pretty good approximation for most purposes.
(See Subsection 2.1.4.) Material colors can also have alpha components, but the only alpha
component that is ever used in OpenGL is the one for the diffuse material color.

In the case of the red, blue, and green components of the ambient, diffuse, or specular
color, the term “color” really means reflectivity. That is, the red component of a color gives
the proportion of red light hitting the surface that is reflected by that surface, and similarly
for green and blue. There are three different types of reflective color because there are three
different types of light in OpenGL, and a material can have a different reflectivity for each type
of light.

4.1.2 Light Properties

Leaving aside ambient light, the light in an environment comes from a light source such as a
lamp or the sun. In fact, a lamp and the sun are examples of two essentially different kinds
of light source: a point light and a directional light . A point light source is located at a
point in 3D space, and it emits light in all directions from that point. For a directional light,
all the light comes from the same direction, so that the rays of light are parallel. The sun is
considered to be a directional light source since it is so far away that light rays from the sun
are essentially parallel when they get to the Earth .

POINT LIGHT

emits light in

all directions.

DIRECTIONAL LIGHT

has parallel light rays, all

from the same direction.

A light can have color. In fact, in OpenGL, each light source has three colors: an ambient
color, a diffuse color, and a specular color. Just as the color of a material is more properly
referred to as reflectivity, color of a light is more properly referred to as intensity or energy.
More exactly, color refers to how the light’s energy is distributed among different wavelengths.
Real light can contain an infinite number of different wavelengths; when the wavelengths are
separated, you get a spectrum or rainbow containing a continuum of colors. Light as it is
usually modeled on a computer contains only the three basic colors, red, green, and blue. So,
just like material color, light color is specified by giving three numbers representing the red,
green, and blue intensities of the light.

The diffuse intensity of a light is the aspect of the light that interacts with diffuse material
color, and the specular intensity of a light is what interacts with specular material color. It is
common for the diffuse and specular light intensities to be the same.

The ambient intensity of a light works a little differently. Recall that ambient light is light
that is not directly traceable to any light source. Still, it has to come from somewhere and
we can imagine that turning on a light should increase the general level of ambient light in
the environment. The ambient intensity of a light in OpenGL is added to the general level of
ambient light. (There can also be global ambient light, which is not associated with any of the

4.1. INTRODUCTION TO LIGHTING 139

light sources in the scene.) Ambient light interacts with the ambient color of a material, and
this interaction has no dependence on the position of the light sources or viewer. So, a light
doesn’t have to shine on an object for the object’s ambient color to be affected by the light
source; the light source just has to be turned on.

I should emphasize again that this is all just an approximation, and in this case not one that
has a basis in the physics of the real world. Real light sources do not have separate ambient,
diffuse, and specular colors, and many computer graphics systems model light sources using
just one color.

4.1.3 Normal Vectors

The visual effect of a light shining on a surface depends on the properties of the surface and
of the light. But it also depends to a great extent on the angle at which the light strikes the
surface. The angle is essential to specular reflection and also affects diffuse reflection. That’s
why a curved, lit surface looks different at different points, even if its surface is a uniform color.
To calculate this angle, OpenGL needs to know the direction in which the surface is facing.
That direction is specified by a vector that is perpendicular to the surface. Another word for
“perpendicular” is “normal,” and a non-zero vector that is perpendicular to a surface at a given
point is called a normal vector to that surface. When used in lighting calculations, a normal
vector must have length equal to one. A normal vector of length one is called a unit normal .
For proper lighting calculations in OpenGL, a unit normal must be specified for each vertex.
However, given any normal vector, it is possible to calculate a unit normal from it by dividing
the vector by its length. (See Section 3.5 for a discussion of vectors and their lengths.)

Since a surface can be curved, it can face different directions at different points. So, a
normal vector is associated with a particular point on a surface. In OpenGL, normal vectors
are actually assigned only to the vertices of a primitive. The normal vectors at the vertices of
a primitive are used to do lighting calculations for the entire primitive.

Note in particular that you can assign different normal vectors at each vertex of a polygon.
Now, you might be asking yourself, “Don’t all the normal vectors to a polygon point in the
same direction?” After all, a polygon is flat; the perpendicular direction to the polygon doesn’t
change from point to point. This is true, and if your objective is to display a polyhedral object
whose sides are flat polygons, then in fact, all the normals of each of those polygons should
point in the same direction. On the other hand, polyhedra are often used to approximate curved
surfaces such as spheres. If your real objective is to make something that looks like a curved
surface, then you want to use normal vectors that are perpendicular to the actual surface, not
to the polyhedron that approximates it. Take a look at this example:

140 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

The two objects in this picture are made up of bands of rectangles. The two objects have exactly
the same geometry, yet they look quite different. This is because different normal vectors are
used in each case. For the top object, the band of rectangles is supposed to approximate a
smooth surface. The vertices of the rectangles are points on that surface, and I really didn’t want
to see the rectangles at all—I wanted to see the curved surface, or at least a good approximation.
So for the top object, when I specified the normal vector at each of the vertices, I used a vector
that is perpendicular to the surface rather than one perpendicular to the rectangle. For the
object on the bottom, on the other hand, I was thinking of an object that really is a band
of rectangles, and I used normal vectors that were actually perpendicular to the rectangles.
Here’s a two-dimensional illustration that shows the normal vectors that were used for the two
pictures:

The thick blue lines represent the rectangles, as seen edge-on from above. The arrows represent
the normal vectors. Each rectangle has two normals, one at each endpoint. Each vertex is part
of two rectangles, and so two normal vectors are specified at each vertex.

In the bottom half of the illustration, two rectangles that meet at a point have different
normal vectors at that point. The normal vectors for a rectangle are actually perpendicular
to the rectangle. There is an abrupt change in direction as you move from one rectangle to
the next, so where one rectangle meets the next, the normal vectors to the two rectangles
are different. The visual effect on the rendered image is an abrupt change in shading that is
perceived as a corner or edge between the two rectangles.

In the top half, on the other hand, the vectors are perpendicular to a curved surface that
passes through the endpoints of the rectangles. When two rectangles share a vertex, they also
share the same normal at that vertex. Visually, this eliminates the abrupt change in shading,
resulting in something that looks more like a smoothly curving surface.

The two ways of assigning normal vectors are called flat shading and smooth shading .
Flat shading makes a surface look like it is made of flat sides or facets. Smooth shading makes
it look more like a smooth surface. The on-line demo c4/smooth-vs-flat.html can help you to
understand the difference. It shows a polygonal mesh being used to approximate a sphere, with
your choice of smooth or flat shading.

The upshot of all this is that you get to make up whatever normal vectors suit your purpose.
A normal vector at a vertex is whatever you say it is, and it does not have to be literally
perpendicular to the polygon. The normal vector that you choose should depend on the object
that you are trying to model.

There is one other issue in choosing normal vectors: There are always two possible unit
normal vectors at a point on a surface, pointing in opposite directions. A polygon in 3D has

4.1. INTRODUCTION TO LIGHTING 141

two faces, facing in opposite directions. OpenGL considers one of these to be the front face
and the other to be the back face. OpenGL tells them apart by the order in which the vertices
are specified. (See Subsection 3.4.1.) The default rule is that the order of the vertices is
counterclockwise when looking at the front face and is clockwise when looking at the back face.
When the polygon is drawn on the screen, this rule lets OpenGL tell whether it is the front
face or the back face that is being shown. When specifying a normal vector for the polygon,
the vector should point out of the front face of the polygon. This is another example of the
right-hand rule. If you curl the fingers of your right hand in the direction in which the vertices of
the polygon were specified, then the normal vector should point in the direction of your thumb.
Note that when you are looking at the front face of a polygon, the normal vector should be
pointing towards you. If you are looking at the back face, the normal vector should be pointing
away from you.

It can be a difficult problem to come up with the correct normal vectors for an object.
Complex geometric models often come with the necessary normal vectors included. This is
true, for example, for the solid shapes drawn by the GLUT library.

4.1.4 The OpenGL 1.1 Lighting Equation

What does it actually mean to say that OpenGL performs “lighting calculations”? The goal of
the calculation is to produce a color, (r,g,b,a), for a point on a surface. In OpenGL 1.1, lighting
calculations are actually done only at the vertices of a primitive. After the color of each vertex
has been computed, colors for interior points of the primitive are obtained by interpolating the
vertex colors.

The alpha component of the vertex color, a, is easy: It’s simply the alpha component of the
diffuse material color at that vertex. The calculation of r, g, and b is fairly complex and rather
mathematical, and you don’t necessarily need to understand it. But here is a short description
of how it’s done. . .

Ignoring alpha components, let’s assume that the ambient, diffuse, specular, and emission
colors of the material have RGB components (mar,mag,mab), (mdr,mdg,mdb), (msr,msg,msb),
and (mer,meg,meb), respectively. Suppose that the global ambient intensity, which represents
ambient light that is not associated with any light source in the environment, is (gar,gag,gab).
There can be several point and directional light sources, which we refer to as light number 0,
light number 1, light number 2, and so on. With this setup, the red component of the vertex
color will be:

r = mer + gar*mar + I0,r + I1,r + I2,r + ...

where I0,r is the red component of the contribution to the color that comes from light number
0; I1,r is the contribution from light number 1; and so on. A similar equation holds for the green
and blue components of the color. This equation says that the emission color, mer, is simply
added to any other contributions to the color. And the contribution of global ambient light is
obtained by multiplying the global ambient intensity, gar, by the material ambient color, mar.
This is the mathematical way of saying that the material ambient color is the fraction of the
ambient light that is reflected by the surface.

The terms I0,r, I1,r, and so on, represent contributions to the final color from the various
light sources in the environment. The contributions from the light sources are complicated.
Consider just one of the light sources. Note, first of all, that if a light source is disabled (that
is, if it is turned off), then the contribution from that light source is zero. For an enabled light
source, we have to look at the geometry as well as the colors:

142 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

Light Source

Viewer

Surface

N

L R

j

In this illustration, N is the normal vector at the point whose color we want to compute. L is
a vector that points back along the direction from which the light arrives at the surface. V is
a vector that points in the direction of the viewer. And R is the direction of the reflected ray,
that is, the direction in which a light ray from the source would be reflected specularly when
it strikes the surface at the point in question. The angle between N and L is the same as the
angle between N and R; this is a basic fact about the physics of light. All of the vectors are
unit vectors, with length 1. Recall that for unit vectors A and B, the inner product A · B is
equal to the cosine of the angle between the two vectors. Inner products occur at several points
in the lighting equation, as the way of accounting for the angles between various vectors.

Now, let’s say that the light has ambient, diffuse, and specular color components (lar,lag,lab),
(ldr,ldg,ldb), and (lsr,lsg,lsb). Also, let mh be the value of the shininess property of the material.
Then, assuming that the light is enabled, the contribution of this light source to the red
component of the vertex color can be computed as

Ir = lar*mar + f*(ldr*mdr*(L·N) + lsr*msr*max(0,V·R)
mh)

with similar equations for the green and blue components. The first term, lar*mar accounts
for the contribution of the ambient light from this light source to the color of the surface. This
term is added to the color whether or not the surface is facing the light.

The value of f is 0 if the surface is facing away from the light and is 1 if the surface faces
the light; that is, it accounts for the fact that the light only illuminates one side of the surface.
To test whether f is 0 or 1, we can check whether L·N is less than 0. This dot product is the
cosine of the angle between L and N ; it is less than 0 when the angle is greater than 90 degrees,
which would mean that the normal vector is on the opposite side of the surface from the light.
When f is zero, there is no diffuse or specular contribution from the light to the color of the
vertex.

The diffuse component of the color, before adjustment by f, is given by ldr*mdr*(L·N).
This represents the diffuse intensity of the light times the diffuse reflectivity of the material,
multiplied by the cosine of the angle between L and N. The angle is involved because for a
larger angle, the same amount of energy from the light is spread out over a greater area:

4.1. INTRODUCTION TO LIGHTING 143

normal vectors

The amount of light

energy that hits each

klmnop mqrt vw n kurface

depends on the angle

at which the light hits

the surface. For a

bigger angle, the same

light energy is spread

out over a larger area.

The direction that a

surface is facing is

expressed by its normal

vector, a vector that is

perpendicular to the

surface.

As the angle increases from 0 to 90 degrees, the cosine of the angle decreases from 1 to 0, so
the larger the angle, the smaller the value of ldr*mdr*(L·N) and the smaller the contribution
of diffuse illumination to the color.

For the specular component, recall that a light ray is reflected specularly as a cone of light.
The reflection vector, R, is at the center of the cone. The closer the viewer is to the center of the
cone, the more intense the specular reflection. The distance of the viewer from the center of the
cone depends on the angle between V and R, which appears in the equation as the dot product
V·R. Mathematically, the specular contribution to the color is given by lsr*msr*max(0,V·R)mh.
Taking the maximum of 0 and V·R ensures that the specular contribution is zero if the angle
between V and R is greater than 90 degrees. Assuming that is not the case, max(0,V·R) is
equal to V·R. Note that this dot product is raised to the exponent mh, which is the material’s
shininess property. When mh is 0, (V·R)mh is 1, and there is no dependence on the angle; in
that case, the result is the sort of huge and undesirable specular highlight that we have seen for
shininess equal to zero. For positive values of shininess, the specular contribution is maximal
when the angle between V and R is zero, and it decreases as the angle increases. The larger
the shininess value, the faster the rate of decrease. The result is that larger shininess values
give smaller, sharper specular highlights.

Remember that the same calculation is repeated for every enabled light and that the results
are combined to give the final vertex color. It’s easy, especially when using several lights, to
end up with color components larger than one. In the end, before the color is used to color a
pixel on the screen, the color components must be clamped to the range zero to one. Values
greater than one are replaced by one. This makes it easy to produce ugly pictures in which
large areas are a uniform white because all the color values in those areas exceeded one. All
the information that was supposed to be conveyed by the lighting has been lost. The effect
is similar to an over-exposed photograph. It can take some work to find appropriate lighting
levels to avoid this kind of over-exposure.

(My discussion of lighting in this section leaves out some factors. The equation as presented
doesn’t take into account the fact that the effect of a point light can depend on the distance to
the light, and it doesn’t take into account spotlights, which emit just a cone of light. Both of
these can configured in OpenGL 1.1, but this book does not cover how to do that. There are
also many aspects of light that are not captured by the simple model used in OpenGL. One of
the most obvious omissions is shadows: Objects don’t block light! Light shines right through
them. We will encounter some extensions to the model in later chapters when we discuss other
graphics systems.)

144 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

4.2 Light and Material in OpenGL 1.1

In this section, we will see how to use light and material in OpenGL. The functions that
are discussed in this section are specific to older versions of OpenGL, and will not carry over
directly to other graphics APIs. (But the general ideas that they implement, which were covered
in the previous section are more generally applicable.)

In OpenGL 1.1, the use of light and material must be enabled by calling glEn-
able(GL LIGHTING). When lighting is disabled, the color of a vertex is simply the current
color as set by glColor*. When lighting is enabled, the color of a vertex is computed using a
mathematical formula that takes into account the lighting of the scene and the material proper-
ties that have been assigned to the vertex, as discussed in the previous section. Now it’s time to
learn about the OpenGL commands that are used to configure lighting and to assign materials
to objects.

It is common for lighting to be turned on for rendering some parts of a scene, but turned
off for other parts. We will say that some objects are “lit” while others aren’t. For example,
wireframe objects are usually drawn with lighting disabled, even if they are part of a scene in
which solid objects are lit. But note that it is illegal to call glEnable or glDisable between calls
to glBegin and glEnd, so it is not possible for part of a primitive to be lit while another part of
the same primitive is unlit. (I should note that when lighting is enabled, it is applied to point
and line primitives as well as to polygons, even though it rarely makes sense to do so.) Lighting
can be enabled and disabled by calling glEnable and glDisable with parameter GL LIGHTING.
Other light and material settings don’t have to be modified when lighting is turned off, since
they are simply ignored when lighting is disabled.

To light a scene, in addition to enabling GL LIGHTING, you must configure at least one
source of light. For very basic lighting, it often suffices to call

glEnable(GL LIGHT0);

This command turns on a directional light that shines from the direction of the viewer into
the scene. (Note that the last character in GL LIGHT0 is a zero.) Since it shines from the
direction of the viewer, it will illuminate everything that the user can see. The light is white,
with no specular component; that is, you will see the diffuse color of objects, without any
specular highlights. We will see later in this section how to change the characteristics of this
light source and how to configure additional sources. But first, we will consider materials and
normal vectors.

4.2.1 Working with Material

Material properties are vertex attributes in that same way that color is a vertex attribute. That
is, the OpenGL state includes a current value for each of the material properties. When a vertex
is generated by a call to one of the glVertex* functions, a copy of each of the current material
properties is stored, along with the vertex coordinates. When a primitive that contains the
vertex is rendered, the material properties that are associated with the vertex are used, along
with information about lighting, to compute a color for the vertex.

This is complicated by the fact that polygons are two-sided, and the front face and back
face of a polygon can have different materials. This means that, in fact, two sets of material
property values are stored for each vertex: the front material and the back material. (The
back material isn’t actually used unless you turn on two-sided lighting, which will be discussed
below.)

4.2. LIGHT AND MATERIAL IN OPENGL 1.1 145

With all that in mind, we will look at functions for setting the current values of material
properties. For setting the ambient, diffuse, specular, and emission material colors, the function
is

void glMaterialfv(int side, int property, float* valueArray)

The first parameter can be GL FRONT AND BACK, GL FRONT, or GL BACK. It tells
whether you are setting a material property value for the front face, the back face, or both.
The second parameter tells which material property is being set. It can be GL AMBIENT,
GL DIFFUSE, GL SPECULAR, GL EMISSION, or GL AMBIENT AND DIFFUSE. Note
that it is possible to set the ambient and diffuse colors to the same value with one call to
glMaterialfv by using GL AMBIENT AND DIFFUSE as the property name; this is the most
common case. The last parameter to glMaterialfv is an array containing four float numbers.
The numbers give the RGBA color components as values in the range from 0.0 to 1.0; values
outside this range are actually allowed, and will be used in lighting computations, but such
values are unusual. Note that an alpha component is required, but it is used only in the case
of diffuse color: When the vertex color is computed, its alpha component is set equal to the
alpha component of the diffuse material color.

The shininess material property is a single number rather than an array, and there is a
different function for setting its value (without the “v” at the end of the name):

void glMaterialf(int side, int property, float value)

Again, the side can be GL FRONT AND BACK, GL FRONT, or GL BACK. The property
must be GL SHININESS. And the value is a float in the range 0.0 to 128.0.

Compared to the large number of versions of glColor* and glVertex*, the options for setting
material are limited. In particular, it is not possible to set a material color without defining
an array to contain the color component values. Suppose for example that we want to set the
ambient and diffuse colors to a bluish green. In C, that might be done with

float bgcolor[4] = { 0.0, 0.7, 0.5, 1.0 };

glMaterialfv(GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, bgcolor);

With my JavaScript simulator for OpenGL, this would look like

let bgcolor = [0.0, 0.7, 0.5, 1.0];

glMaterialfv(GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, bgcolor);

And in the JOGL API for Java, where where methods with array parameters have an additional
parameter to give the starting index of the data in the array, it becomes

float[] bgcolor = { 0.0F, 0.7F, 0.5F, 1.0F };

gl.glMaterialfv(GL2.GL FRONT AND BACK, GL2.GL AMBIENT AND DIFFUSE, bgcolor, 0);

In C, the third parameter is actually a pointer to float, which allows the flexabilty of storing
the values for several material properties in one array. Suppose, for example, that we have a C
array

float gold[13] = { 0.24725, 0.1995, 0.0745, 1.0, /* ambient */

0.75164, 0.60648, 0.22648, 1.0, /* diffuse */

0.628281, 0.555802, 0.366065, 1.0, /* specular */

50.0 /* shininess */

};

where the first four numbers in the array specify an ambient color; the next four, a diffuse color;
the next four, a specular color; and the last number, a shininess exponent. This array can be
used to set all the material properties:

146 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

glMaterialfv(GL FRONT AND BACK, GL AMBIENT, gold);

glMaterialfv(GL FRONT AND BACK, GL DIFFUSE, &gold[4]);

glMaterialfv(GL FRONT AND BACK, GL SPECULAR, &gold[8]);

glMaterialf(GL FRONT AND BACK, GL SHININESS, gold[12]);

Note that the last function is glMaterialf rather than glMaterialfv, and that its third parameter
is a number rather than a pointer. Something similar can be done in Java with

float[] gold = { 0.24725F, 0.1995F, 0.0745F, 1.0F, /* ambient */

0.75164F, 0.60648F, 0.22648F, 1.0F, /* diffuse */

0.628281F, 0.555802F, 0.366065F, 1.0F, /* specular */

50.0F /* shininess */

};

gl.glMaterialfv(GL2.GL FRONT AND BACK, GL2.GL AMBIENT, gold, 0);

gl.glMaterialfv(GL2.GL FRONT AND BACK, GL2.GL DIFFUSE, gold, 4);

gl.glMaterialfv(GL2.GL FRONT AND BACK, GL2.GL SPECULAR, gold, 8);

gl.glMaterialf(GL2.GL FRONT AND BACK, GL2.GL SHININESS, gold[12]);

The functions glMaterialfv and glMaterialf can be called at any time, including between
calls to glBegin and glEnd. This means that different vertices of a primitive can have different
material properties.

∗ ∗ ∗

So, maybe you like glColor* better than glMaterialfv? If so, you can use it to work with
material as well as regular color. If you call

glEnable(GL COLOR MATERIAL);

then some of the material color properties will track the color. By default, setting the color
will also set the current front and back, ambient and diffuse material properties. That is, for
example, calling

glColor3f(1, 0, 0);

will, if lighting is enabled, have the same effect as calling

glMaterialfv(GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, array);

where array contains the values 1, 0, 0, 1. You can change the material property that tracks
the color using

void glColorMaterial(side, property);

where side can be GL FRONT AND BACK, GL FRONT, or GL BACK, and property can be
GL AMBIENT,GL DIFFUSE,GL SPECULAR,GL EMISSION, orGL AMBIENT AND DIFFUSE.
Neither glEnable nor glColorMaterial can be called between calls to glBegin and glEnd, so all
of the vertices of a primitive must use the same setting.

Recall that when glDrawArrays or glDrawElements is used to draw a primitive, the color
values for the vertices of the primitive can be taken from a color array, as specified using
glColorPointer. (See Subsection 3.4.2.) There are no similar arrays for material properties.
However, if a color array is used while lighting is enabled, and if GL COLOR MATERIAL is
also enabled, then the color array will be used as the source for the values of the material
properties that are tracking the color.

4.2. LIGHT AND MATERIAL IN OPENGL 1.1 147

4.2.2 Defining Normal Vectors

Normal vectors are essential to lighting calculations. (See Subsection 4.1.3.) Like color and
material, normal vectors are attributes of vertices. The OpenGL state includes a current normal
vector, which is set using functions in the family glNormal*. When a vertex is specified with
glVertex*, a copy of the current normal vector is saved as an attribute of the vertex, and it
is used as the normal vector for that vertex when the color of the vertex is computed by the
lighting equation. Note that the normal vector for a vertex must be specified before glVertex*
is called for that vertex.

Functions in the family glNormal* include glNormal3f, glNormal3d, glNormal3fv, and
glNormal3dv. As usual, a “v” means that the values are in an array, “f” means that the
values are floats, and “d” means that the values are doubles. (All normal vectors have three
components). Some examples:

glNormal3f(0, 0, 1); // (This is the default value.)

glNormal3d(0.707, 0.707, 0.0);

float normalArray[3] = { 0.577, 0.577, 0.577 };

glNormal3fv(normalArray);

For a polygon that is supposed to look flat, the same normal vector is used for all of the
vertices of the polygon. For example, to draw one side of a cube, say the “top” side, facing in
the direction of the positive y-axis:

glNormal3f(0, 1, 0); // Points along positive y-axis

glBegin(GL QUADS);

glVertex3fv(1,1,1);

glVertex3fv(1,1,-1);

glVertex3fv(-1,1,-1);

glVertex3fv(-1,1,1);

glEnd();

Remember that the normal vector should point out of the front face of the polygon, and that
the front face is determined by the order in which the vertices are generated. (You might think
that the front face should be determined by the direction in which the normal vector points,
but that is not how its done. If a normal vector for a vertex points in the wrong direction,
then lighting calculations will not give the correct color for that vertex.)

When modeling a smooth surface, normal vectors should be chosen perpendicular to the
surface, rather than to the polygons that approximate the surface. (See Subsection 4.1.3.)
Suppose that we want to draw the side of a cylinder with radius 1 and height 2, where the
center of the cylinder is at (0,0,0) and the axis lies along the z -axis. We can approximate the
surface using a single triangle strip. The top and bottom edges of the side of a cylinder are
circles. Vertices along the top edge will have coordinates (cos(a),sin(a),1) and vertices along
the bottom edge will have coordinates (cos(a),sin(a),−1), where a is some angle. The normal
vector points in the same direction as the radius, but its z -coordinate is zero since it points
directly out from the side of the cylinder. So, the normal vector to the side of the cylinder
at both of these points will be (cos(a),sin(a),0). Looking down the z -axis at the top of the
cylinder, it looks like this:

148 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

a
The point

(cos(a),sin(a),1)

The vector

(cos(a),sin(a),0)

16-sided polygon approximating

a circle, lying in the pyz{| } ~ ��

When we draw the side of the cylinder as a triangle strip, we have to generate pairs of vertices
on alternating edges. The normal vector is the same for the two vertices in the pair, but it is
different for different pairs. Here is the code:

glBegin(GL TRIANGLE STRIP);

for (i = 0; i <= 16; i++) {

double angle = 2*3.14159/16 * i; // i 16-ths of a full circle

double x = cos(angle);

double y = sin(angle);

glNormal3f(x, y, 0); // Normal for both vertices at this angle.

glVertex3f(x, y, 1); // Vertex on the top edge.

glVertex3f(x, y, -1); // Vertex on the bottom edge.

}

glEnd();

When we draw the top and bottom of the cylinder, on the other hand, we want a flat polygon,
with the normal vector pointing in the direction (0,0,1) for the top and in the direction (0,0,−1)
for the bottom:

glNormal3f(0, 0, 1);

glBegin(GL TRIANGLE FAN); // Draw the top, in the plane z = 1.

for (i = 0; i <= 16; i++) {

double angle = 2*3.14159/16 * i;

double x = cos(angle);

double y = sin(angle);

glVertex3f(x, y, 1);

}

glEnd();

glNormal3f(0, 0, -1);

glBegin(GL TRIANGLE FAN); // Draw the bottom, in the plane z = -1

for (i = 16; i >= 0; i--) {

double angle = 2*3.14159/16 * i;

double x = cos(angle);

double y = sin(angle);

glVertex3f(x, y, -1);

}

glEnd();

Note that the vertices for the bottom are generated in the opposite order from the vertices for
the top, to account for the fact that the top and bottom face in opposite directions. As always,
vertices need to be enumerated in counterclockwise order, as seen from the front.

∗ ∗ ∗

4.2. LIGHT AND MATERIAL IN OPENGL 1.1 149

When drawing a primitive with glDrawArrays or glDrawElements, it is possible to provide
a different normal for each vertex by using a normal array to hold the normal vectors. The
normal array works in the same way as the color array and the vertex array. To use one, you
need to enable the use of a normal array by calling

glEnableClientState(GL NORMAL ARRAY);

The coordinates for the normal vectors must be stored in an array (or in an nio buffer for
JOGL), and the location of the data must be specified by calling

glNormalPointer(type, stride, data);

The type specifies the type of values in the array. It can be GL INT, GL FLOAT, or
GL DOUBLE. The stride is an integer, which is usually 0, meaning that there is no extra
data in the array between the normal vectors. And data is the array (or buffer) that holds the
normal vectors, with three numbers for each normal.

With this setup, when glDrawArrays or glDrawElements is used to draw a primitive, the nor-
mal vectors for the primitive will be pulled from the array. Note that if GL NORMAL ARRAY
is not enabled, then all of the normal vectors for the primitive will be the same, and will be
equal to the current normal vector as set by glNormal*.

∗ ∗ ∗

The lighting equation assumes that normal vectors are unit normals, that is, that they have
length equal to one. The default in OpenGL is to use normal vectors as provided, even if they
don’t have length one, which will give incorrect results. However, if you call

glEnable(GL NORMALIZE);

then OpenGL will automatically convert every normal vector into a unit normal that points in
the same direction.

Note that when a geometric transform is applied, normal vectors are transformed along
with vertices; this is necessary because a transformation can change the direction in which a
surface is facing. A scaling transformation can change the length of a normal vector, so even if
you provided unit normal vectors, they will not be unit normals after a scaling transformation.
However, if you have enabled GL NORMALIZE, the transformed normals will automatically be
converted back to unit normals. My recommendation is to always enable GL NORMALIZE as
part of your OpenGL initialization. The only exception would be if all of the normal vectors that
you provide are of length one and you do not apply any scaling transformations. (Translations
and rotations are OK, because they do not modify lengths.)

4.2.3 Working with Lights

OpenGL 1.1 supports at least eight light sources, which are identified by the constants
GL LIGHT0, GL LIGHT1, . . . , GL LIGHT7. (An OpenGL implementation might allow
additional lights.) Each light source can be configured to be either a directional light or a
point light, and each light can have its own diffuse, specular, and ambient intensities. (See
Subsection 4.1.2.)

By default, all of the light sources are disabled. To enable a light, call glEnable(light), where
light is one of the constants GL LIGHT0, GL LIGHT1, However, just enabling a light does
not give any illumination, except in the case of GL LIGHT0, since all light intensities are zero
by default, with the single exception of the diffuse color of light number 0. To get any light
from the other light sources, you need to change some of their properties. Light properties can
be set using the functions

150 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

void glLightfv(int light, int property, float* valueArray);

The first parameter is one of the constants GL LIGHT0, GL LIGHT1, . . . , GL LIGHT7. It
specifies which light is being configured. The second parameter says which property of the light
is being set. It can be GL DIFFUSE, GL SPECULAR, GL AMBIENT, or GL POSITION.
The last parameter is an array that contains at least four float numbers, giving the value of
the property.

For the color properties, the four numbers in the array specify the red, green, blue, and
alpha components of the color. (The alpha component is not actually used for anything.) The
values generally lie in the range 0.0 to 1.0, but can lie outside that range; in fact, values larger
than 1.0 are occasionally useful. Remember that the diffuse and specular colors of a light tell
how the light interacts with the diffuse and specular material colors, and the ambient color is
simply added to the global ambient light when the light is enabled. For example, to set up light
zero as a bluish light, with blue specular highlights, that adds a bit of blue to the ambient light
when it is turned on, you might use:

float blue1[4] = { 0.4, 0.4, 0.6, 1 };

float blue2[4] = { 0, 0, 0.8, 1 };

float blue3[4] = { 0, 0, 0.15, 1 };

glLightfv(GL LIGHT1, GL DIFFUSE, blue1);

glLightfv(GL LIGHT1, GL SPECULAR, blue2);

glLightfv(GL LIGHT1, GL AMBIENT, blue3);

It would likely take some experimentation to figure out exactly what values to use in the arrays
to get the effect that you want.

∗ ∗ ∗

The GL POSITION property of a light is quite a bit different. It is used both to set whether
the light is a point light or a directional light, and to set its position or direction. The property
value for GL POSITION is an array of four numbers (x,y,z,w), of which at least one must be
non-zero. When the fourth number, w, is zero, then the light is directional and the point (x,y,z)
specifies the direction of the light: The light rays shine in the direction of the line from the
point (x,y,z) towards the origin. This is related to homogeneous coordinates: The source of
the light can be considered to be a point at infinity in the direction of (x,y,z).

On the other hand, if the fourth number, w, is non-zero, then the light is a point light, and
it is located at the point (x/w, y/w, z/w). Usually, w is 1. The value (x,y,z,1) gives a point
light at (x,y,z). Again, this is really homogeneous coordinates.

The default position for all lights is (0,0,1,0), representing a directional light shining from
the positive direction of the z -axis, towards the negative direction of the z -axis.

One important and potentially confusing fact about lights is that the position that is
specified for a light is transformed by the modelview transformation that is in effect at the

time the position is set using glLightfv. Another way of saying this is that the position
is set in eye coordinates, not in world coordinates. Calling glLightfv with the property set to
GL POSITION is very much like calling glVertex*. The light position is transformed in the
same way that the vertex coordinates would be transformed. For example,

float position[4] = { 1,2,3,1 }

glLightfv(GL LIGHT1, GL POSITION, position);

puts the light in the same place as

glTranslatef(1,2,3);

float position[4] = { 0,0,0,1 }

glLightfv(GL LIGHT1, GL POSITION, position);

4.2. LIGHT AND MATERIAL IN OPENGL 1.1 151

For a directional light, the direction of the light is transformed by the rotational part of the
modelview transformation.

There are three basic ways to use light position. It is easiest to think in terms of potentially
animated scenes.

First, if the position is set before any modelview transformation is applied, then the light
is fixed with respect to the viewer. For example, the default light position is effectively set
to (0,0,1,0) while the modelview transform is the identity. This means that it shines in the
direction of the negative z -axis, in the coordinate system of the viewer, where the negative
z -axis points into the screen. Another way of saying this is that the light always shines from
the direction of the viewer into the scene. It’s like the light is attached to the viewer. If the
viewer moves about in the world, the light moves with the viewer.

Second, if the position is set after the viewing transform has been applied and before any
modeling transform is applied, then the position of the light is fixed in world coordinates. It
will not move with the viewer, and it will not move with objects in the scene. It’s like the light
is attached to the world.

Third, if the position is set after a modeling transform has been applied, then the light is
subject to that modeling transformation. This can be used to make a light that moves around in
the scene as the modeling transformation changes. If the light is subject to the same modeling
transformation as an object, then the light will move around with that object, as if it is attached
to the object.

The sample program glut/four-lights.c or jogl/FourLights.java uses multiple moving, colored
lights and lets you turn them on and off to see the effect. The image below is taken from the
program. There is also a live demo version on-line. The program lets you see how light from
various sources combines to produce the visible color of an object. The source code provides
examples of configuring lights and using material properties.

4.2.4 Global Lighting Properties

In addition to the properties of individual light sources, the OpenGL lighting system uses
several global properties. There are only three such properties in OpenGL 1.1. One of them
is the global ambient light, which is ambient light that doesn’t come from the ambient color

152 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

property of any light source. Global ambient light will be present in the environment even if all
of GL LIGHT0, GL LIGHT1, . . . are disabled. By default, the global ambient light is black
(that is, its RGB components are all zero). The value can be changed using the function

void glLightModelfv(int property, float* value)

where the property must be GL LIGHT MODEL AMBIENT and the value is an array
containing four numbers giving the RGBA color components of the global ambient light as
numbers in the range 0.0 to 1.0. In general, the global ambient light level should be quite low.
For example, in C:

float ambientLevel[] = { 0.15, 0.15, 0.15, 1 };

glLightModelfv(GL LIGHT MODEL AMBIENT, ambientLevel);

The alpha component of the color is usually set to 1, but it is not used for anything. For JOGL,
as usual, there is an extra parameter to specify the starting index of the data in the array, and
the example becomes:

float[] ambientLevel = { 0.15F, 0.15F, 0.15F, 0 };

gl.glLightModelfv(GL2.GL LIGHT MODEL AMBIENT, ambientLevel, 0);

The other two light model properties are options that can be either off or on. The properties
are GL LIGHT MODEL TWO SIDE and GL LIGHT MODEL LOCAL VIEWER. They can
be set using the function

void glLightModeli(int property, int value)

with a value equal to 0 or 1 to indicate whether the option should be off or on. You can use
the symbolic constants GL FALSE and GL TRUE for the value, but these are just names for
0 and 1.

GL LIGHT MODEL TWO SIDE is used to turn on two-sided lighting. Recall that a
polygon can have two sets of material properties, a front material and a back material. When
two-sided lighting is off, which is the default, only the front material is used; it is used for both
the front face and the back face of the polygon. Furthermore, the same normal vector is used
for both faces. Since those vectors point—or at least are supposed to point—out of the front
face, they don’t give the correct result for the back face. In effect, the back face looks like
it is illuminated by light sources that lie in front of the polygon, but the back face should be
illuminated by the lights that lie behind the polygon.

On the other hand, when two-sided lighting is on, the back material is used on the back
face and the direction of the normal vector is reversed when it is used in lighting calculations
for the back face.

You should use two-sided lighting whenever there are back faces that might be visible in
your scene. (This will not be the case when your scene consists of “solid” objects, where the
back faces are hidden inside the solid.) With two-sided lighting, you have the option of using
the same material on both faces or specifying different materials for the two faces. For example,
to put a shiny purple material on front faces and a duller yellow material on back faces:

glLightModeli(GL LIGHT MODEL TWO SIDE, 1); // Turn on two-sided lighting.

float purple[] = { 0.6, 0, 0.6, 1 };

float yellow[] = { 0.6, 0.6, 0, 1 };

float white[] = { 0.4, 0.4, 0.4, 1 }; // For specular highlights.

float black[] = { 0, 0, 0, 1 };

4.3. IMAGE TEXTURES 153

glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, purple); // front material

glMaterialfv(GL FRONT, GL SPECULAR, white);

glMaterialf(GL FRONT, GL SHININESS, 64);

glMaterialfv(GL BACK, GL AMBIENT AND DIFFUSE, yellow); // back material

glMaterialfv(GL BACK, GL SPECULAR, black); // no specular highlights

This picture shows what these materials look like on a cylinder that has no top, so that you
can see the back faces on the inside surface:

The third material property, GL LIGHT MODEL LOCAL VIEWER, is much less impor-
tant. It has to do with the direction from a surface to the viewer in the lighting equation. By
default, this direction is always taken to point directly out of the screen, which is true for an
orthographic projection but is not accurate for a perspective projection. If you turn on the local
viewer option, the true direction to the viewer is used. In practice, the difference is usually not
very noticeable.

4.3 Image Textures

Uniformly colored 3D objects look nice enough, but they are a little bland. Their
uniform colors don’t have the visual appeal of, say, a brick wall or a plaid couch. Three-
dimensional objects can be made to look more interesting and more realistic by adding a
texture to their surfaces. A texture, in general, is some sort of variation from pixel to pixel
within a single primitive. We will consider only one kind of texture: image textures. An
image texture can be applied to a surface to make the color of the surface vary from point to
point, something like painting a copy of the image onto the surface. Here is a picture that
shows six objects with various image textures:

154 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

(Topographical Earth image, courtesy NASA/JPL-Caltech. The brick and metal are free
textures (which were downloaded from a web site that no longer exists). EarthAtNight image
taken from the Astronomy Picture of the Day web site; it is also a NASA/JPL image. Copies
of the images can be found in the folder named textures in either the jogl or glut folder inside
the source folder of the web site download. Images from that folder will be used in several
examples in this book.)

Textures might be the most complicated part of OpenGL, and they are a part that has
survived, and become more complicated, in the most modern versions since they are so vital
for the efficient creation of realistic images. This section covers only part of the OpenGL 1.1
texture API. We will see more of textures in later chapters.

Note that an image that is used as a texture should have a width and a height that are
powers of two, such as 128, 256, or 512. This is a requirement in OpenGL 1.1. The requirement
is relaxed in some versions, but it’s still a good idea to use power-of-two textures Some
of the things discussed in this section will not work with non-power-of-two textures, even on
modern systems.

When an image texture is applied to a surface, the default behavior is to multiply the RGBA
color components of pixels on the surface by the color components from the image. The surface
color will be modified by light effects, if lighting is turned on, before it is multiplied by the
texture color. It is common to use white as the surface color. If a different color is used on the
surface, it will add a “tint” to the color from the texture image.

4.3.1 Texture Coordinates

When a texture is applied to a surface, each point on the surface has to correspond to a point in
the texture. There has to be a way to determine how this mapping is computed. For that, the
object needs texture coordinates. As is generally the case in OpenGL, texture coordinates
are specified for each vertex of a primitive. Texture coordinates for points inside the primitive
are calculated by interpolating the values from the vertices of the primitive.

A texture image comes with its own 2D coordinate system. Traditionally, s is used for the
horizontal coordinate on the image and t is used for the vertical coordinate. The s coordinate

4.3. IMAGE TEXTURES 155

is a real number that ranges from 0 on the left of the image to 1 on the right, while t ranges
from 0 at the bottom to 1 at the top. Values of s or t outside of the range 0 to 1 are not inside
the image, but such values are still valid as texture coordinates. Note that texture coordinates
are not based on pixels. No matter what size the image is, values of s and t between 0 and 1
cover the entire image.

To draw a textured primitive, we need a pair of numbers (s,t) for each vertex. These are the
texture coordinates for that vertex. They tell which point in the image is mapped to the vertex.
For example, suppose that we want to apply part of an EarthAtNight image to a triangular
primitive. Let’s say that the area in the image that is to be mapped onto the primitive is the
triangle shown here outlined in thick orange:

s

t

0.0 0.3 0.45 1.0
0.0

1.0

0.7

0.6

The vertices of this area have (s,t) coordinates (0.3,0.1), (0.45,0.6), and (0.25,0.7). These
coordinates from the image should be used as the texture coordinates for the vertices of the
triangular primitive.

The texture coordinates of a vertex are an attribute of the vertex, just like color, normal vec-
tors, and material properties. Texture coordinates are specified by the family of functions glTex-
Coord*, including the functions glTexCoord2f (s,t), glTexCoord2d(s,t), glTexCoord2fv(array),
and glTexCoord2dv(array). The OpenGL state includes a current set of texture coordinates,
as specified by these functions. When you specify a vertex with glVertex*, the current texture
coordinates are copied and become an attribute that is associated with the vertex. As usual,
this means that the texture coordinates for a vertex must be specified before glVertex* is
called. Each vertex of a primitive will need a different set of texture coordinates.

For example, to apply the triangular region in the image shown above to the triangle in the
xy-plane with vertices at (0,0), (0,1), and (1,0), we can say:

glNormal3d(0,0,1); // This normal works for all three vertices.

glBegin(GL TRIANGLES);

glTexCoord2d(0.3,0.1); // Texture coords for vertex (0,0)

glVertex2d(0,0);

glTexCoord2d(0.45,0.6); // Texture coords for vertex (0,1)

glVertex2d(0,1);

glTexCoord2d(0.25,0.7); // Texture coords for vertex (1,0)

glVertex2d(1,0);

glEnd();

Note that there is no particular relationship between the (x,y) coordinates of a vertex, which
give its position in space, and the (s,t) texture coordinates associated with the vertex. In fact,

156 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

in this case, the triangle that I am drawing has a different shape from the triangular area in
the image, and that piece of the image will have to be stretched and distorted to fit. Such
distortion occurs in most uses of texture images.

Sometimes, it’s difficult to decide what texture coordinates to use. One case where it’s easy
is applying the complete texture to a rectangle. Here is a code segment that draws a square in
the xy-plane, with appropriate texture coordinates to map the entire image onto the square:

glBegin(GL TRIANGLE FAN);

glNormal3f(0,0,1);

glTexCoord2d(0,0); // Texture coords for lower left corner

glVertex2d(-0.5,-0.5);

glTexCoord2d(1,0); // Texture coords for lower right corner

glVertex2d(0.5,-0.5);

glTexCoord2d(1,1); // Texture coords for upper right corner

glVertex2d(0.5,0.5);

glTexCoord2d(0,1); // Texture coords for upper left corner

glVertex2d(-0.5,0.5);

glEnd();

Unfortunately, the standard shapes in the GLUT library do not come with texture
coordinates (except for the teapot, which does). I have written a set of functions for
drawing similar shapes that do come with texture coordinates. The functions can be found in
jogl/TexturedShapes.java for JOGL or in glut/textured-shapes.c (plus the corresponding header
file glut/textured-shapes.h) for C. Of course, there are many ways of applying a texture to a
given object. If you use my functions, you are stuck with my decision about how to do so.

The sample program jogl/TextureDemo.java or glut/texture-demo.c lets you view several
different texture images on my textured shapes.

One last question: What happens if you supply texture coordinates that are not in the range
from 0 to 1? It turns out that such values are legal. By default, in OpenGL 1.1, they behave
as though the entire st-plane is filled with copies of the image. For example, if the texture
coordinates for a square range from 0 to 3 in both directions, instead of 0 to 1, then you get
nine copies of the image on the square (three copies horizontally by three copies vertically).

∗ ∗ ∗

To draw a textured primitive using glDrawArrays or glDrawElements, you will need to supply
the texture coordinates in a vertex array, in the same way that you supply vertex coordinates,
colors, and normal vectors. (See Subsection 3.4.2.) The details are similar: You have to enable
the use of a texture coordinate array by calling

glEnableClientState(GL TEXTURE COORD ARRAY);

and you have to tell OpenGL the location of the data using the function

void glTexCoordPointer(int size, int dataType, int stride, void* array)

The size, for us, will always be 2. (OpenGL also allows 3 or 4 texture coordinates, but we have
no use for them.) The dataType can be GL FLOAT, GL DOUBLE, or GL INT. The stride
will ordinarily be zero, to indicate that there is no extra data between texture coordinates in
the array. The last parameter is an array or pointer to the data, which must be of the type
indicated by the dataType. In JOGL, as usual, you would use an nio buffer instead of an array.

4.3. IMAGE TEXTURES 157

4.3.2 MipMaps and Filtering

When a texture is applied to a surface, the pixels in the texture do not usually match up one-
to-one with pixels on the surface, and in general, the texture must be stretched or shrunk as
it is being mapped onto the surface. Sometimes, several pixels in the texture will be mapped
to the same pixel on the surface. In this case, the color that is applied to the surface pixel
must somehow be computed from the colors of all the texture pixels that map to it. This is
an example of “filtering”; in particular, it uses a minification filter because the texture is
being shrunk. When one pixel from the texture covers more than one pixel on the surface, the
texture has to be magnified, and we need a magnification filter .

One bit of terminology before we proceed: The pixels in a texture are referred to as texels,
short for “texture pixel” or “texture element”, and I will use that term from now on.

When deciding how to apply a texture to a pixel on a surface, OpenGL must deal with
the fact that that pixel actually contains an infinite number of points, and each point has its
own texture coordinates. So, how should a texture color for the pixel be computed? The
easiest thing to do is to select one point from the pixel, say the point at the center of the pixel.
OpenGL knows the texture coordinates for that point. Those texture coordinates correspond
to one point in the texture, and that point lies in one of the texture’s texels. The color of that
texel could be used as the texture color for the pixel. This is called “nearest texel filtering.” It is
very fast, but it does not usually give good results. It doesn’t take into account the difference in
size between the pixels on the surface and the texels in the image. An improvement on nearest
texel filtering is “linear filtering,” which can take an average of several texel colors to compute
the color that will be applied to the surface.

The problem with linear filtering is that it will be very inefficient when a large texture
is applied to a much smaller surface area. In this case, many texels map to one pixel, and
computing the average of so many texels becomes very inefficient. There is a neat solution for
this: mipmaps.

A mipmap for a texture is a scaled-down version of that texture. A complete set of mipmaps
consists of the full-size texture, a half-size version in which each dimension is divided by two,
a quarter-sized version, a one-eighth-sized version, and so on. If one dimension shrinks to a
single pixel, it is not reduced further, but the other dimension will continue to be cut in half
until it too reaches one pixel. In any case, the final mipmap consists of a single pixel. Here are
the first few images in the set of mipmaps for a brick texture:

You’ll notice that the mipmaps become small very quickly. The total memory used by a set
of mipmaps is only about one-third more than the memory used for the original texture, so the
additional memory requirement is not a big issue when using mipmaps.

Mipmaps are used only for minification filtering. They are essentially a way of pre-computing
the bulk of the averaging that is required when shrinking a texture to fit a surface. To texture

158 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

a pixel, OpenGL can first select the mipmap whose texels most closely match the size of the
pixel. It can then do linear filtering on that mipmap to compute a color, and it will have to
average at most a few texels in order to do so.

In newer versions of OpenGL, you can get OpenGL to generate mipmaps automatically. In
OpenGL 1.1, if you want to use mipmaps, you must either load each mipmap individually, or
you must generate them yourself. (The GLU library has a method, gluBuild2DMipmaps that
can be used to generate a set of mipmaps for a 2D texture.) However, my sample programs do
not use mipmaps.

4.3.3 Texture Target and Texture Parameters

OpenGL can actually use one-dimensional and three-dimensional textures, as well as two-
dimensional. Because of this, many OpenGL functions dealing with textures take a texture

target as a parameter, to tell whether the function should be applied to one, two, or three
dimensional textures. For us, the only texture target will be GL TEXTURE 2D.

There are a number of options that apply to textures, to control the details of how textures
are applied to surfaces. Some of the options can be set using the glTexParameteri() function,
including two that have to do with filtering. OpenGL supports several different filtering
techniques for minification and magnification. The filters can be set using glTexParameteri():

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, magFilter);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, minFilter);

The values of magFilter and minFilter are constants that specify the filtering algorithm. For
the magFilter, the only options are GL NEAREST and GL LINEAR, giving nearest texel
and linear filtering. The default for the MAG filter is GL LINEAR, and there is rarely
any need to change it. For minFilter, in addition to GL NEAREST and GL LINEAR,
there are four options that use mipmaps for more efficient filtering. The default MIN
filter is GL NEAREST MIPMAP LINEAR, which does averaging between mipmaps and
nearest texel filtering within each mipmap. For even better results, at the cost of greater
inefficiency, you can use GL LINEAR MIPMAP LINEAR, which does averaging both between
and within mipmaps. The other two options are GL NEAREST MIPMAP NEAREST and
GL LINEAR MIPMAP NEAREST.

One very important note: If you are not using mipmaps for a texture, it is imperative
that you change the minification filter for that texture to GL LINEAR or, less likely,
GL NEAREST. The default MIN filter requires mipmaps, and if mipmaps are not available,
then the texture is considered to be improperly formed, and OpenGL ignores it! Remember
that if you don’t create mipmaps and if you don’t change the minification filter, then your
texture will simply be ignored by OpenGL.

There is another pair of texture parameters to control how texture coordinates outside
the range 0 to 1 are treated. As mentioned above, the default is to repeat the texture. The
alternative is to “clamp” the texture. This means that when texture coordinates outside the
range 0 to 1 are specified, those values are forced into that range: Values less than 0 are replaced
by 0, and values greater than 1 are replaced by 1. Values can be clamped separately in the s
and t directions using

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP);

4.3. IMAGE TEXTURES 159

Passing GL REPEAT as the last parameter restores the default behavior. When clamping is
in effect, texture coordinates outside the range 0 to 1 return the same color as a texel that lies
along the outer edge of the image. Here is what the effect looks like on two textured squares:

The two squares in this image have s and t texture coordinates that range from −1 to 2. The
original image lies in the center of the square. For the square on the left, the texture is repeated.
On the right, the texture is clamped.

4.3.4 Texture Transformation

When a texture is applied to a primitive, the texture coordinates for a vertex determine which
point in the texture is mapped to that vertex. Texture images are 2D, but OpenGL also
supports one-dimensional textures and three-dimensional textures. This means that texture
coordinates cannot be restricted to two coordinates. In fact, a set of texture coordinates in
OpenGL is represented internally in the form of homogeneous coordinates, which are referred
to as (s,t,r,q). We have used glTexCoord2* to specify texture s and t coordinates, but a call to
glTexCoord2f (s,t), for example, is really just shorthand for glTexCoord4f (s,t,0,1).

Since texture coordinates are no different from vertex coordinates, they can be transformed
in exactly the same way. OpenGL maintains a texture transformation as part of its state,
along with the modelview and projection transformations. The current value of each of the
three transformations is stored as a matrix. When a texture is applied to an object, the texture
coordinates that were specified for its vertices are transformed by the texture matrix. The
transformed texture coordinates are then used to pick out a point in the texture. Of course,
the default texture transform is the identity transform, which doesn’t change the coordinates.

The texture matrix can represent scaling, rotation, translation and combinations of these
basic transforms. To specify a texture transform, you have to use glMatrixMode() to set the
matrix mode to GL TEXTURE. With this mode in effect, calls to methods such as glRotate*,
glScale*, and glLoadIdentity are applied to the texture matrix. For example to install a texture
transform that scales texture coordinates by a factor of two in each direction, you could say:

glMatrixMode(GL TEXTURE);

glLoadIdentity(); // Make sure we are starting from the identity matrix.

glScalef(2,2,1);

glMatrixMode(GL MODELVIEW); // Leave matrix mode set to GL MODELVIEW.

Since the image lies in the st-plane, only the first two parameters of glScalef matter. For
rotations, you would use (0,0,1) as the axis of rotation, which will rotate the image within the
st-plane.

160 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

Now, what does this actually mean for the appearance of the texture on a surface? In the
example, the scaling transform multiplies each texture coordinate by 2. For example, if a vertex
was assigned 2D texture coordinates (0.4,0.1), then after the texture transform is applied, that
vertex will be mapped to the point (s,t) = (0.8,0.2) in the texture. The texture coordinates
vary twice as fast on the surface as they would without the scaling transform. A region on
the surface that would map to a 1-by-1 square in the texture image without the transform
will instead map to a 2-by-2 square in the image—so that a larger piece of the image will be
seen inside the region. In other words, the texture image will be shrunk by a factor of two on
the surface! More generally, the effect of a texture transformation on the appearance of the
texture is the inverse of its effect on the texture coordinates. (This is exactly analogous to the
inverse relationship between a viewing transformation and a modeling transformation.) If the
texture transform is translation to the right, then the texture moves to the left on the surface.
If the texture transform is a counterclockwise rotation, then the texture rotates clockwise on
the surface.

I mention texture transforms here mostly to show how OpenGL can use transformations in
another context. But it is sometimes useful to transform a texture to make it fit better on a
surface. And for an unusual effect, you might even animate the texture transform to make the
texture image move on the surface. To see the effect of texture transformations, try the on-line
demo c4/texture-transform.html.

4.3.5 Loading a Texture from Memory

It’s about time that we looked at the process of getting an image into OpenGL so that it can
be used as a texture. Usually, the image starts out in a file. OpenGL does not have functions
for loading images from a file. For now, we assume that the file has already been loaded from
the file into the computer’s memory. Later in this section, I will explain how that’s done in C
and in Java.

The OpenGL function for loading image data from the computer’s memory into a 2D texture
is glTexImage2D(), which takes the form:

glTexImage2D(target, mipmapLevel, internalFormat, width, height, border,

format, dataType, pixels);

The target should be GL TEXTURE 2D. The mipmapLevel should ordinarily be 0. The value
0 is for loading the main texture; a larger value is used to load an individual mipmap. The
internalFormat tells OpenGL how you want the texture data to be stored in OpenGL texture
memory. It can be GL RGB to store an 8-bit red/green/blue component for each pixel. Another
possibility is GL RGBA, which adds an alpha component. The width and height give the size
of the image; the values should be powers of two. The value of border should be 0; the only
other possibility is 1, which indicates that a one-pixel border has been added around the image
data for reasons that I will not discuss. The last three parameters describe the image data.
The format tells how the original image data is represented in the computer’s memory, such
as GL RGB or GL RGBA. The dataType is usually GL UNSIGNED BYTE, indicating that
each color component is represented as a one-byte value in the range 0 to 255. And pixels is a
pointer to the start of the actual color data for the pixels. The pixel data has to be in a certain
format, but that need not concern us here, since it is usually taken care of by the functions that
are used to read the image from a file. (For JOGL, the pointer would be replaced by a buffer.)

This all looks rather complicated, but in practice, a call to glTexImage2D generally takes
the following form, except possibly with GL RGB replaced with GL RGBA.

4.3. IMAGE TEXTURES 161

glTexImage2D(GL TEXTURE 2D, 0, GL RGB, width, height, 0,

GL RGB, GL UNSIGNED BYTE, pixels);

Calling this function will load the image into the texture, but it does not cause the texture to
be used. For that, you also have to call

glEnable(GL TEXTURE 2D);

If you want to use the texture on some objects but not others, you can enableGL TEXTURE 2D
before drawing objects that you want to be textured and disable it before drawing untextured
objects. You can also change the texture that is being used at any time by calling glTexImage2D.

4.3.6 Texture from Color Buffer

Texture images for use in an OpenGL program usually come from an external source, most often
an image file. However, OpenGL is itself a powerful engine for creating images. Sometimes,
instead of loading an image file, it’s convenient to have OpenGL create the image internally, by
rendering it. This is possible because OpenGL can read texture data from its own color buffer,
where it does its drawing. To create a texture image using OpenGL, you just have to draw the
image using standard OpenGL drawing commands and then load that image as a texture using
the method

glCopyTexImage2D(target, mipmapLevel, internalFormat,

x, y, width, height, border);

In this method, target will be GL TEXTURE 2D ; mipmapLevel should be zero; the internal-
Format will ordinarily be GL RGB or GL RGBA; x and y specify the lower left corner of the
rectangle from which the texture will be read; width and height are the size of that rectangle;
and border should be 0. As usual with textures, the width and height should ordinarily be
powers of two. A call to glCopyTexImage2D will typically look like

glCopyTexImage2D(GL TEXTURE 2D, 0, GL RGB, x, y, width, height, 0);

The end result is that the specified rectangle from the color buffer will be copied to texture
memory and will become the current 2D texture. This works in the same way as a call to
glTexImage2D(), except for the source of the image data.

An example can be found in the JOGL program jogl/TextureFromColorBuffer.java or in
the C version glut/texture-from-color-buffer.c. This program draws the windmill-and-cart scene
from Subsection 2.4.1 and then uses that drawing as a texture on 3D objects. Here is an image
from the program, showing the texture on a cylinder:

162 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

The texture can be animated! For the animation, a new texture is drawn for each frame. All
the work is done in the program’s display function. In that function, the current frame of the
windmill-and-cart scene is first drawn as a 2D scene with lighting disabled. This picture is not
shown on the computer screen; the drawing is done off-screen and the image will be erased
and replaced with the 3D image before it’s ever shown on screen. The glCopyTexImage2D()
function is then called to copy the scene into the current texture. Then, the color buffer is
cleared, lighting is enabled, and a 3D projection is set up, before finally drawing the 3D object
that is seen on the computer screen.

4.3.7 Texture Objects

Everything that I’ve said so far about textures was already true for OpenGL 1.0. OpenGL
1.1 introduced a new feature called texture objects to make texture handling more efficient.
Texture objects are used when you need to work with several texture images in the same
program. The usual method for loading texture images, glTexImage2D, transfers data from
your program into the graphics card. This is an expensive operation, and switching among
multiple textures by using this method can seriously degrade a program’s performance. Texture
objects offer the possibility of storing texture data for multiple textures on the graphics card.
With texture objects, you can switch from one texture object to another with a single, fast
OpenGL command: You just have to tell OpenGL which texture object you want to use. (Of
course, the graphics card has only a limited amount of memory for storing textures, and you
aren’t guaranteed that all of your texture objects will actually be stored on the graphics card.
Texture objects that don’t fit in the graphics card’s memory are no more efficient than ordinary
textures.)

Texture objects are managed by OpenGL and the graphics hardware. A texture object is
identified by an integer ID number. To use a texture object, you need to obtain an ID number
from OpenGL. This is done with the glGenTextures function:

void glGenTexures(int textureCount, int* array)

This function can generate multiple texture IDs with a single call. The first parameter specifies
how many IDs you want. The second parameter says where the generated IDs will be stored.
It should be an array whose length is at least textureCount. For example, if you plan to use
three texture objects, you can say

int idList[3];

glGenTextures(3, idList);

You can then use idList [0], idList [1], and idList [2] to refer to the textures. Because of the way
pointers work in C, if you want to get a single texture ID, you can pass a pointer to an integer
variable as the second parameter to glGenTextures(). For example,

int texID;

glGenTextures(1, &texID);

The new texture ID will be stored in the variable texID.

Every texture object has its own state, which includes the values of texture parameters such
as GL TEXTURE MIN FILTER as well as the texture image itself. To work with a specific
texture object, you must first call

glBindTexture(GL TEXTURE 2D, texID)

4.3. IMAGE TEXTURES 163

where texID is the texture ID returned by glGenTextures. After this call, any use of
glTexParameteri, glTexImage2D, or glCopyTexImage2D will be applied to the texture object
with ID texID.

Similarly, when a textured primitive is rendered, the texture that is used is the one that was
most recently bound using glBindTexture. A typical pattern would be to load and configure a
number of textures during program initialization:

glGenTextures(n, textureIdList);

for (i = 0; i < n; i++) {

glBindTexture(textureIDList[i]);

.

. // Load texture image number i

. // Configure texture image number i

.

}

Then, while rendering a scene, you would call glBindTexture every time you want to switch
from one texture image to another texture image. This would be much more efficient than
calling glTexImage2D every time you want to switch textures.

OpenGL 1.1 reserves texture ID zero as the default texture object, which is bound initially.
It is the texture object that you are using if you never call glBindTexture. This means that
you can write programs that use textures without ever mentioning glBindTexture. (However, I
should note that when we get to WebGL, that will no longer be true.)

The small sample program glut/texture-objects.c shows how to use texture objects in C. In
is available only in C since, as we will see, JOGL has its own way of working with texture
objects.

4.3.8 Loading Textures in C

We have seen how to load texture image data from memory into OpenGL. The problem
that remains is how to get the image data into memory before calling glTexImage2D. One
possibility is to compute the data—you can actually have your program generate texture data
on the fly. More likely, however, you want to load it from a file. This section looks at how
that might be done in C. You will probably want to use a library of image-manipulation
functions. Several free image processing libraries are available. I will discuss one of them,
FreeImage, which can work with many image file formats. FreeImage can be obtained from
http://freeimage.sourceforge.net/, but I was able to use it in Linux simply by installing the
package libfreeimage-dev. To make it available to my program, I added #include “FreeImage.h”
to the top of my C program, and I added the option -lfreeimage to the gcc command to make the
library available to the compiler. (See the sample program glut/texture-demo.c for an example
that uses this library.) Instead of discussing FreeImage in detail, I present a well-commented
function that uses it to load image data from a file:

void* imgPixels; // Pointer to raw RGB data for texture in memory.

int imgWidth; // Width of the texture image.

int imgHeight; // Height of the texture image.

void loadTexture(char* fileName) {

// Loads a texture image using the FreeImage library, and stores the

// required info in global variables imgPixels, imgWidth, imgHeight.

// The parameter fileName is a string that contains the name of the

// image file from which the image is to be loaded. If the image

164 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

// can’t be loaded, then imgPixels will be set to be a null pointer.

imgPixels = 0; // Null pointer to signal that data has not been read.

FREE IMAGE FORMAT format = FreeImage GetFIFFromFilename(fileName);

// FREE IMAGE FORMAT is a type defined by the FreeImage library.

// Here, the format is determined from the file extension in

// the file name, such as .png, .jpg, or .gif. Many formats

// are supported.

if (format == FIF UNKNOWN) {

printf("Unknown file type for texture image file %s\n", fileName);

return;

}

FIBITMAP* bitmap = FreeImage Load(format, fileName, 0);

// FIBITMAP is a type defined by the FreeImage library, representing

// the raw image data plus some metadata such as width, height,

// and the format of the image data. This actually tries to

// read the data from the specified file.

if (!bitmap) {

printf("Failed to load image %s\n", fileName);

return;

}

FIBITMAP* bitmap2 = FreeImage ConvertTo24Bits(bitmap);

// This creates a copy of the image, with the data represented

// in standard RGB (or BGR) format, for use with OpenGL.

FreeImage Unload(bitmap);

// After finishing with a bitmap, it should be disposed.

// We are finished with bitmap, but not with bitmap2, since

// we will continue to use the data from bitmap2.

imgPixels = FreeImage GetBits(bitmap2); // Get the data we need!

imgWidth = FreeImage GetWidth(bitmap2);

imgHeight = FreeImage GetHeight(bitmap2);

if (imgPixels) {

printf("Texture image loaded from file %s, size %dx%d\n",

fileName, imgWidth, imgHeight);

}

else {

printf("Failed to get texture data from %s\n", fileName);

}

} // end loadTexture

After this function has been called, the data that we need for glTexImage2D() is in the global
variables imgWidth, imgHeight, and imgPixels (or imgPixels is 0 to indicate that the attempt
to load the image failed). There is one complication: FreeImage will store the color components
for a pixel in the order red/green/blue on some platforms but in the order blue/green/red on
other platforms. The second data format is called GL BGR in OpenGL. If you use the wrong
format in glTextImage2D(), then the red and blue components of the color will be reversed. To
tell the difference, you can use the FreeImage constant FI RGBA RED, which tells the position

4.3. IMAGE TEXTURES 165

of the red color component in pixel data. This constant will be 0 if the format is GL RGB and
will be 2 if the format is GL BGR. So, to use the texture in OpenGL, you might say:

if (imgPixels) { // The image data exists

int format; // The format of the color data in memory

if (FI RGBA RED == 0)

format = GL RGB;

else

format = GL BGR;

glTexImage2D(GL TEXTURE 2D, 0, GL RGBA, imgWidth, imgHeight, 0, format,

GL UNSIGNED BYTE, imgPixels);

glEnable(GL TEXTURE 2D);

}

else { // The image data was not loaded, so don’t attempt to use the texture.

glDisable(GL TEXTURE 2D);

}

To be even more careful, you could check that the width and the height of the image
are powers of two. If not, you can resize it using the function FreeImage Rescale() from the
FreeImage library.

∗ ∗ ∗

FreeImage is a large, complicated system that might not be easily made available on
your computer. To make it easier for you to experiment with textures in C, I have also
included a small C utility for reading textures from .rgb files. The rgb file format is fairly
simple, but rgb files are generally much larger than the corresponding .png or .jpeg files.
The format is not widely supported, but I have included .rgb versions of my sample texture
images in the folder glut/textures-rgb. The small library for loading them into textures
is glut/textures-rgb/readrgb.c and its header file glut/textures-rgb/readrgb.h. (The library is
from http://paulbourke.net/dataformats/sgirgb/.) Sample programs that use the library are
glut/texture-objects-rgb.c and glut/texture-demo-rgb.c.

4.3.9 Using Textures with JOGL

We turn finally to using texture images in Java. JOGL comes with several
classes that make it fairly easy to use textures in Java, notably the classes Texture

and TextureIO in package com.jogamp.opengl.util.texture and AWTTextureIO in package
com.jogamp.opengl.util.texture.awt. For an example of using textures with JOGL, see the sam-
ple program jogl/TextureDemo.java.

An object of type Texture represents a texture that has already been loaded into OpenGL.
Internally, it uses a texture object to store the texture and its configuration data. If tex is an
object of type Texture, you can call

tex.bind(gl);

to use the texture image while rendering objects. The parameter, gl, as usual, is a variable of
type GL2 the represents the OpenGL drawing context. This function is equivalent to calling
glBindTexture for the OpenGL texture object that is used by the Java Texture. You still need
to enable GL TEXTURE 2D by calling gl.glEnable(GL2.GL TEXTURE 2D) or, equivalently,

tex.enable(gl);

166 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

You can set texture parameters in the usual way, by calling gl.glTexParameteri() while
the texture is bound, but it is preferable to use a method from the Texture class to set the
parameters:

tex.setTexParameteri(gl, parameterName, value);

This will automatically bind the texture object before setting the texture parameter. For
example,

tex.setTexParameteri(gl, GL2.GL TEXTURE MIN FILTER, GL2.LINEAR MIPMAP LINEAR);

So, once you have a Texture, it’s pretty easy to use. But there remains the problem
of creating Texture objects. For that, you can use static methods in the TextureIO and
AWTTextureIO classes. For example, if fileName is the name of an image file (or a path to
such a file), then you can say

tex = TextureIO.newTexture(new File(fileName), true);

to load a texture from the file into a Texture object, tex. The boolean parameter here, and in
all the methods we will look at, tells JOGL whether or not to create mipmaps for the texture;
by passing true, we automatically get a full set of mipmaps!

One important note: Java’s texture creation functions will only work when an OpenGL
context is “current.” This will be true in the event-handling methods of a GLEventListener,
including the init() and display() methods. However, it will not be true in ordinary methods
and constructors.

Of course, in Java, you are more likely to store the image as a resource in the program than
as a separate file. If resourceName is a path to the image resource, you can load the image into
a texture with

URL textureURL;

textureURL = getClass().getClassLoader().getResource(resourceName);

texture = TextureIO.newTexture(textureURL, true, null);

The third parameter to this version of newTexture specifies the image type and can be given as a
string containing a file suffix such as “png” or “jpg”; the value null tells OpenGL to autodetect
the image type, which should work in general. (By the way, all the texture-loading code that
I discuss here can throw exceptions, which you will have to catch or otherwise handle in some
way.)

One problem with all this is that textures loaded in this way will be upside down! This
happens because Java stores image data from the top row of the image to the bottom, whereas
OpenGL expects image data to be stored starting with the bottom row. If this is a problem for
you, you can flip the image before using it to create a texture. To do that, you have to load the
image into a BufferedImage and then load that into a texture using the AWTTextureIO class.
For example, assuming resourceName is a path to an image resource in the program:

URL textureURL;

textureURL = getClass().getClassLoader().getResource(resourceName);

BufferedImage img = ImageIO.read(textureURL);

ImageUtil.flipImageVertically(img);

texture = AWTTextureIO.newTexture(GLProfile.getDefault(), img, true);

The ImageUtil class is defined in package com.jogamp.opengl.util.awt. Here, I obtained a
BufferedImage by reading it from a resource. You could also read it from a file—or even draw
it using Java 2D graphics.

4.4. LIGHTS, CAMERA, ACTION 167

4.4 Lights, Camera, Action

A scene in computer graphics can be a complex collection of objects, each with its own
attributes. In Subsection 2.4.2, we saw how a scene graph can be used to organize all the
objects in a 2D scene. Rendering a scene means traversing the scene graph, rendering each
object in the graph as it is encountered. For 3D graphics, scene graphs must deal with a larger
variety of objects, attributes, and transforms. For example, it is often useful to consider lights
and cameras to be objects and to be able to include them in scene graphs. In this section, we
consider scene graphs in 3D, and how to treat cameras and lights as objects.

When designing scene graphs, there are many options to consider. For example, should
transforms be properties of object nodes, or should there be separate nodes to represent
transforms? The same question can be asked about attributes. Another question is whether an
attribute value should apply only to the node of which it is a property, or should it be inherited
by the children of that node?

A fundamental choice is the shape of the graph. In general, a scene graph can be a directed
acyclic graph, or “dag,” which is a tree-like structure except that a node can have several
parents in the graph. The scene graphs in Subsection 2.4.2 were dags. This has the advantage
that a single node in the graph can represent several objects in the scene, since in a dag, a node
can be encountered several times as the graph is traversed. On the other hand, representing
several objects with one scene graph node can lead to a lack of flexibility, since those objects
will all have the same value for any property encoded in the node. So, in some applications,
scene graphs are required to be trees. In a tree, each node has a unique parent, and the node
will be encountered only once as the tree in traversed. The distinction between trees and dags
will show up when we discuss camera nodes in scene graphs.

4.4.1 Attribute Stack

We have seen how the functions glPushMatrix and glPopMatrix are used to manipulate the
transform stack. These functions are useful when traversing a scene graph: When a node that
contains a transform is encountered during a traversal of the graph, glPushMatrix can be called
before applying the transform. Then, after the node and its descendants have been rendered,
glPopMatrix is called to restore the previous modelview transformation.

Something similar can be done for attributes such as color and material, if it is assumed
that an attribute value in a scene graph node should be inherited as the default value of
that attribute for children of the node. OpenGL 1.1 maintains an attribute stack, which is
manipulated using the functions glPushAttrib and glPopAttrib. In addition to object attributes
like the current color, the attribute stack can store global attributes like the global ambient
color and the enabled state of the depth test. Since there are so many possible attributes,
glPushAttrib does not simply save the value of every attribute. Instead, it saves a subset of the
possible attributes. The subset that is to be saved is specified as a parameter to the function.
For example, the command

glPushAttrib(GL ENABLED BIT);

will save a copy of each of the OpenGL state variables that can be enabled or disabled.
This includes the current state of GL DEPTH TEST, GL LIGHTING, GL NORMALIZE, and
others. Similarly,

glPushAttrib(GL CURRENT BIT);

168 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

saves a copy of the current color, normal vector, and texture coordinates. And

glPushAttrib(GL LIGHTING BIT);

saves attributes relevant to lighting such as the values of material properties and light properties,
the global ambient color, color material settings, and the enabled state for lighting and each
of the individual lights. Other constants can be used to save other sets of attributes; see the
OpenGL documentation for details. It is possible to OR together several constants to combine
sets of attributes. For example,

glPushAttrib(GL LIGHTING BIT | GL ENABLED BIT)

will save the attributes in both the GL LIGHTING BIT set and in the GL ENABLED BIT
set.

Calling glPopAttrib() will restore all the values that were saved by the corresponding call to
glPushAttrib. There is no need for a parameter to glPopAttrib, since the set of attributes that
are restored is determined by the parameter that was passed to glPushAttrib.

It should be easy to see how glPushAttrib and glPopAttrib can be used while traversing a
scene graph: When processing a node, before changing attribute values, call glPushAttrib to
save a copy of the relevant set or sets of attributes. Render the node and its descendants. Then
call glPopAttrib to restore the saved values. This limits the effect of the changes so that they
apply only to the node and its descendants.

∗ ∗ ∗

There is an alternative way to save and restore values. OpenGL has a variety of “get”
functions for reading the values of various state variables. I will discuss just some of them here.
For example,

glGetFloatv(GL CURRENT COLOR, floatArray);

retrieves the current color value, as set by glColor*. The floatArray parameter should be an
array of float, whose length is at least four. The RGBA color components of the current color
will be stored in the array. Note that, later, you can simply call glColor4fv(colorArray) to
restore the color. The same function can be used with different first parameters to read the
values of different floating-point state variables. To find the current value of the viewport, use

glGetIntegerv(GL VIEWPORT, intArray);

This will set intArray [0] and intArray [1] to be the x and y coordinates of the lower left corner
of the current viewport, intArray [2] to be its width, and intArray [3] to be its height. To read
the current values of material properties, use

glGetMaterialfv(face, property, floatArray);

The face must be GL FRONT or GL BACK. The property must be GL AMBIENT,
GL DIFFUSE, GL SPECULAR, GL EMISSION, or GL SHININESS. The current value of the
property will be stored in floatArray, which must be of length at least four for the color proper-
ties, or length at least one for GL SHININESS. There is a similar command, glGetLightfv, for
reading properties of lights.

Finally, I will mention glIsEnabled(name), which can be used to check the enabled/disabled
status of state variables such as GL LIGHTING and GL DEPTH TEST. The parameter should
be the constant that identifies the state variable. The function returns 0 if the state variable
is disabled and 1 if it is enabled. For example, glIsEnabled(GL LIGHTING) tests whether
lighting is enabled. Suppose that a node in a scene graph has an attribute lit to tell whether
that node (and its descendants) should be rendered with lighting enabled. Then the code for
rendering a node might include something like this:

4.4. LIGHTS, CAMERA, ACTION 169

int saveLit = glIsEnabled(GL LIGHTING);

if (lit)

glEnable(GL LIGHTING);

else

glDisable(GL LIGHTING);

.

. // Render the node and its descendants

.

if (saveLit)

glEnable(GL LIGHTING);

else

glDisable(GL LIGHTING);

Since glPushAttrib can be used to push large groups of attribute values, you might think
that it would be more efficient to use glIsEnabled and the glGet* family of commands to read
the values of just those state variables that you are planning to modify. However, recall that
OpenGL can queue a number of commands into a batch to be sent to the graphics card, and
those commands can be executed by the GPU at the same time that your program continues to
run. A glGet command can require your program to communicate with the graphics card and
wait for the response. This means that any pending OpenGL commands will have to be sent
to the graphics card and executed before the glGet command can complete. This is the kind
of thing that can hurt performance. In contrast, calls to glPushAttrib and glPopAttrib can be
queued with other OpenGL commands and sent to the graphics card in batches, where they
can be executed efficiently by the graphics hardware. In fact, you should generally prefer using
glPushAttrib/glPopAttrib instead of a glGet command when possible.

4.4.2 Moving Camera

Let’s turn to another aspect of modeling. Suppose that we want to implement a viewer that
can be moved around in the world like other objects. Sometimes, such a viewer is thought
of as a moving camera. The camera is used to take pictures of the scene. We want to be
able to apply transformations to a camera just as we apply transformations to other objects.
The position and orientation of the camera determine what should be visible when the scene
is rendered. And the “size” of the camera, which can be affected by a scaling transformation,
determines how large a field of view it has. But a camera is not just another object. A camera
really represents the viewing transformation that we want to use. Recall that modeling and
viewing transformations have opposite effects: Moving objects to the right with a modeling
transform is equivalent to moving the viewer to the left with a viewing transformation. (See
Subsection 3.3.4.) To apply a modeling transformation to the camera, we really want to apply a
viewing transformation to the scene as a whole, and that viewing transformation is the inverse
of the camera’s modeling transformation.

The following illustration shows a scene viewed from a moving camera. The camera starts
in the default viewing position, at the origin, looking in the direction of the negative z -axis.
This corresponds to using the identity as the viewing transform. For the second image, the
camera has moved forward by ten units. This would correspond to applying the modeling
transformation glTranslatef (0,0,−10) to the camera (since it is moving in the negative z -
direction). But to implement this movement as a change of view, we want to apply the inverse
operation as a viewing transformation. So, the viewing transform that we actually apply is
glTranslatef (0,0,10). This can be seen, if you like, as a modeling transformation that is applied

170 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

to all the other objects in the scene: Moving the camera ten units in one direction is equivalent
to moving all the other objects 10 units in the opposite direction.

Original View Afer moving forward

ten units

After turning 21

degrees to the right

For the third image, the camera has rotated in place by 21 degrees to the right—a 21-degree
clockwise rotation about the y-axis—after it has been translated. This can be implemented
by the transformation glRotatef (21,0,1,0)—a 21-degree counterclockwise rotation about the
y-axis—applied before the translation. Remember that the inverse of a composition of
transformations is the composition of their inverses, in the opposite order. Mathematically,
using T−1 to represent the inverse of a transformation T, we have that (RS)−1 = S−1R−1 for
two transformations R and S.

The images in the illustration are from the demo c4/walkthrough.html, which you can try
on-line. The demo lets you move around in a scene. More accurately, of course, it lets you
change the viewing transformation to see the scene from different viewpoints.

∗ ∗ ∗

When using scene graphs, it can be useful to include a camera object in the graph. That is,
we want to be able to include a node in the graph that represents the camera, and we want to
be able to use the camera to view the scene. It can even be useful to have several cameras in
the scene, providing alternative points of view. To implement this, we need to be able to render
a scene from the point of view of a given camera. From the previous discussion, we know that
in order to do that, we need to use a viewing transformation that is the inverse of the modeling
transformation that is applied to the camera object. The viewing transform must be applied
before any of the objects in the scene are rendered.

When a scene graph is traversed, a modeling transformation can be applied at any node.
The modeling transform that is in effect when a given node is encountered is the composition of
all the transforms that were applied at nodes along the path that led to given node. However,
if the node is a camera node, we don’t want to apply that modeling transform; we want to
apply its inverse as a viewing transform. To get the inverse, we can start at the camera node
and follow the path backwards, applying the inverse of the modeling transform at each node.

4.4. LIGHTS, CAMERA, ACTION 171

R

S

T

camera

� ����� graph, actually

a tree, containing a camera

����� �� �� ��d T represent

modeling transformations

applied to nodes in the graph.

The modeling transformation

applied to the camera �� ���.

The viewing transfomation is

the inverse, T -1 S -1 R -1, which

can be obtained by following

parent pointers from the

camera node.

To easily implement this, we can add “parent pointers” to the scene graph data structure. A
parent pointer for a node is a link to the parent of that node in the graph. Note that this only
works if the graph is a tree; in a tree, each node has a unique parent, but that is not true in a
general directed acyclic graph. It is possible to move up the tree by following parent pointers.

We this in mind, the algorithm for rendering the scene from the point of view of a camera
goes as follows: Set the modelview transform to be the identity, by calling glLoadIdentity().
Start at the camera node, and follow parent pointers until you reach the root of the tree. At
each node, apply the inverse of any modeling transformation in that node. (For example, if the
modeling transform is translation by (a,b,c), call glTranslatef (−a,−b,−c).) Upon reaching the
root, the viewing transform corresponding to the camera has been established. Now, traverse
the scene graph to render the scene as usual. During this traversal, camera nodes should be
ignored.

Note that a camera can be attached to an object, in the sense that the camera and the
object are both subject to the same modeling transformation and so move together as a unit.
In modeling terms, the camera and the object are sub-objects in a complex object. For example,
a camera might be attached to a car to show the view through the windshield of that car. If
the car moves, because its modeling transformation changes, the camera will move along with
it.

4.4.3 Moving Light

It can also be useful to think of lights as objects, even as part of a complex object. Suppose
that a scene includes a model of a lamp. The lamp model would include some geometry to
make it visible, but if it is going to cast light on other objects in the scene, it also has to include
a source of light. This means that the lamp is a complex object made up of an OpenGL light
source plus some geometric objects. Any modeling transformation that is applied to the lamp
should affect the light source as well as the geometry. In terms of the scene graph, the light
is represented by a node in the graph, and it is affected by modeling transformations in the
same way as other objects in the scene graph. You can even have animated lights—or animated
objects that include lights as sub-objects, such as the headlights on a car.

Recall from Subsection 4.2.3 that a light source is subject to the modelview transform that is
in effect at the time the position of the light source is set by glLightfv. If the light is represented
as a node in a scene graph, then the modelview transform that we need is the one that is in
effect when that node is encountered during a traversal of the scene graph. So, it seems like
we should just traverse the graph and set the position of the light when we encounter it during
the traversal.

172 CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL

But there is a problem: Before any geometry is rendered, all the light sources that might
affect that geometry must already be configured and enabled. In particular, the lights’ positions
must be set before rendering any geometry. This means that you can’t simply set the position
of light sources in the scene graph as you traverse the graph in the usual way. If you do that,
objects that are drawn before the light is encountered won’t be properly illuminated by the light.
Similarly, if the light node contains values for any other properties of the light, including the
enabled/disabled state of the light, those properties must be set before rendering any geometry.

One solution is to do two traversals of the scene graph, the first to set up the lights and the
second to draw the geometry. Since lights are affected by the modelview transformation, you
have to set up the modeling transform during the first traversal in exactly the same way that
you do in the second traversal. When you encounter the lights during the first traversal, you
need to set the position of the light, since setting the position is what triggers the application of
the current modelview transformation to the light. You also need to set any other properties of
the light. During the first traversal, geometric objects in the scene graph are ignored. During
the second traversal, when geometry is being rendered, light nodes can be ignored.

Chapter 5

Three.js: A 3D Scene Graph API

Chapter 3 and Chapter 4 introduced 3D graphics using OpenGL 1.1. Most of the ideas
covered in those chapters remain relevant to modern computer graphics, but there have been
many changes and improvements since the early days of OpenGL. In the remaining chapters, we
will be using WebGL, a modern version of OpenGL that is used to create 3D graphics content
for web pages.

WebGL is a low level language—even more so than OpenGL 1.1, since a WebGL program
has to handle a lot of the low-level implementation details that were handled internally in the
original version of OpenGL. This makes WebGL much more flexible, but more difficult to use.
We will soon turn to working directly with WebGL. However, before we do that, we will look
at a higher-level API for 3D web graphics that is built on top of WegGL: three.js. There are
several reasons for starting at this high level. It will allow you to see how some of the things
that you have learned are used in a modern object-oriented graphics package. It will allow me
to introduce some new features such as shadows and environment mapping. It will let you work
with a graphics library that you might use in real web applications. And it will be a break from
the low-level detail we have been dealing with, before we move on to an even lower level.

You can probably follow much of the discussion in this chapter without knowing JavaScript.
However, if you want to do any programming with three.js (or with WebGL), you need to know
JavaScript. The basics of the language are covered in Section A.3 in Appendix A.

5.1 Three.js Basics

Three.js is an object-oriented JavaScript library for 3D graphics. It is an open-source
project created by Ricardo Cabello (who goes by the handle “mr.doob”, https://mrdoob.com/),
with contributions from other programmers. It seems to be the most popular open-source
JavaScript library for 3D web applications. Three.js uses concepts that you are already familiar
with, such as geometric objects, transformations, lights, materials, textures, and cameras. But
it also has additional features that build on the power and flexibility of WegGL.

You can download three.js and read the documentation at its main web site,
https://threejs.org. The download is quite large, since it includes many examples and sup-
port files. In this book, I use Release 129 of the software, from June, 2021. Version 1.2 of
this book used Release 89. There have been a number of significant changes in the API since
that release, and many programs written for older releases will not run under Release 129. You
should be aware that some of the material about three.js that you might find on the Internet
does not apply to the most recent version.

173

174 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

One of the changes in three.js is that it is now written as a “modular” JavaScript program.
Modules are relatively independent components. A module only has access to an identifier from
another module if the identifier is explicitly “exported” by one module and “imported” by the
other. You will see modules used in many three.js examples, which include the appropriate
input and export commands. However, modules are not used in this textbook. It is possible to
build a non-modular Javascript program from modular source code, and it is the non-modular
version of three.js that is used in this textbook.

The core features of three.js are defined in a single large JavaScript file named “three.js”,
which can be found in a build directory in the three.js download. This version is designed to be
used with either modular or non-modular programs. There is also a smaller “minified” version,
three.min.js, that contains the same definitions in a format that is not meant to be human-
readable. To use three.js on a web page, you can load either script with a <script> element on
the page. For example, assuming that three.min.js is in the same folder as the web page, then
the script element would be:

<script src="three.min.js"></script>

In addition to this core, the three.js download has a directory containing many examples and
a variety of support files that are used in the examples. The examples use many features that
are not part of the three.js core. These add-ons can be found in a folder named js inside the
folder named examples in the download (or in a folder named jsm for the modular versions).
Several of the add-ons are used in this textbook.

Copies of three.js, three.min.js, and several add-on scripts can be found in the threejs folder
in the source folder of this textbook’s web site. The three.js license allows these files to be
freely redistributed. But if you plan to do any serious work with three.js, you should read the
documentation on its web site about how to use it and how to deploy it.

5.1.1 Scene, Renderer, Camera

Three.js works with the HTML <canvas> element, the same thing that we used for 2D graphics
in Section 2.6. In almost all web browsers, in addition to its 2D Graphics API, a canvas also
supports drawing in 3D using WebGL, which is used by three.js and which is about as different
as it can be from the 2D API.

Three.js is an object-oriented scene graph API. (See Subsection 2.4.2.) The basic procedure
is to build a scene graph out of three.js objects, and then to render an image of the scene it
represents. Animation can be implemented by modifying properties of the scene graph between
frames.

The three.js library is made up of a large number of classes. Three of the most
basic are THREE.Scene, THREE.Camera, and THREE.WebGLRenderer. (There are actually
several renderer classes available. THREE.WebGLRenderer is by far the most common. It
uses WebGL 2.0 if available, but can also use WebGL 1.0 if not. One alternative is
THREE.WebGL1Renderer, with a “1” in the name, which forces the use of WebGL 1.0.) A three.js
program will need at least one object of each type. Those objects are often stored in global
variables

let scene, renderer, camera;

Note that almost all of the three.js classes and constants that we will use are properties of
an object named THREE, and their names begin with “THREE.”. I will sometimes refer to
classes without using this prefix, and it is not usually used in the three.js documentation, but
the prefix must always be included in actual program code.

5.1. THREE.JS BASICS 175

A Scene object is a holder for all the objects that make up a 3D world, including lights,
graphical objects, and possibly cameras. It acts as a root node for the scene graph. A Camera

is a special kind of object that represents a viewpoint from which an image of a 3D world
can be made. It represents a combination of a viewing transformation and a projection. A
WebGLRenderer is an object that can create an image from a scene graph.

The scene is the simplest of the three objects. A scene can be created as an object of type
THREE.Scene using a constructor with no parameters:

scene = new THREE.Scene();

The function scene.add(item) can be used to add cameras, lights, and graphical objects to
the scene. It is probably the only scene function that you will need to call. The function
scene.remove(item), which removes an item from the scene, is also occasionally useful.

∗ ∗ ∗

There are two kinds of camera, one using orthographic projection and one using
perspective projection. They are represented by classes THREE.OrthographicCamera and
THREE.PerspectiveCamera, which are subclasses of THREE.Camera. The constructors specify
the projection, using parameters that are familiar from OpenGL (see Subsection 3.3.3):

camera = new THREE.OrthographicCamera(left, right, top, bottom, near, far);

or

camera = new THREE.PerspectiveCamera(fieldOfViewAngle, aspect, near, far);

The parameters for the orthographic camera specify the x, y, and z limits of the view volume,
in eye coordinates—that is, in a coordinate system in which the camera is at (0,0,0) looking
in the direction of the negative z -axis, with the y-axis pointing up in the view. The near and
far parameters give the z-limits in terms of distance from the camera. For an orthographic
projection, near can be negative, putting the “near” clipping plane in back of the camera. The
parameters are the same as for the OpenGL function glOrtho(), except for reversing the order
of the two parameters that specify the top and bottom clipping planes.

Perspective cameras are more common. The parameters for the perspective camera come
from the function gluPerspective() in OpenGL’s GLU library. The first parameter determines
the vertical extent of the view volume, given as an angle measured in degrees. The aspect is
the ratio between the horizontal and vertical extents; it should usually be set to the width of
the canvas divided by its height. And near and far give the z-limits on the view volume as
distances from the camera. For a perspective projection, both must be positive, with near less
than far. Typical code for creating a perspective camera would be:

camera = new THREE.PerspectiveCamera(45, canvas.width/canvas.height, 1, 100);

where canvas holds a reference to the <canvas> element where the image will be rendered. The
near and far values mean that only things between 1 and 100 units in front of the camera
are included in the image. Remember that using an unnecessarily large value for far or an
unnecessarily small value for near can interfere with the accuracy of the depth test.

A camera, like other objects, can be added to a scene, but it does not have to be part of the
scene graph to be used. You might add it to the scene graph if you want it to be a parent or
child of another object in the graph. In any case, you will generally want to apply a modeling
transformation to the camera to set its position and orientation in 3D space. I will cover that
later when I talk about transformations more generally.

∗ ∗ ∗

176 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

A renderer is an instance of the class THREE.WebGLRenderer (or THREE.WebGL1Renderer,
which is used in exactly the same way). Its constructor has one parameter, which is a JavaScript
object containing settings that affect the renderer. The settings you are most likely to specify
are canvas, which tells the renderer where to draw, and antialias, which asks the renderer to
use antialiasing if possible:

renderer = new THREE.WebGLRenderer({

canvas: theCanvas,

antialias: true

});

Here, theCanvas would be a reference to the <canvas> element where the renderer will display
the images that it produces. (Note that the technique of having a JavaScript object as a
parameter is used in many three.js functions. It makes it possible to support a large number of
options without requiring a long list of parameters that must all be specified in some particular
order. Instead, you only need to specify the options for which you want to provide non-default
values, and you can specify those options by name, in any order.)

The main thing that you want to do with a renderer is render an image. For that, you also
need a scene and a camera. To render an image of a given scene from the point of view of a
given camera, call

renderer.render(scene, camera);

This is really the central command in any three.js application.

(I should note that most of the examples that I have seen do not provide a canvas to the
renderer; instead, they allow the renderer to create it. The canvas can then be obtained from
the renderer and added to the page. Furthermore, the canvas typically fills the entire browser
window. The sample program threejs/full-window.html shows how to do that. However, all of
my other examples use an existing canvas, with the renderer constructor shown above.)

5.1.2 THREE.Object3D

A three.js scene graph is made up of objects of type THREE.Object3D (including objects that
belong to subclasses of that class). Cameras, lights, and visible objects are all represented by
subclasses of Object3D. In fact, THREE.Scene itself is also a subclass of Object3D.

Any Object3D contains a list of child objects, which are also of type Object3D. The child lists
define the structure of the scene graph. If node and object are of type Object3D, then the method
node.add(object) adds object to the list of children of node. The method node.remove(object)
can be used to remove an object from the list.

A three.js scene graph must, in fact, be a tree. That is, every node in the graph has a unique
parent node, except for the root node, which has no parent. An Object3D, obj, has a property
obj.parent that points to the parent of obj in the scene graph, if any. You should never set this
property directly. It is set automatically when the node is added to the child list of another
node. If obj already has a parent when it is added as a child of node, then obj is first removed
from the child list of its current parent before it is added to the child list of node.

The children of an Object3D, obj, are stored in a property named obj.children, which is an
ordinary JavaScript array. However, you should always add and remove children of obj using
the methods obj.add() and obj.remove().

To make it easy to duplicate parts of the structure of a scene graph, Object3D defines a
clone() method. This method copies the node, including the recursive copying of the children

5.1. THREE.JS BASICS 177

of that node. This makes it easy to include multiple copies of the same structure in a scene
graph:

let node = THREE.Object3D();

.

. // Add children to node.

.

scene.add(node);

let nodeCopy1 = node.clone();

.

. // Modify nodeCopy1, maybe apply a transformation.

.

scene.add(nodeCopy1)

let nodeCopy2 = node.clone();

.

. // Modify nodeCopy2, maybe apply a transformation.

.

scene.add(nodeCopy2);

An Object3D, obj, has an associated transformation, which is given by properties obj.scale,
obj.rotation, and obj.position. These properties represent a modeling transformation to be
applied to the object and its children when the object is rendered. The object is first scaled,
then rotated, then translated according to the values of these properties. (Transformations are
actually more complicated than this, but we will keep things simple for now and will return to
the topic later.)

The values of obj.scale and obj.position are objects of type THREE.Vector3. A Vector3

represents a vector or point in three dimensions. (There are similar classes THREE.Vector2 and
THREE.Vector4 for vectors in 2 and 4 dimensions.) A Vector3 object can be constructed from
three numbers that give the coordinates of the vector:

let v = new THREE.Vector3(17, -3.14159, 42);

This object has properties v.x, v.y, and v.z representing the coordinates. The properties can
be set individually; for example: v.x = 10. They can also be set all at once, using the method
v.set(x,y,z). The Vector3 class also has many methods implementing vector operations such as
addition, dot product, and cross product.

For an Object3D, the properties obj.scale.x, obj.scale.y, and obj.scale.z give the amount of
scaling of the object in the x, y, and z directions. The default values, of course, are 1. Calling

obj.scale.set(2,2,2);

means that the object will be subjected to a uniform scaling factor of 2 when it is rendered.
Setting

obj.scale.y = 0.5;

will shrink it to half-size in the y-direction only (assuming that obj.scale.x and obj.scale.z still
have their default values).

Similarly, the properties obj.position.x, obj.position.y, and obj.position.z give the translation
amounts that will be applied to the object in the x, y, and z directions when it is rendered. For
example, since a camera is an Object3D, setting

camera.position.z = 20;

178 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

means that the camera will be moved from its default position at the origin to the point
(0,0,20) on the positive z -axis. This modeling transformation on the camera becomes a viewing
transformation when the camera is used to render a scene.

The object obj.rotation has properties obj.rotation.x, obj.rotation.y, and obj.rotation.z that
represent rotations about the x-, y-, and z-axes. The angles are measured in radians. The
object is rotated first about the x-axis, then about the y-axis, then about the z-axis. (It is
possible to change this order.) The value of obj.rotation is not a vector. Instead, it belongs to
a similar type, THREE.Euler, and the angles of rotation are called Euler angles.

5.1.3 Object, Geometry, Material

A visible object in three.js is made up of either points, lines, or triangles. An individual object
corresponds to an OpenGL primitive such as GL POINTS, GL LINES, or GL TRIANGLES
(see Subsection 3.1.1). There are five classes to represent these possibilities: THREE.Points

for points, THREE.Mesh for triangles, and three classes for lines: THREE.Line, which uses the
GL LINE STRIP primitive; THREE.LineSegments, which uses the GL LINES primitive; and
THREE.LineLoop, which uses the GL LINE LOOP primitive.

A visible object is made up of some geometry plus a material that determines the appearance
of that geometry. In three.js, the geometry and material of a visible object are themselves
represented by JavaScript classes THREE.BufferGeometry and THREE.Material.

An object of type THREE.BufferGeometry can store vertex coordinates and their attributes.
(In fact, the vertex coordinates are also considered to be an “attribute” of the geometry.) These
values must be stored in a form suitable for use with the OpenGL functions glDrawArrays and
glDrawElements (see Subsection 3.4.2). For JavaScript, this means that they must be stored
in typed arrays. A typed array is similar to a normal JavaScript array, except that its length
is fixed and it can only hold numerical values of a certain type. For example, a Float32Array

holds 32-bit floating point numbers, and a UInt16Array holds unsigned 16-bit integers. A typed
array can be created with a constructor that specifies the length of the array. For example,

vertexCoords = new Float32Array(300); // Space for 300 numbers.

Alternatively, the constructor can take an ordinary JavaScript array of numbers as its
parameter. This creates a typed array that holds the same numbers. For example,

data = new Float32Array([1.3, 7, -2.89, 0, 3, 5.5]);

In this case, the length of data is six, and it contains copies of the numbers from the JavaScript
array.

Specifying the vertices for a BufferGeometry is a multistep process. You need to create a
typed array containing the coordinates of the vetices. Then you need to wrap that array inside
an object of type THREE.BufferAttribute. Finally, you can add the attribute to the geometry.
Here is an example:

let vertexCoords = new Float32Array([0,0,0, 1,0,0, 0,1,0]);

let vetexAttrib = new THREE.BufferAttribute(vertexCoords, 3);

let geometry = new THREE.BufferGeometry();

geometry.setAttribute("position", vertexAttrib);

The second parameter to the BufferGeometry constructor is an integer that tells three.js the
number of coordinates of each vertex. Recall that a vertex can be specified by 2, 3, or 4
coordinates, and you need to specify how many numbers are provided in the array for each
vertex. Turning to the setAttribute() function, a BufferGeometry can have attributes specifying

5.1. THREE.JS BASICS 179

color, normal vectors, and texture coordinates, as well as other custom attributes. The first
parameter to setAttribute() is the name of the attribute. Here, “position” is the name of the
attribute that specifies the coordinates, or position, of the vertices.

Similarly, to specify a color for each vertex, you can put the RGB components of the colors
into a Float32Array, and use that to specify a value for the BufferGeometry attribute named
“color”.

For a specific example, suppose that we want to represent a primitive of type GL POINTS,
using a three.js object of type THREE.Points. Let’s say we want 10000 points placed at random
inside the unit sphere, where each point can have its own random color. Here is some code that
creates the necessary BufferGeometry :

let pointsBuffer = new Float32Array(30000); // 3 numbers per vertex!

let colorBuffer = new Float32Array(30000);

let i = 0;

while (i < 10000) {

let x = 2*Math.random() - 1;

let y = 2*Math.random() - 1;

let z = 2*Math.random() - 1;

if (x*x + y*y + z*z < 1) {

// only use points inside the unit sphere

pointsBuffer[3*i] = x;

pointsBuffer[3*i+1] = y;

pointsBuffer[3*i+2] = z;

colorBuffer[3*i] = 0.25 + 0.75*Math.random();

colorBuffer[3*i+1] = 0.25 + 0.75*Math.random();

colorBuffer[3*i+2] = 0.25 + 0.75*Math.random();

i++;

}

}

let pointsGeom = new THREE.BufferGeometry();

pointsGeom.setAttribute("position",

new THREE.BufferAttribute(pointsBuffer,3));

pointsGeom.setAttribute("color",

new THREE.BufferAttribute(colorBuffer,3));

∗ ∗ ∗

In three.js, to make some geometry into a visible object, we also need an appropriate
material. For example, for an object of type THREE.Points, we can use a material of type
THREE.PointsMaterial, which is a subclass of Material. The material can specify the color and
the size of the points, among other properties:

let pointsMat = new THREE.PointsMaterial({

color: "yellow",

size: 2,

sizeAttenuation: false

});

The parameter to the constructor is a JavaScript object whose properties are used to initialize
the material. With the sizeAttenuation property set to false, the size is given in pixels; if it is
true, then size represents the size in world coordinates and the point is scaled to reflect distance
from the viewer. If the color is omitted, a default value of white is used. The default for size
is 1 and for sizeAttenuation is true. The parameter to the constructor can be omitted entirely,

180 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

to use all the defaults. A PointsMaterial is not affected by lighting; it simply shows the color
specified by its color property.

It is also possible to assign values to properties of the material after the object has been
created. For example,

let pointsMat = new THREE.PointsMaterial();

pointsMat.color = new THREE.Color("yellow");

pointsMat.size = 2;

pointsMat.sizeAttenuation = false;

Note that the color is set as a value of type THREE.Color, which is constructed from a string,
“yellow”. When the color property is set in the material constructor, the same conversion of
string to color is done automatically.

Once we have the geometry and the material, we can use them to create the visible object,
of type THREE.Points, and add it to a scene:

let sphereOfPoints = new THREE.Points(pointsGeom, pointsMat);

scene.add(sphereOfPoints);

This will show a cloud of yellow points. But we wanted each point to have its own color! Recall
that the colors for the points are stored in the geometry, not in the material. We have to tell
the material to use the colors from the geometry, not the material’s own color property. This
is done by setting the value of the material property vertexColors to true. So, we could create
the material using

let pointsMat = new THREE.PointsMaterial({

color: "white",

size: 2,

sizeAttenuation: false,

vertexColors: true

});

White is used here as the material color because the vertex colors are actually multiplied
by the material color, not simply substituted for it.

The on-line demo c5/point-cloud.html shows an animated point cloud, where the user can
choose between yellow points and randomly colored points.

∗ ∗ ∗

The color parameter in the above material was specified by the string “yellow”. Colors in
three.js can be represented by values of type THREE.Color. The class THREE.Color represents
an RGB color. A Color object c has properties c.r, c.g, and c.b giving the red, blue, and green
color components as floating point numbers in the range from 0.0 to 1.0. Note that there is no
alpha component; three.js handles transparency separately from color.

There are several ways to construct a THREE.Color object. The constructor can take three
parameters giving the RGB components as real numbers in the range 0.0 to 1.0. It can take a
single string parameter giving the color as a CSS color string, like those used in the 2D canvas
graphics API; examples include “white”, “red”, “rgb(255,0,0)”, and “#FF0000”. Or the color
constructor can take a single integer parameter in which each color component is given as
an eight-bit field in the integer. Usually, an integer that is used to represent a color in this
way is written as a hexadecimal literal, beginning with “0x”. Examples include 0xff0000 for
red, 0x00ff00 for green, 0x0000ff for blue, and 0x007050 for a dark blue-green. Here are some
examples of using color constructors:

5.1. THREE.JS BASICS 181

let c1 = new THREE.Color("skyblue");

let c2 = new THREE.Color(1,1,0); // yellow

let c3 = new THREE.Color(0x98fb98); // pale green

In many contexts, such as the THREE.Points constructor, three.js will accept a string or
integer where a color is required; the string or integer will be fed through the Color constructor.
As another example, a WebGLRenderer object has a “clear color” property that is used as the
background color when the renderer renders a scene. This property could be set using any of
the following commands:

renderer.setClearColor(new THREE.Color(0.6, 0.4, 0.1));

renderer.setClearColor("darkgray");

renderer.setClearColor(0x99BBEE);

∗ ∗ ∗

Turning next to lines, an object of type THREE.Line represents a a line strip—what would
be a primitive of the type called GL LINE STRIP in OpenGL. To get the same strip of
connected line segments, plus a line back to the starting vertex, we can use an object of type
THREE.LineLoop. For the outline of a triangle, for example, we could provide a BufferGeometry

holding coordinates for three points and use a LineLoop.
We will also need a material. For lines, the material can be represented by an object of type

THREE.LineBasicMaterial. As usual, the parameter for the constructor is a JavaScript object,
whose properties can include color and linewidth. For example:

let lineMat = new THREE.LineBasicMaterial({

color: 0xA000A0, // purple; the default is white

linewidth: 2 // 2 pixels; the default is 1

});

(The three.js documentation says that the linewidth property might not be respected. Curiously,
on my computer, it was respected by a WebGL1Renderer but not by a WebGLRenderer.)

As with points, it is possible to specify a different color for each purpose by adding a “color”
attribute to the geometry and setting the value of the vertexColors material property to true.
Here is a complete example that makes a triangle with vertices colored red, green, and blue:

let positionBuffer = new Float32Array([

-2, -2, // Coordinates for first vertex.

2, -2, // Coordinates for second vertex.

0, 2 // Coordinates for third vertex.

]);

let colorBuffer = new Float32Array([

1, 0, 0, // Color for first vertex (red).

0, 1, 0, // Color for second vertex (green).

0, 0, 1 // Color for third vertex (blue).

]);

let lineGeometry = new THREE.BufferGeometry();

lineGeometry.setAttribute(

"position",

new THREE.BufferAttribute(positionBuffer,2)

);

lineGeometry.setAttribute(

"color",

new THREE.BufferAttribute(colorBuffer,3)

);

182 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

let lineMaterial = new THREE.LineBasicMaterial({

linewidth: 3,

vertexColors: true

});

let triangle = new THREE.LineLoop(lineGeometry, lineMaterial);

scene.add(triangle);

This produces the image:

The “Basic” in LineBasicMaterial indicates that this material uses basic colors that do not
require lighting to be visible and are not affected by lighting. This is generally what you want
for lines.

∗ ∗ ∗

A mesh object in three.js corresponds to the OpenGL primitive GL TRIANGLES. The
geometry object for a mesh must specify which vertices are part of which triangles. We will see
how to do that in the next section. However, three.js comes with classes to represent common
mesh geometries, such as a sphere, a cylinder, and a torus. For these built-in classes, you
just need to call a constructor to create the appropriate geometry. For example, the class
THREE.CylinderGeometry represents the geometry for a cylinder, and its constructor takes the
form

new THREE.CylinderGeometry(radiusTop, radiusBottom, height,

radiusSegments, heightSegments, openEnded, thetaStart, thetaLength)

The geometry created by this constructor represents an approximation for a cylinder that has
its axis lying along the y-axis. It extends from from −height/2 to height/2 along that axis.
The radius of its circular top is radiusTop and of its bottom is radiusBottom. The two radii
don’t have to be the same; when the are different, you get a truncated cone rather than a
cylinder as such. Using a value of zero for radiusTop makes an actual cone. The parameters
radiusSegments and heightSegments give the number of subdivisions around the circumference
of the cylinder and along its length respectively—what are called slices and stacks in the GLUT
library for OpenGL. The parameter openEnded is a boolean value that indicates whether the
top and bottom of the cylinder are to be drawn; use the value true to get an open-ended tube.
Finally, the last two parameters allow you to make a partial cylinder. Their values are given
as angles, measured in radians, about the y-axis. Only the part of the cylinder beginning at
thetaStart and ending at thetaStart plus thetaLength is rendered. For example, if thetaLength
is Math.PI, you will get a half-cylinder.

The large number of parameters to the constructor gives a lot of flexibility. The parameters
are all optional but it’s probably best to include at least the first three since the default size is
rather large, and the default for radiusSegments is 8, which gives a poor approximation for a
smooth cylinder.

5.1. THREE.JS BASICS 183

Other standard mesh geometries are similar. Here are some constructors, listing all
parameters (but keep in mind that most of the parameters are optional):

new THREE.BoxGeometry(width, height, depth,

widthSegments, heightSegments, depthSegments)

new THREE.PlaneGeometry(width, height, widthSegments, heightSegments)

new THREE.RingGeometry(innerRadius, outerRadius, thetaSegments, phiSegments,

thetaStart, thetaLength)

new THREE.ConeGeometry(radiusBottom, height, radiusSegments,

heightSegments, openEnded, thetaStart, thetaLength)

new THREE.SphereGeometry(radius, widthSegments, heightSegments,

phiStart, phiLength, thetaStart, thetaLength)

new THREE.TorusGeometry(radius, tube, radialSegments, tubularSegments, arc)

The class BoxGeometry represents the geometry of a rectangular box centered at the origin.
Its constructor has three parameters to give the size of the box in each direction; these are
not optional. The last three parameters are optional. They give the number of subdivisions in
each direction, with a default of 1; values greater than one will cause the faces of the box to be
subdivided into smaller triangles.

The class PlaneGeometry represents the geometry of a rectangle lying in the xy-plane,
centered at the origin. Its parameters are similar to those for a cube. A RingGeometry represents
an annulus, that is, a disk with a smaller disk removed from its center. The ring lies in the
xy-plane, with its center at the origin. You should always specify the inner and outer radii of
the ring.

The constructor for ConeGeometry has exactly the same form and effect as the constructor
for CylinderGeometry, with the radiusTop set to zero. That is, it constructs a cone with axis
along the y-axis and centered at the origin.

For SphereGeometry, all parameters are optional. The constructor creates a sphere centered
at the origin, with axis along the y-axis. The first parameter, which gives the radius of the
sphere, has a default of 50 (which is usually too big). The next two parameters give the numbers
of slices and stacks (with default values that are usually too small). The last four parameters
allow you to make a piece of a sphere; the default values give a complete sphere. The four
parameters are angles measured in radians. phiStart and phiLength are measured in angles
around the equator and give the extent in longitude of the spherical shell that is generated. For
example,

new THREE.SphereGeometry(5, 32, 16, 0, Math.PI)

creates the geometry for the “western hemisphere” of a sphere. The last two parameters are
angles measured along a line of latitude from the north pole of the sphere to the south pole.
For example, to get the sphere’s “northern hemisphere”:

new THREE.SphereGeometry(5, 32, 16, 0, 2*Math.PI, 0, Math.PI/2)

For TorusGeometry, the constructor creates a torus lying in the xy-plane, centered at the
origin, with the z -axis passing through its hole. The parameter radius is the distance from the
center of the torus to the center of the torus’s tube, while tube is the radius of the tube. The
next two parameters give the number of subdivisions in each direction. The last parameter,
arc, allows you to make just part of a torus. It is an angle between 0 and 2*Math.PI, measured
along the circle at the center of the tube.

184 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

There are also geometry classes representing the regular polyhedra: THREE.TetrahedronGeometry,
THREE.OctahedronGeometry, THREE.DodecahedronGeometry, and THREE.IcosahedronGeometry.
(For a cube use a BoxGeometry.) The constructors for these four classes take two parameters.
The first specifies the size of the polyedron, with a default of 1. The size is given as the radius
of the sphere that contains the polyhedron. The second parameter is an integer called detail.
The default value, 0, gives the actual regular polyhedron. Larger values add detail by adding
additional faces. As the detail increases, the polyhedron becomes a better approximation for a
sphere. This is easier to understand with an illustration:

The image shows four mesh objects that use icosahedral geometries with detail parameter equal
to 0, 1, 2, and 3.

∗ ∗ ∗

To create a mesh object, you need a material as well as a geometry. There are
several kinds of material suitable for mesh objects, including THREE.MeshBasicMaterial,
THREE.MeshLambertMaterial, and THREE.MeshPhongMaterial. (There are also two newer mesh
materials, THREE.MeshStandardMaterial and THREE.MeshPhysicalMaterial, that implement
techniques associated with physically based rendering, an approach to improved rendering that
has become popular. However, I will not cover them here.)

A MeshBasicMaterial represents a color that is not affected by lighting; it looks the same
whether or not there are lights in the scene, and it is not shaded, giving it a flat rather than
3D appearance. The other two classes represent materials that need to be lit to be seen. They
implement models of lighting known as Lambert shading and Phong shading . The major
difference is that MeshPhongMaterial has a specular color but MeshLambertMaterial does not.
Both can have diffuse and emissive colors. For all three material classes, the constructor has
one parameter, a JavaScript object that specifies values for properties of the material. For
example:

let mat = new THREE.MeshPhongMaterial({

color: 0xbbbb00, // reflectivity for diffuse and ambient light

emissive: 0, // emission color; this is the default (black)

specular: 0x070707, // reflectivity for specular light

shininess: 50 // controls size of specular highlights

});

This example shows the four color parameters for a Phong material. The parameters have
the same meaning as the five material properties in OpenGL (Subsection 4.1.1). A Lambert
material lacks specular and shininess, and a basic mesh material has only the color parameter.

There are a few other material properties that you might need to set in the constructor.
Except for flatShading, these apply to all three kinds of mesh material:

• vertexColors — a boolean property that can be set to true to use vertex colors from the
geometry. The default is false.

5.1. THREE.JS BASICS 185

• wireframe — a boolean value that indicates whether the mesh should be drawn as a
wireframe model, showing only the outlines of its faces. The default is false. A true value
works best with MeshBasicMaterial.

• wireframeLinewidth — the width of the lines used to draw the wireframe, in pixels. The
default is 1. (Non-default values might not be respected.)

• visible— a boolean value that controls whether the object on which it is used is rendered
or not, with a default of true.

• side — has value THREE.FrontSide, THREE.BackSide, or THREE.DoubleSide, with
the default being THREE.FrontSide. This determines whether faces of the mesh are
drawn or not, depending on which side of the face is visible. With the default
value, THREE.FrontSide, a face is drawn only if it is being viewed from the front.
THREE.DoubleSide will draw it whether it is viewed from the front or from the back,
and THREE.BackSide only if it is viewed from the back. For closed objects, such as a
cube or a complete sphere, the default value makes sense, at least as long as the viewer is
outside of the object. For a plane, an open tube, or a partial sphere, the value should be
set to THREE.DoubleSide. Otherwise, parts of the object that should be in view won’t
be drawn.

• flatShading — a boolean value, with the default being false. This works only for
MeshPhongMaterial. For an object that is supposed to look “faceted,” with flat sides,
it is important to set this property to true. That would be the case, for example, for a
cube or for a cylinder with a small number of sides.

As an example, let’s make a shiny, blue-green, open, five-sided tube with flat sides:

let mat = new THREE.MeshPhongMaterial({

color: 0x0088aa,

specular: 0x003344,

shininess: 100,

flatShading: true, // for flat-looking sides

side: THREE.DoubleSide // for drawing the inside of the tube

});

let geom = new THREE.CylinderGeometry(3,3,10,5,1,true);

let obj = new THREE.Mesh(geom,mat);

scene.add(obj);

The on-line demo c5/mesh-objects.html lets you view a variety of three.js mesh objects with
several different materials.

The demo can show a wireframe version of an object overlaid on a solid version. In three.js,
the wireframe and solid versions are actually two objects that use the same geometry but
different materials. Drawing two objects at exactly the same depth can be a problem for the
depth test. You might remember from Subsection 3.4.1 that OpenGL uses polygon offset to
solve the problem. In three.js, you can apply polygon offset to a material. In the demos, this
is done for the solid materials that are shown at the same time as wireframe materials. For
example,

mat = new THREE.MeshLambertMaterial({

polygonOffset: true,

polygonOffsetUnits: 1,

polygonOffsetFactor: 1,

color: "yellow",

side: THREE.DoubleSide

186 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

});

The settings shown here for polygonOffset, polygonOffsetUnits, and polygonOffsetFactor will
increase the depth of the object that uses this material slightly so that it doesn’t interfere with
the wireframe version of the same object.

One final note: You don’t always need to make new materials and geometries to make new
objects. You can reuse the same materials and geometries in multiple objects.

5.1.4 Lights

Compared to geometries and materials, lights are easy! Three.js has several classes to represent
lights. Light classes are subclasses of THREE.Object3D. A light object can be added to a scene
and will then illuminate objects in the scene. We’ll look at directional lights, point lights,
ambient lights, and spotlights.

The class THREE.DirectionalLight represents light that shines in parallel rays from a given
direction, like the light from the sun. The position property of a directional light gives the
direction from which the light shines. (This is the same position property, of type Vector3,
that all scene graph objects have, but the meaning is different for directional lights.) Note that
the light shines from the given position towards the origin. The default position is the vector
(0,1,0), which gives a light shining down the y-axis. The constructor for this class has two
parameters:

new THREE.DirectionalLight(color, intensity)

where color specifies the color of the light, given as a THREE.Color object, or as a hexadecimal
integer, or as a CSS color string. Lights do not have separate diffuse and specular colors, as
they do in OpenGL. The intensity is a non-negative number that controls the brightness of the
light, with larger values making the light brighter. A light with intensity zero gives no light
at all. The parameters are optional. The default for color is white (0xffffff) and for intensity
is 1. The intensity can be greater than 1, but values less than 1 are usually preferable, to avoid
having too much illumination in the scene.

Suppose that we have a camera on the positive z -axis, looking towards the origin, and we
would like a light that shines in the same direction that the camera is looking. We can use a
directional light whose position is on the positive z -axis:

let light = new THREE.DirectionalLight(); // default white light

light.position.set(0, 0, 1);

scene.add(light);

The class THREE.PointLight represents a light that shines in all directions from a point.
The location of the point is given by the light’s position property. The constructor has three
optional parameters:

new THREE.PointLight(color, intensity, cutoff)

The first two parameters are the same as for a directional light, with the same defaults.
The cutoff is a non-negative number. If the value is zero—which is the default—then the
illumination from the light extends to infinity, and intensity does not decrease with distance.
While this is not physically realistic, it generally works well in practice. If cutoff is greater
than zero, then the intensity falls from a maximum value at the light’s position down to an
intensity of zero at a distance of cutoff from the light; the light has no effect on objects that
are at a distance greater than cutoff. This falloff of light intensity with distance is referred to
as attenuation of the light source.

5.1. THREE.JS BASICS 187

A third type of light is THREE.AmbientLight. This class exists to add ambient light to a
scene. An ambient light has only a color:

new THREE.AmbientLight(color)

Adding an ambient light object to a scene adds ambient light of the specified color to the scene.
The color components of an ambient light should be rather small to avoid washing out colors
of objects.

For example, suppose that we would like a yellowish point light at (10,30,15) whose
illumination falls off with distance from that point, out to a distance of 100 units. We also
want to add a bit of yellow ambient light to the scene:

let light = new THREE.PointLight(0xffffcc, 1, 100);

light.position.set(10, 30, 15);

scene.add(light);

scene.add(new THREE.AmbientLight(0x111100));

∗ ∗ ∗

The fourth type of light, THREE.SpotLight, is something new for us. An object of that type
represents a spotlight , which is similar to a point light, except that instead of shining in all
directions, a spotlight only produces a cone of light. The vertex of the cone is located at the
position of the light. By default, the axis of the cone points from that location towards the
origin (so unless you change the direction of the axis, you should move the position of the light
away from the origin). The constructor adds two parameters to those for a point light:

new THREE.SpotLight(color, intensity, cutoff, coneAngle, exponent)

The coneAngle is a number between 0 and Math.PI/2 that determines the size of the cone of
light. It is the angle between the axis of the cone and the side of the cone. The default value is
Math.PI/3. The exponent is a non-negative number that determines how fast the intensity of
the light decreases as you move from the axis of the cone toward the side. The default value,
10, gives a reasonable result. An exponent of zero gives no falloff at all, so that objects at all
distances from the axis are evenly illuminated.

The technique for setting the direction of a three.js spotlight is a little odd, but it does
make it easy to control the direction. An object spot of type SpotLight has a property named
spot.target. The target is a scene graph node. The cone of light from the spotlight is pointed in
the direction from spotlight’s position towards the target’s position. When a spotlight is first
created, its target is a new, empty Object3D, with position at (0,0,0). However, you can set the
target to be any object in the scene graph, which will make the spotlight shine towards that
object. For three.js to calculate the spotlight direction, a target whose position is anything
other than the origin must actually be a node in the scene graph. For example, suppose we
want a spotlight located at the point (0,0,5) and pointed towards the point (2,2,0):

spotlight = new THREE.SpotLight();

spotlight.position.set(0,0,5);

spotlight.target.position.set(2,2,0);

scene.add(spotlight);

scene.add(spotlight.target);

The interaction of spotlights with material illustrates an important difference between Phong
and Lambert shading. With a MeshLambertMaterial, the lighting equation is applied at the
vertices of a primitive, and the vertex colors computed by that equation are then interpolated to
calculate colors for the pixels in the primitive. With MeshPhongMaterial, on the other hand, the

188 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

lighting equation is applied at each individual pixel. The following illustration shows what can
happen when we shine a spotlight onto a square that was created using THREE.PlaneGeometry :

Phong Shading

No subdivision

Lambert Shading

No subdivision

Lambert Shading

3 subdivisions

Lambert Shading

10 subdivisions

For the two squares on the left, the square was not subdivided; it is made up of two triangular
faces. The square at the far left, which uses Phong shading, shows the expected spotlight effect.
The spotlight is pointed at the center of the square. Note how the illumination falls off with
distance from the center. When I used the same square and spotlight with Lambert shading in
the second picture, I got no illumination at all! The vertices of the the square lie outside the
cone of light from the spotlight. When the lighting equation is applied, the vertices are black,
and the black color of the vertices is then applied to all the pixels in the square.

For the third and fourth squares in the illustration, plane geometries with horizontal and
vertical subdivisions were used with Lambert shading. In the third picture, the square is
divided into three subdivisions in each direction, giving 18 triangles, and the lighting equation
is applied only at the vertices of those triangles. The result is still a very poor approximation
for the correct illumination. In the fourth square, with 10 subdivisions in each direction, the
approximation is better but still not perfect.

The upshot is, if you want an object to be properly illuminated by a spotlight, use a
MeshPhongMaterial on the object, even if it has no specular reflection. A MeshLambertMaterial

will only give acceptable results if the faces of the object are very small.

5.1.5 A Modeling Example

In the rest of this chapter, we will go much deeper into three.js, but you already know enough
to build 3D models from basic geometric objects. An example is in the sample program
threejs/diskworld-1.html, which shows a very simple model of a car driving around the edge
of a cylindrical base. The car has rotating tires. The diskworld is shown in the picture on the
left below. The picture on the right shows one of the axles from the car, with a tire on each
end.

5.1. THREE.JS BASICS 189

I will discuss some of the code that is used to build these models. If you want to experiment
with your own models, you can use the program threejs/modeling-starter.html as a starting
point.

To start with something simple, let’s look at how to make a tree from a brown cylinder and
a green cone. I use an Object3D to represent the tree as a whole, so that I can treat it as a
unit. The two geometric objects are added as children of the Object3D.

let tree = new THREE.Object3D();

let trunk = new THREE.Mesh(

new THREE.CylinderGeometry(0.2,0.2,1,16,1),

new THREE.MeshLambertMaterial({

color: 0x885522

})

);

trunk.position.y = 0.5; // move base up to origin

let leaves = new THREE.Mesh(

new THREE.ConeGeometry(.7,2,16,3),

new THREE.MeshPhongMaterial({

color: 0x00BB00,

specular: 0x002000,

shininess: 5

})

);

leaves.position.y = 2; // move bottom of cone to top of trunk

tree.add(trunk);

tree.add(leaves);

The trunk is a cylinder with height equal to 1. Its axis lies along the y-axis, and it is centered
at the origin. The plane of the diskworld lies in the xz -plane, so I want to move the bottom
of the trunk onto that plane. This is done by setting the value of trunk.position.y, which
represents a translation to be applied to the trunk. Remember that objects have their own
modeling coordinate system. The properties of objects that specify transformations, such as
trunk.position, transform the object in that coordinate system. In this case, the trunk is part
of a larger, compound object that represents the whole tree. When the scene is rendered, the
trunk is first transformed by its own modeling transformation. It is then further transformed by
any modeling transformation that is applied to the tree as a whole. (This type of hierarchical
modeling was first covered in Subsection 2.4.1.)

Once we have a tree object, it can be added to the model that represents the diskworld.
In the program, the model is an object of type Object3D named diskworldModel. The model
will contain several trees, but the trees don’t have to be constructed individually. I can make
additional trees by cloning the one that I have already created. For example:

tree.position.set(-1.5,0,2);

tree.scale.set(0.7,0.7,0.7);

diskworldModel.add(tree.clone());

tree.position.set(-1,0,5.2);

tree.scale.set(0.25,0.25,0.25);

diskworldModel.add(tree.clone());

190 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

This adds two trees to the model, with different sizes and positions. When the tree is cloned,
the clone gets its own copies of the modeling transformation properties, position and scale.
Changing the values of those properties in the original tree object does not affect the clone.

Lets turn to a more complicated object, the axle and wheels. I start by creating a wheel,
using a torus for the tire and using three copies of a cylinder for the spokes. In this case,
instead of making a new Object3D to hold all the components of the wheel, I add the cylinders
as children of the torus. Remember that any screen graph node in three.js can have child nodes.

let wheel = new THREE.Mesh(// the tire; spokes will be added as children

new THREE.TorusGeometry(0.75, 0.25, 16, 32),

new THREE.MeshLambertMaterial({ color: 0x0000A0 })

);

let yellow = new THREE.MeshPhongMaterial({

color: 0xffff00,

specular: 0x101010,

shininess: 16

});

let cylinder = new THREE.Mesh(// a cylinder with height 1 and diameter 1

new THREE.CylinderGeometry(0.5,0.5,1,32,1),

yellow

);

cylinder.scale.set(0.15,1.2,0.15); // Make it thin and tall for use as a spoke.

wheel.add(cylinder.clone()); // Add a copy of the cylinder.

cylinder.rotation.z = Math.PI/3; // Rotate it for the second spoke.

wheel.add(cylinder.clone());

cylinder.rotation.z = -Math.PI/3; // Rotate it for the third spoke.

wheel.add(cylinder.clone());

Once I have the wheel model, I can use it along with one more cylinder to make the axle. For
the axle, I use a cylinder lying along the z -axis. The wheel lies in the xy-plane. It is facing in
the correct direction, but it lies in the center of the axle. To get it into its correct position at
the end of the axle, it just has to be translated along the z-axis.

axleModel = new THREE.Object3D(); // A model containing two wheels and an axle.

cylinder.scale.set(0.2,4.3,0.2); // Scale the cylinder for use as an axle.

cylinder.rotation.set(Math.PI/2,0,0); // Rotate its axis onto the z-axis.

axleModel.add(cylinder);

wheel.position.z = 2; // Wheels are positioned at the two ends of the axle.

axleModel.add(wheel.clone());

wheel.position.z = -2;

axleModel.add(wheel);

Note that for the second wheel, I add the original wheel model rather than a clone. There is no
need to make an extra copy. With the axleModel in hand, I can build the car from two copies
of the axle plus some other components.

The diskworld can be animated. To implement the animation, properties of the appropriate
scene graph nodes are modified before each frame of the animation is rendered. For example,
to make the wheels on the car rotate, the rotation of each axle about its z -axis is increased in
each frame:

carAxle1.rotation.z += 0.05;

carAxle2.rotation.z += 0.05;

5.2. BUILDING OBJECTS 191

This changes the modeling transformation that will be applied to the axles when they are
rendered. In its own coordinate system, the central axis of an axle lies along the z -axis. The
rotation about the z -axis rotates the axle, with its attached tires, about its axis.

For the full details of the sample program, see the source code.

5.2 Building Objects

In three.js, a visible object is constructed from a geometry and a material. We have
seen how to create simple geometries that are suitable for point and line primitives, and we
have encountered a variety of standard mesh geometries, such as THREE.CylinderGeometry and
THREE.IcosahedronGeometry, that use the GL TRIANGLES primitive. In this section, we will
see how to create new mesh geometries from scratch. We’ll also look at some of the other
support that three.js provides for working with objects and materials.

5.2.1 Polygonal Meshes and IFSs

A mesh in three.js is what we called a polygonal mesh in Section 3.4, although in a three.js
mesh, all of the polygons must be triangles. There are two ways to draw polygonal meshes
in WebGL. One uses the function glDrawArrays(), which requires just a list of vertices. The
other uses the representation that we called an indexed face set (IFS), which is drawn using the
function glDrawElements(). In addition to a list of vertices, an IFS uses a list of face indices to
specify the triangles. We will look at both methods, using this pyramid as an example:

V4=(0,1,0)

V1=(1,0,-1)

V0=(1,0,1)V3=(-1,0,1)

V2=(-1,0,-1)

Note that the bottom face of the pyramid, which is a square, has to be divided into two triangles
in order for the pyramid to be represented as a mesh geometry. The vertices are numbered from
0 to 4. A triangular face can be specified by the three numbers that give the vertex numbers
of the vertices of that triangle. As usual, the vertices of a triangle should be specified in
counterclockwise order when viewed from the front, that is, from outside the pyramid. Here is
the data that we need.

VERTEX COORDINATES: FACE INDICES:

Vertex 0: 1, 0, 1 Face 1: 3, 2, 1

Vertex 1: 1, 0, -1 Face 2: 3, 1, 0

Vertex 2: -1, 0, -1 Face 3: 3, 0, 4

Vertex 3: -1, 0, 1 Face 4: 0, 1, 4

Vertex 4: 0, 1, 0 Face 5: 1, 2, 4

Face 6: 2, 3, 4

A basic polygonal mesh representation does not use face indices. Instead, it specifies each
triangle by listing the coordinates of the vertices. This requires nine numbers—three numbers
per vertex—for the three vertices of the triangle. Since a vertex can be shared by several

192 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

triangles, there is some redundancy. For the pyramid, the coordinates for a vertex will be
repeated three or four times.

A three.js mesh object requires a geometry and a material. The geometry is an object
of type THREE.BufferedGeometry, which has a “position” attribute that holds the coordinates
of the vertices that are used in the mesh. The attribute uses a typed array that holds the
coordinates of the vertices of the triangles that make up the mesh. Geometry for the pyramid
can be created like this:

let pyramidVertices = new Float32Array([

// Data for the pyramidGeom "position" attribute.

// Contains the x,y,z coordinates for the vertices.

// Each group of three numbers is a vertex;

// each group of three vertices is one face.

-1,0,1, -1,0,-1, 1,0,-1, // First triangle in the base.

-1,0,1, 1,0,-1, 1,0,1, // Second triangle in the base.

-1,0,1, 1,0,1, 0,1,0, // Front face.

1,0,1, 1,0,-1, 0,1,0, // Right face.

1,0,-1, -1,0,-1, 0,1,0, // Back face.

-1,0,-1, -1,0,1, 0,1,0 // Left face.

]);

let pyramidGeom = new THREE.BufferGeometry();

pyramidGeom.setAttribute("position",

new THREE.BufferAttribute(pyramidVertices,3));

When this geometry is used with a Lambert or Phong material, normal vectors are required
for the vertices. If the geometry has no normal vectors, Lambert and Phong materials will
appear black. The normal vectors for a mesh have to be stored in another attribute of the
BufferedGeometry. The name of the attribute is “normal”, and it holds a normal vector for each
vertex in the “position” attribute. It could be created in the same way that the “position”
attribute is created, but a BufferedGeometry object includes a method for calculating normal
vectors. For the pyramidGeom, we can simply call

pyramidGeom.computeVertexNormals();

For a basic polygonal mesh, this will create normal vectors that are perpendicular to the faces.
When several faces share a vertex, that vertex will have a different normal vector for each face.
This will produce flat-looking faces, which are appropriate for a polyhedron, whose sides are
in fact flat. It is not appropriate if the polygonal mesh is being used to approximate a smooth
surface. In that case, we should be using normal vectors that are perpendicular to the surface,
which would mean creating the “normal” attribute by hand. (See Subsection 4.1.3.)

Once we have the geometry for our pyramid, we can use it in a three.js mesh object by
combining it with, say, a yellow Lambert material:

pyramid = new THREE.Mesh(

pyramidGeom,

new THREE.MeshLambertMaterial({ color: "yellow" })

);

But the pyramid would look a little boring with just one color. It is possible to use different
materials on different faces of a mesh. For that to work, the vertices in the geometry must be
divided into groups. The addGroup() method in the BufferedGeometry class is used to create
the groups. The vertices in the geometry are numbered 0, 1, 2, . . . , according their sequence
in the “position” attribute. (This is not the same numbering used above.) The addGroup()

5.2. BUILDING OBJECTS 193

method takes three parameters: the number of the first vertex in the group, the number of
vertices in the group, and a material index. The material index is an integer that determines
which material will be applied to the group. If you are using groups, it is important to put all
of the vertices into groups. Here is how groups can be created for the pyramid:

pyramidGeom.addGroup(0,6,0); // The base (2 triangles)

pyramidGeom.addGroup(6,3,1); // Front face.

pyramidGeom.addGroup(9,3,2); // Right face.

pyramidGeom.addGroup(12,3,3); // Back face.

pyramidGeom.addGroup(15,3,4); // Left face.

To apply different materials to different groups, the materials should be put into an array.
The material index of a group is an index into that array.

pyramidMaterialArray= [

// Array of materials, for use as pyramids’s material.

new THREE.MeshLambertMaterial({ color: 0xffffff }),

new THREE.MeshLambertMaterial({ color: 0x99ffff }),

new THREE.MeshLambertMaterial({ color: 0xff99ff }),

new THREE.MeshLambertMaterial({ color: 0xffff99 }),

new THREE.MeshLambertMaterial({ color: 0xff9999 })

];

This array can be passed as the second parameter to the THREE.Mesh constructor, where a
single material would ordinarily be used.

pyramid = new THREE.Mesh(pyramidGeom, pyramidMaterialArray);

(But note that you can still use a single material on a mesh, even if the mesh geometry uses
groups.)

A THREE.BoxGeometry comes with groups that make it possible to assign a different
material to each face. The sample program threejs/vertex-groups.html uses the code from
this section to create a pyramid, and it displays both the pyramid and a cube, using multiple
materials on each object. Here’s what they look like:

∗ ∗ ∗

There is another way to assign different colors to different vertices. A BufferedGeometry can
have an attribute named “color” that specifies a color for each vertex. The “color” attribute
uses an array containing a set of three RGB component values for each vertex. The vertex
colors are ignored by default. To use them, the geometry must be combined with a material in
which the vertexColors property is set to true. Here is how vertex colors could be used to color
the sides of the pyramid:

194 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

pyramidGeom.setAttribute(

"color",

new THREE.BufferAttribute(new Float32Array([

1,1,1, 1,1,1, 1,1,1, // Base vertices are white

1,1,1, 1,1,1, 1,1,1,

1,0,0, 1,0,0, 1,0,0, // Front face vertices are red,

0,1,0, 0,1,0, 0,1,0, // Right face vertices are green,

0,0,1, 0,0,1, 0,0,1, // Back face vertices are blue,

1,1,0, 1,1,0, 1,1,0 // Left face vertices are yellow.

]), 3)

);

pyramid = new THREE.Mesh(

pyramidGeom,

new THREE.MeshLambertMaterial({

color: "white",

vertexColors: true

})

);

The color components of the vertex colors from the geometry are actually multiplied by the
color components of the color in the Lambert material. It makes sense for that color to be
white, with color components equal to one; in that case the vertex colors are not modified by
the material color.

In this example, each face of the pyramid is a solid color. There is a lot of redundancy in
the color array for the pyramid, because a color must be specified for every vertex, even if all of
the vertex colors for a given face are the same. In fact, it’s not required that all of the vertices
of a face have the same color. If they are assigned different colors, colors will be interpolated
from the vertices to the interior of the face. As an example, in this image, a random vertex
color was specified for each vertex of an icosahedral approximation for a sphere:

The image is from a demo in the online version of this section. The demo can run two somewhat
silly animations; the vertex colors and the vertex positions can be animated.

∗ ∗ ∗

The glDrawElements() function is used to avoid the redundancy of the basic polygonal mesh
representation. It uses the indexed face set pattern, which requires an array of face indices to
specify the vertices for the faces of the mesh. In that array, a vertex is specified by a single
number, rather than repeating all of the coordinates and other data for that vertex. Note that a
given vertex number refers to all of the data for that vertex: vertex coordinates, normal vector,
vertex color, and any other data that are provided in attributes of the geometry. Suppose that
two faces share a vertex. If that vertex has a different normal vector, or a different value for

5.2. BUILDING OBJECTS 195

some other attribute, in the two faces, then that vector will need to occur twice in the attribute
arrays. The two occurrences can be combined only if the vertex has identical properties in the
two faces. The IFS representation is most suitable for a polygonal mesh that is being used as
an approximation for a smooth surface, since in that case a vertex has the same normal vector
for all of the vertices in which it occurs. It can also be appropriate for an object that uses a
MeshBasicMaterial, since normal vectors are not used with that type of material.

To use the IFS pattern with a BufferedGeometry, you need to provide a face index array for
the geometry. The array is specified by the geometry’s setIndex () method. The parameter can
be an ordinary JavaScript array of integers. For our pyramid example the “position” attribute
of the geometry would contain each vertex just once, and the face index array would refer to a
vertex by its position in that list of vertices:

pyramidVertices = new Float32Array([

1, 0, 1, // vertex number 0

1, 0, -1, // vertex number 1

-1, 0, -1, // vertex number 2

-1, 0, 1, // vertex number 3

0, 1, 0 // vertex number 4

]);

pyramidFaceIndexArray = [

3, 2, 1, // First triangle in the base.

3, 1, 0, // Second Triangle in the base.

3, 0, 4, // Front face.

0, 1, 4, // Right face.

1, 2, 4, // Back face.

2, 3, 4 // Left face.

];

pyramidGeom = new THREE.BufferGeometry();

pyramidGeom.setAttribute("position",

new THREE.BufferAttribute(pyramidVertices,3));

pyramidGeom.setIndex(pyramidFaceIndexArray);

This would work with a MeshBasicMaterial. The sample program threejs/vertex-groups-
indexed.html is a variation on threejs/vertex-groups.html that uses this approach.

The computeVertexNormals() method can still be used for a BufferedGeometry that has an
index array. To compute a normal vector for a vertex, it finds all of the faces in which that
vertex occurs. For each of those faces, it computes a vector perpendicular to the face. Then it
averages those vectors to get the vertex normal. (I will note if you tried this for our pyramid,
it would look pretty bad. It’s really only appropriate for smooth surfaces.)

5.2.2 Curves and Surfaces

In addition to letting you build indexed face sets, three.js has support for working with curves
and surfaces that are defined mathematically. Some of the possibilities are illustrated in the
sample program threejs/curves-and-surfaces.html, and I will discuss a few of them here.

Parametric surfaces are the easiest to work with. A parametric surface is defined by a
mathematical function of two parameters (u,v), where u and v are numbers, and each value of
the function is a point in space. The surface consists of all the points that are values of the
function for u and v in some specified ranges. For three.js, the function is a regular JavaScript
function that takes three parameters: u, v, and an object of type THREE.Vector3. The function

196 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

must modify the vector to represent the point in space that corresponds to the values of the u
and v parameters. A parametric surface geometry is created by calling the function at a grid of
(u,v) points. This gives a collection of points on the surface, which are then connected to give
a polygonal approximation of the surface. In three.js, the values of both u and v are always in
the range 0.0 to 1.0. The geometry is created by a constructor

new THREE.ParametricGeometry(func, slices, stacks)

where func is the JavaScript function that defines the surface, and slices and stacks determine
the number of points in the grid; slices gives the number of subdivisions of the interval from 0
to 1 in the u direction, and stacks, in the v direction. Once you have the geometry, you can
use it to make a mesh in the usual way. Here is an example, from the sample program:

This surface is defined by the function

function surfaceFunction(u, v, vector) {

let x,y,z; // Coordinates for a point on the surface,

// calculated from u,v, where u and v

// range from 0.0 to 1.0.

x = 20 * (u - 0.5); // x and z range from -10 to 10

z = 20 * (v - 0.5);

y = 2*(Math.sin(x/2) * Math.cos(z));

vector.set(x, y, z);

}

and the three.js mesh that represents the surface is created using

let surfaceGeometry = new THREE.ParametricGeometry(surfaceFunction, 64, 64);

let surface = new THREE.Mesh(surfaceGeometry, material);

Curves are more complicated in three.js. The class THREE.Curve represents the abstract idea
of a parametric curve in two or three dimensions. (It does not represent a three.js geometry.)
A parametric curve is defined by a function of one numeric variable t. The value returned by
the function is of type THREE.Vector2 for a 2D curve or THREE.Vector3 for a 3D curve. For an
object, curve, of type THREE.Curve, the method curve.getPoint(t) should return the point on
the curve corresponding to the value of the parameter t. The curve consists of points generated
by this function for values of t ranging from 0.0 to 1.0. However, in the Curve class itself,
getPoint() is undefined. To get an actual curve, you have to define it. For example,

5.2. BUILDING OBJECTS 197

let helix = new THREE.Curve();

helix.getPoint = function(t) {

let s = (t - 0.5) * 12*Math.PI;

// As t ranges from 0 to 1, s ranges from -6*PI to 6*PI

return new THREE.Vector3(

5*Math.cos(s),

s,

5*Math.sin(s)

);

}

Once getPoint is defined, you have a usable curve. One thing that you can do with it is
create a tube geometry, which defines a surface that is a tube with a circular cross-section and
with the curve running along the center of the tube. The sample program uses the helix curve,
defined above, to create two tubes:

The geometry for the wider tube is created with

tubeGeometry1 = new THREE.TubeGeometry(helix, 128, 2.5, 32);

The second parameter to the constructor is the number of subdivisions of the surface along the
length of the curve. The third is the radius of the circular cross-section of the tube, and the
fourth is the number of subdivisions around the circumference of the cross-section.

To make a tube, you need a 3D curve. There are also several ways to make a surface from
a 2D curve. One way is to rotate the curve about a line, generating a surface of rotation. The
surface consists of all the points that the curve passes through as it rotates. This is called
lathing . This image from the sample program shows the surface generated by lathing a cosine
curve. (The image is rotated 90 degrees, so that the y-axis is horizontal.) The curve itself is
shown above the surface:

198 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

The surface is created in three.js using a THREE.LatheGeometry object. A LatheGeometry

is constructed not from a curve but from an array of points that lie on the curve. The points
are objects of type Vector2, and the curve lies in the xy-plane. The surface is generated by
rotating the curve about the y-axis. The LatheGeometry constructor takes the form

new THREE.LatheGeometry(points, slices)

The first parameter is the array of Vector2. The second is the number of subdivisions of the
surface along the circle generated when a point is rotated about the axis. (The number of
“stacks” for the surface is given by the length of the points array.) In the sample program, I
create the array of points from an object, cosine, of type Curve by calling cosine.getPoints(128).
This function creates an array of 128 points on the curve, using values of the parameter that
range from 0.0 to 1.0.

Another thing that you can do with a 2D curve is simply to fill in the inside of the curve,
giving a 2D filled shape. To do that in three.js, you can use an object of type THREE.Shape,
which is a subclass of THREE.Curve. A Shape can be defined in the same way as a path in the 2D
Canvas API that was covered in Section 2.6. That is, an object shape of type THREE.Shape has
methods shape.moveTo, shape.lineTo, shape.quadraticCurveTo and shape.bezierCurveTo that
can be used to define the path. See Subsection 2.6.2 for details of how these functions work.
As an example, we can create a teardrop shape:

let path = new THREE.Shape();

path.moveTo(0,10);

path.bezierCurveTo(0,5, 20,-10, 0,-10);

path.bezierCurveTo(-20,-10, 0,5, 0,10);

To use the path to create a filled shape in three.js, we need a ShapeGeometry object:

let shapeGeom = new THREE.ShapeGeometry(path);

The 2D shape created with this geometry is shown on the left in this picture:

5.2. BUILDING OBJECTS 199

The other two objects in the picture were created by extruding the shape. In extrusion, a
filled 2D shape is moved along a path in 3D. The points that the shape passes through make
up a 3D solid. In this case, the shape was extruded along a line segement perpendicular to
the shape, which is the most common case. The basic extruded shape is shown on the right in
the illustration. The middle object is the same shape with “beveled” edges. For more details
on extrusion, see the documentation for THREE.ExtrudeGeometry and the source code for the
sample program.

5.2.3 Textures

A texture can be used to add visual interest and detail to an object. In three.js, an image
texture is represented by an object of type THREE.Texture. Since we are talking about web
pages, the image for a three.js texture is generally loaded from a web address. Image textures
are usually created using the load function in an object of type THREE.TextureLoader. The
function takes a URL (a web address, usually a relative address) as parameter and returns a
Texture object:

let loader = new THREE.TextureLoader();

let texture = loader.load(imageURL);

A texture in three.js is considered to be part of a material. To apply a texture to a mesh, just
assign the Texture object to the map property of the mesh material that is used on the mesh:

material.map = texture;

The map property can also be set in the material constructor. All three types of mesh
material (Basic, Lambert, and Phong) can use a texture. In general, the material base color
will be white, since the material color will be multiplied by colors from the texture. A non-white
material color will add a “tint” to the texture colors. The texture coordinates that are needed
to map the image to a mesh are part of the mesh geometry. The standard mesh geometries
such as THREE.SphereGeometry come with texture coordinates already defined.

That’s the basic idea—create a texture object from an image URL and assign it to the
map property of a material. However, there are complications. First of all, image loading is
“asynchronous.” That is, calling the load function only starts the process of loading the image,
and the process can complete sometime after the function returns. Using a texture on an object
before the image has finished loading does not cause an error, but the object will be rendered as
completely black. Once the image has been loaded, the scene has to be rendered again to show
the image texture. If an animation is running, this will happen automatically; the image will
appear in the first frame after it has finished loading. But if there is no animation, you need a
way to render the scene once the image has loaded. In fact, the load function in a TextureLoader

has several optional parameters:

loader.load(imageURL, onLoad, undefined, onError);

The third parameter here is given as undefined because that parameter is no longer used. The
onLoad and onError parameters are callback functions. The onLoad function, if defined, will
be called once the image has been successfully loaded. The onError function will be called if
the attempt to load the image fails. For example, if there is a function render() that renders
the scene, then render itself could be used as the onLoad function:

texture = new THREE.TextureLoader().load("brick.png", render);

200 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

Another possible use of onLoad would be to delay assigning the texture to a material until the
image has finished loading. If you do change the value of material.map, be sure to set

material.needsUpdate = true;

to make sure that the change will take effect when the object is redrawn.

A Texture has a number of properties that can be set, including properties to set the
minification and magnification filters for the texture and a property to control the generation
of mipmaps, which is done automatically by default. The properties that you are most likely
to want to change are the wrap mode for texture coordinates outside the range 0 to 1 and the
texture transformation. (See Section 4.3 for more information about these properties.)

For a Texture object tex, the properties tex.wrapS and tex.wrapT control how s and t texture
coordinates outside the range 0 to 1 are treated. The default is “clamp to edge.” You will most
likely want to make the texture repeat in both directions by setting the property values to
THREE.RepeatWrapping :

tex.wrapS = THREE.RepeatWrapping;

tex.wrapT = THREE.RepeatWrapping;

RepeatWrapping works best with “seamless” textures, where the top edge of the image matches
up with the bottom edge and the left edge with the right. Three.js also offers an interesting
variation called “mirrored repeat” in which every other copy of the repeated image is flipped.
This eliminates the seam between copies of the image. For mirrored repetition, use the property
value THREE.MirroredRepeatWrapping :

tex.wrapS = THREE.MirroredRepeatWrapping;

tex.wrapT = THREE.MirroredRepeatWrapping;

The texture properties repeat and offset control the scaling and translation that are applied
to the texture as texture transformations. (There is no texture rotation.) The values of these
properties are of type THREE.Vector2, so that each property has an x and a y component. For
a Texture, tex, the two components of tex.offset give the texture translation in the horizontal
and vertical directions. To offset the texture by 0.5 horizontally, you can say either

tex.offset.x = 0.5;

or

tex.offset.set(0.5, 0);

Remember that a positive horizontal offset will move the texture to the left on the objects,
because the offset is applied to the texture coordinates not to the texture image itself.

The components of the property tex.repeat give the texture scaling in the horizontal and
vertical directions. For example,

tex.repeat.set(2,3);

will scale the texture coordinates by a factor of 2 horizontally and 3 vertically. Again, the effect
on the image is the inverse, so that the image is shrunk by a factor of 2 horizontally and 3
vertically. The result is that you get two copies of the image in the horizontal direction where
you would have had one, and three vertically. This explains the name “repeat,” but note that
the values are not limited to be integers.

The demo c5/textures.html shows image textures applied to a variety of three.js objects.

∗ ∗ ∗

5.2. BUILDING OBJECTS 201

Suppose that we want to use an image texture on the pyramid that was created at the
beginning of this section. In order to apply a texture image to an object, WebGL needs texture
coordinates for that object. When we build a mesh from scratch, we have to supply the texture
coordinates as part of the mesh’s geometry object.

Let’s see how to do this on our pyramid example. A BufferedGeometry object such as
pyramidGeom in the example has an attribute named “uv” to hold texture coordinates. (The
name “uv” refers to the coordinates on an object that are mapped to the s and t coordinates
in a texture. The texture coordinates for a surface are often referred to as “uv coordinates.”)
The BufferAttribute for a “uv” attribute can be made from a typed array containing a pair of
texture coordinates for each vertex.

Our pyramid example has six triangular faces, with a total of 18 vertices. We need an array
containing vertex coordinates for 18 vertices. The coordinates have to be chosen to map the
image in a reasonable way onto the faces. My choice of coordinates maps the entire texture
image onto the square base of the pyramid, and it cuts a triangle out of the image to apply
to each of the sides. It takes some care to come up with the correct coordinates. I define the
texture coordinates for the pyramid geometry as follows:

let pyramidUVs = new Float32Array([

0,0, 0,1, 1,1, // uv coords for first triangle in base.

0,0, 1,1, 1,0, // uv coords for second triangle in base.

0,0, 1,0, 0.5,1, // uv coords for front face.

1,0, 0,0, 0.5,1, // uv coords for right face.

0,0, 1,0, 0.5,1, // uv coords for back face.

1,0, 0,0, 0.5,1 // uv coords for left face.

]);

pyramidGeom.setAttribute("uv",

new THREE.BufferAttribute(pyramidUVs,2));

The sample program threejs/textured-pyramid.html shows the pyramid with a brick texture.
Here is an image from the program:

5.2.4 Transforms

In order to understand how to work with objects effectively in three.js, it can be useful to
know more about how it implements transforms. I have explained that an Object3D, obj, has
properties obj.position, obj.scale, and obj.rotation that specify its modeling transformation in
its own local coordinate system. But these properties are not used directly when the object is
rendered. Instead, they are combined to compute another property, obj.matrix, that represents
the transformation as a matrix. By default, this matrix is recomputed automatically every

202 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

time the scene is rendered. This can be inefficient if the transformation never changes, so
obj has another property, obj.matrixAutoUpdate, that controls whether obj.matrix is computed
automatically. If you set obj.matrixAutoUpdate to false, the update is not done. In that case, if
you do want to change the modeling transformation, you can call obj.updateMatrix () to compute
the matrix from the current values of obj.position, obj.scale, and obj.rotation.

We have seen how to modify obj’s modeling transformation by directly changing the values
of the properties obj.position, obj.scale, and obj.rotation. However, you can also change the
position by calling the function obj.translateX (dx), obj.translateY (dy), or obj.translateZ (dz)
to move the object by a specified amount in the direction of a coordinate axis. There is also
a function obj.translateOnAxis(axis,amount), where axis is a Vector3 and amount is a number
giving the distance to translate the object. The object is moved in the direction of the vector,
axis. The vector must be normalized; that is, it must have length 1. For example, to translate
obj by 5 units in the direction of the vector (1,1,1), you could say

obj.translateOnAxis(new THREE.Vector3(1,1,1).normalize(), 5);

There are no functions for changing the scaling transform. But you can change the object’s
rotation with the functions obj.rotateX (angle), obj.rotateY (angle), and obj.rotateZ (angle) to
rotate the object about the coordinate axes. (Remember that angles are measured in radians.)
Calling obj.rotateX (angle) is not the same as adding angle onto the value of obj.rotation.x,
since it applies a rotation about the x-axis on top of other rotations that might already have
been applied.

There is also a function obj.rotateOnAxis(axis,angle), where axis is a Vector3. This function
rotates the object through the angle angle about the vector (that is, about the line between
the origin and the point given by axis). The axis must be a normalized vector.

(Rotation is actually even more complicated. The rotation of an object, obj, is actually
represented by the property obj.quaternion, not by the property obj.rotation. Quaternions

are mathematical objects that are often used in computer graphics as an alternative to Euler
angles, to represent rotations. However, when you change one of the properties obj.rotation or
obj.quaterion, the other is automatically updated to make sure that both properties represent
the same rotation. So, we don’t need to work directly with the quaternions.)

I should emphasize that the translation and rotation functions modify the position and
rotation properties of the object. That is, they apply in object coordinates, not world
coordinates, and they are applied as the first modeling transformation on the object when
the object is rendered. For example, a rotation in world coordinates can change the position
of an object, if it is not positioned at the origin. However, changing the value of the rotation
property of an object will never change its position.

The actual transformation that is applied to an object when it is rendered is a combination
of the modeling transformation of that object, combined with the modeling transformation on
all of its ancestors in the scene graph. In three.js, that transformation is stored in a property
of the object named obj.matrixWorld.

There is one more useful method for setting the rotation: obj.lookAt(vec), which rotates the
object so that it is facing towards a given point. The parameter, vec, is a Vector3, which must
be expressed in the object’s own local coordinate system. (For an object that has no parent, or
whose ancestors have no modeling transformations, that will be the same as world coordinates.)
The object is also rotated so that its “up” direction is equal to the value of the property obj.up,
which by default is (0,1,0). This function can be used with any object, but it is most useful for
a camera.

5.2. BUILDING OBJECTS 203

5.2.5 Loading Models

Although it is possible to create mesh objects by listing their vertices and faces, it would be
difficult to do it by hand for all but very simple objects. It’s much easier, for example, to
design an object in an interactive modeling program such as Blender (Appendix B). Modeling
programs like Blender can export objects using many different file formats. Three.js has utility
functions for loading models from files in a variety of file formats. These utilities are not part
of the three.js core, but JavaScript files that define them can be found in the examples folder
in the three.js download.

The preferred format for model files is GLTF . A GLTF model can be stored in a text
file with extension .gltf or in a binary file with extension .glb. Binary files are smaller and
more efficient, but not human-readable. A three.js loader for GLTF files is defined by the file
GLTFLoader.js. from the three.js download. Copies of that script, as well as scripts for other
model loaders, can be found in the threejs folder in the source folder for this textbook.

If loader is an object of type THREE.GTLFLoader, you can use its load() method to start
the process of loading a model:

loader = new THREE.GLTFLoader()

loader.load(url, onLoad, onProgress, onError);

Only the first parameter is required; it is a URL for the file that contains the model. The other
three parameters are callback functions: onLoad will be called when the loading is complete,
with a parameter that represents the data from the file; onProgress is called periodically during
the loading with a parameter that contains information about the size of the model and how
much of it has be loaded; and onError is called if any error occurs. (I have not actually used
onProgress myself.) Note that, as for textures, the loading is done asynchronously.

A GLTF file can be quite complicated and can contain an entire 3D scene, containing
multiple objects, lights, and other things. The data returned by a GLTFLoader contains a
three.js Scene. Any objects defined by the file will be part of the scene graph for that scene. All
of the model files used in this textbook define a Mesh object that is the first child of the Scene

object. This object comes complete with both geometry and material. The onLoad callback
function can add that object to the scene and might look something like this:

function onLoad(data) { // the parameter is the loaded model data

let object = data.scene.children[0];

// maybe modify the modeling transformation or material...

scene.add(object); // add the loaded object to our scene

render(); // call render to show the scene with the new object

}

The sample program threejs/model-viewer.html uses GLTFLoader to load several models.
It also uses loaders for models in two other formats, Collada and OBJ, that work much the
same way. The technique for loading the models is actually a little more general that what I’ve
described here. See the source code for the example program for details.

(If you try to run the sample program from a download of the web site version of this
textbook, it probably won’t work because of security restrictions in most web browsers. See
the section on running things locally in the three.js documentation. The same applies to the
demo below.)

I’ll also mention that GLTF models can include animations. Three.js has several
classes that support animation, including THREE.AnimationMixer, THREE.AnimationAction,

204 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

and THREE.AnimationClip. I won’t discuss animation here, but these three classes are used
to animate the horse and stork models in the on-line demo c5/mesh-animation.html.

5.3 Other Features

We will finish this chapter with a look at a few additional features of three.js. In the
process, you will learn about some new aspects of 3D graphics.

5.3.1 Instanced Meshes

The class THREE.InstancedMesh makes it possible to quickly render several objects, possibly
a large number of objects, that use the same geometry but differ in the transformations that
are applied to them and, possibly, in their material color. Each copy of the object is called an
“instance,” and the process of creating all of the copies is called instanced drawing or instancing.
In WebGL 2.0 (and in WebGL 1.0 with an extension), it is possible to draw all of the instances
with a single function call, making it very efficient.

InstancedMesh is fairly easy to use. Along with the geometry and material for the mesh, the
constructor specifies the maximum number of instances that it can support:

instances = new THREE.InstancedMesh(geometry, material, count)
To set the transformation for instance number i, you can call

instances.setMatrixAt(i, matrix);

where matrix is an object of type THREE.Matrix4 representing the modeling transformation.
Similarly, you can set the color for instance number i with

instances.setColorAt(i, color);

where color is of type THREE.Color. Instance colors are optional. If provided, they replace the
color property of material.

The Matrix4 class includes methods that make it easy to create a transformation matrix.
The constructor

matrix = new THREE.Matrix4();

creates an identity matrix, which can then be modified. For example, the method ma-
trix.makeTranslation(dx,dy,dz) replaces the current matrix with the transformation matrix for
a translation by the vector (dx,dy,dz). There are functions for making scaling and rotation
matrices. To make more complex transformations, there is a function for multiplying matrices.

The sample program threejs/instanced-mesh.html uses a single InstancedMesh to make 1331
spheres, arranged in an 11-by-11-by-11 cube. To move the spheres into position, different
translations are applied to each instance. An instance color is also set for each instance.

5.3. OTHER FEATURES 205

5.3.2 User Input

Most real programs require some kind of user interaction. For a web application, of course, the
program can get user input using HTML widgets such as buttons and text input boxes. But
direct mouse interaction with a 3D world is more natural in many programs.

The most basic example is using the mouse to rotate the scene. In three.js, rotation can
be implemented using the class THREE.TrackballControls or the class THREE.OrbitControls.
Note that both classes support touchscreen as well as mouse interaction. The main difference
between the classes is that with OrbitControls, the rotation is constrained so that the positive
y-axis is always the up direction in the view. TrackballControls, on the other hand, allows
completely free rotation. Another difference is that TrackballControls is meant to be used only
with a scene that is continuously animated. OrbitControls is used for rotation in most of my
sample programs and demos. TrackballControls is used only in threejs/full-window.html and
threejs/curves-and-surfaces.html.

The two control classes are not part of the main three.js JavaScript file. To use one of them,
you need the JavaScript file OrbitControls.js or TrackballControls.js, which can be found in the
folder examples/js/controls in the three.js download.

The two classes are used in a similar way. I will discuss OrbitControls first. In my examples,
I create a camera and move it away from the origin. I usually add a light object to the camera
object, so that the light will move along with the camera, providing some illumination to
anything that is visible to the camera. The OrbitControls object is used to rotate the camera
around the scene. The constructor for the control object has two parameters, the camera and
the canvas on which the scene is rendered. Here is typical setup:

camera = new THREE.PerspectiveCamera(45, canvas.width/canvas.height, 0.1, 100);

camera.position.set(0,15,35);

camera.lookAt(new THREE.Vector3(0,0,0)); // camera looks toward origin

let light = new THREE.PointLight(0xffffff, 0.6);

camera.add(light); // viewpoint light moves with camera

scene.add(camera);

controls = new THREE.OrbitControls(camera, canvas);

The constructor installs listeners on the canvas so that the controls can respond to mouse
events. If an animation is running, the only other thing that you need to do is call

controls.update();

206 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

before rendering the scene. The user will be able to rotate the scene by dragging on it with
the left mouse button. The controls will also do “panning” (dragging the scene in the plane
of the screen) with the right mouse button and “zooming” (moving the camera forward and
backward) with the middle mouse button or scroll wheel. To disable zooming and panning, you
can set

controls.enablePan = false;

controls.enableZoom = false;

And you can return the original view of the scene by calling controls.reset().

If your program is not running a continuous animation, you need a way to re-render the
scene in response to user actions. When the user drags the mouse, the controls object generates
a “change” event. You can add a listener for that event, to respond to the event by redrawing
the scene. To do that, just call

controls.addEventListener("change", callback);

Where callback() is the function that should be called when the event occurs. If you have a
function render() that renders your scene, you can simply pass render as the value of callback.

Unfortunately, a TrackballControls object does not emit “change” events, and there does
not seem to be any way to use it without having an animation running. With an animation,
TrackballControls are used in the same way as OrbitControls, except that the properties for
panning and zooming are controls.noPan and controls.noZoom; they should be set to true to
disable panning and zooming. One nice feature of TrackballControls is that they implement
inertia: When the user releases the mouse after dragging, the motion of the scene will slow to
a stop instead of stopping abruptly.

∗ ∗ ∗

A much more interesting form of mouse interaction is to let the user select objects in the
scene by clicking on them. The problem is to determine which object the user is clicking. The
general procedure is something like this: Follow a ray from the camera through the point on
the screen where the user clicked and find the first object in the scene that is intersected by
that ray. That’s the object that is visible at the point where the user clicked. Unfortunately,
the procedure involves a lot of calculations. Fortunately, three.js has a class that can do the
work for you: THREE.Raycaster.

A Raycaster can be used to find intersections of a ray with objects in a scene. (A ray is just
half of a line, stretching from some given starting point in a given direction towards infinity.)
You can make one raycaster object to use throughout your program:

raycaster = new THREE.Raycaster();

To tell it which ray to use, you can call

raycaster.set(startingPoint, direction);

where both of the parameters are of type THREE.Vector3. Their values are in terms of world
coordinates, the same coordinate system that you use for the scene as a whole. The direction
must be a normalized vector, with length equal to one. For example, suppose that you want
to fire a laser gun. . . . The startingPoint is the location of the gun, and the direction is the
direction that the gun is pointing. Configure the raycaster with those parameters, and you can
use it to find out what object is struck by the laser beam.

Alternatively, and more conveniently for processing user input, you can express the ray in
terms of the camera and a point on the screen:

5.3. OTHER FEATURES 207

raycaster.setFromCamera(screenCoords, camera);

The screenCoords are given as a THREE.Vector2 expressed in clip coordinates. This means the
horizontal coordinate ranges from −1 on the left edge of the viewport to 1 on the right, and the
vertical coordinate ranges from −1 at the bottom to 1 on the top. (Clip coordinates are called
“normalized device coordinates” in three.js.) So, we need to convert from pixel coordinates on
a canvas to clip coordinates. Here’s one way to do it, given a mouse event, evt :

let r = canvas.getBoundingClientRect();

let x = evt.clientX - r.left; // convert mouse location to canvas pixel coords

let y = evt.clientY - r.top;

let a = 2*x/canvas.width - 1; // convert canvas pixel coords to clip coords

let b = 1 - 2*y/canvas.height;

raycaster.setFromCamera(new THREE.Vector2(a,b), camera);

Once you have told the raycaster which ray to use, it is ready to find intersections of that
ray with objects in the scene. This can be done with the function

raycaster.intersectObjects(objectArray, recursive);

The first parameter is an array of Object3D. The raycaster will search for intersections of its
current ray with objects in the array. If the second parameter is true, it will also search
descendants of those objects in the scene graph; if it is false or is omitted, then only the objects
in the array will be searched. For example, to search for intersections with all objects in the
scene, use

raycaster.intersectObjects(scene.children, true);

The return value from intersectObjects is an array of JavaScript objects. Each item in
the array represents an intersection of the ray with an Object3D. The function finds all such
intersections, not just the first. If no intersection is found, the array is empty. The array is
sorted by increasing distance from the starting point of the ray. If you just want the first
intersection, use the first element of the array.

Each element in the array is an object whose properties contain information about the
intersection. Suppose that item is one of the array elements. Then the most useful properties
are: item.object, which is the Object3D that was intersected by the ray; and item.point, which
is the point of intersection, given as a Vector3 in world coordinates. That information is enough
to implement some interesting user interaction.

The demo c5/raycaster-input.html uses some basic mouse interaction to let the user edit a
scene. The scene shows a number of tapered yellow cylinders standing on a green base. The user
can drag the cylinders, add and delete cylinders, and rotate the scene. A set of radio buttons
lets the user select which action should be performed by the mouse. Here’s a screenshot from
the program:

208 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

Let’s look at how the actions are implemented. The only objects are the base and the
cylinders. In the program, the base is referred to as ground, and all the objects are children
of an Object3D named world. (I use the world object to make it easy to rotate the set of all
visible objects without moving the camera or lights.) For all drag, add, and delete actions, I
look for intersections of these objects with a ray that extends from the camera through the
mouse position:

raycaster.setFromCamera(new THREE.Vector2(a,b), camera);

let intersects = raycaster.intersectObjects(world.children);

If intersects.length is zero, there are no intersections, and there is nothing to do. Otherwise, I
look at intersects[0], which represents an intersection with the object that is visible at the mouse
position. So, intersects[0].object is the object that the user clicked, and intersects[0].point is
the point of intersection.

The Delete action is the simplest to implement: When the user clicks a cylinder, the cylinder
should be removed from the scene. If the first intersection is with the ground, then nothing is
deleted. Otherwise, the clicked object was a cylinder and should be deleted:

if (intersects[0].object != ground) {

world.remove(intersects[0].object);

render();

}

For an Add action, we should add a cylinder only if the user clicked the ground. In that case,
the point of intersection tells where the cylinder should be added. An interesting issue here
is that we get the point of intersection in world coordinates, but in order to add the cylinder
as a child of world, I need to know the point of intersection in the local coordinate system for
world. The two coordinate systems will be different if the world has been rotated. Fortunately,
every Object3D has a method worldToLocal(v) that can be used to transform a Vector3, v, from
world coordinates to local coordinates for that object. This method does not return a value; it
modifies the coordinates of the vector v. (There is also a localToWorld method.) So, the Add
action can be implemented like this:

item = intersects[0];

if (item.object == ground) {

let locationX = item.point.x; // world coords of intersection point

let locationZ = item.point.z;

let coords = new THREE.Vector3(locationX, 0, locationZ); // y is always 0

world.worldToLocal(coords); // transform to local coords

addCylinder(coords.x, coords.z); // adds a cylinder at corrected location

render();

}

For a Drag action, we can determine which cylinder was clicked using the same test as for
delete. However, the problem of moving the cylinder as the user drags the mouse raises a new
issue: how do we know where to put the cylinder when the mouse moves? We somehow have
to transform a new mouse position into a new position for the cylinder. For that, we can use
the raycaster again. My first thought was to create a ray from the camera through the new
mouse position, use that ray to find its intersection with the ground, and then to move the
cylinder to that point of intersection. Unfortunately, this puts the base of the cylinder at
the mouse position, and it made the cylinder jump to the wrong position as soon as I started
moving the mouse. I realized that I didn’t want to track the intersection with the ground; I
needed to track the intersection with a plane that lies at the same height as the original point

5.3. OTHER FEATURES 209

of intersection. To implement this, I add an invisible plane at that height just during dragging,
and I use intersections with that plane instead of intersections with the ground. (You can have
invisible objects in three.js—just set the visible property of the material to false.)

5.3.3 Shadows

One thing that has been missing in our 3D images is shadows. Even if you didn’t notice the lack
consciously, it made many of the images look wrong. Shadows can add a nice touch of realism
to a scene, but OpenGL, including WebGL, cannot generate shadows automatically. There are
ways to compute shadows that can be implemented in OpenGL, but they are tricky to use and
they are not completely realistic physically. One method, which is called shadow mapping ,
is implemented in three.js. Shadow mapping in three.js is certainly not trivial to use, but it is
easier than trying to do the same thing from scratch.

The online demo c5/shadows.html shows a three.js scene that uses shadow mapping. The
lights that cast the shadows can be animated, so you can watch the shadows change as the
lights move. Here is an image from the demo:

The basic idea of shadow mapping is fairly straightforward: To tell what parts of a scene
are in shadow, you have to look at the scene from the point of view of the light source. Things
that are visible from the point of view of the light are illuminated by that light. Things that are
not visible from the light are in shadow. (This is ignoring the possibility of transparency and
indirect, reflected light, which cannot be handled by shadow mapping.) To implement this idea,
place a camera at the light source and take a picture. In fact, you don’t need the picture itself.
What you need is the depth buffer. After the picture has been rendered, the value stored in the
depth buffer for a given pixel contains, essentially, the distance from the light to the object that
is visible from the the light at that point. That object is illuminated by the light. If an object
is at greater depth than the value stored in the depth buffer, then that object is in shadow.
The depth buffer is the shadow map. Now, go back to the point of view of the camera, and
consider a point on some object as it is rendered from the camera’s point of view. Is that point
in shadow or not? You just have to transform that point from the camera’s viewing coordinates
to the light’s viewing coordinates and check the depth of the transformed point. If that depth
is greater than the corresponding value in the shadow map, then the point is in shadow. Note
that if there are several lights, each light casts its own shadows, and you need a shadow map
for each light.

It is computationally expensive to compute shadow maps and to apply them, and shadows
are disabled by default in three.js. To get shadows, you need to do several things. You need to
enable shadow computations in the WebGL renderer by saying

210 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

renderer.shadowMap.enabled = true;

Only DirectionalLights and SpotLights can cast shadows. To get shadows from a light, even
after enabling shadows in the renderer, you have to set the light’s castShadow property to true:

light.castShadow = true; // This light will cast shadows.

Furthermore, shadows have to be enabled for each object that will cast or receive shadows.
“Receiving” a shadow means that shadows will be visible on that object. Casting and receiving
are enabled separately for an object.

object.castShadow = true; // This object will cast shadows.

object.receiveShadow = true; // Shadows will show up on this object.

Even this might not make any shadows show up, and if they do they might look pretty
bad. The problem is that you usually have to configure the cameras that are used to make the
shadow maps.

Each DirectionalLight or SpotLight has its own shadow camera, which is used to cre-
ate the shadow map from the point of view of that light. (A DirectionalLight has a
property named shadow of type THREE.DirectionalLightShadow, which in turn has a prop-
erty named camera of type THREE.OrthographicCamera that holds the shadow camera.
So, the shadow camera for a directional light dl is dl.shadow.camera.) The shadow
camera for a directional light uses an orthographic projection. An orthographic projec-
tion is configured by view volume limits xmin, xmax, ymin, ymax, near, and far (see
Subsection 3.3.3). For a directional light, dl, these limits correspond to the properties
dl.shadow.camera.left, dl.shadow.camera.right, dl.shadow.camera.bottom, dl.shadow.camera.top,
dl.shadow.camera.near, and dl.shadow.camera.far. These values are in view coordinates for the
shadow camera; that is, they are relative to dl.position. It is important to make sure that all
the objects in your scene, or at least those that cast shadows, are within the view volume of the
shadow camera. Furthermore, you don’t want the limits to be too big: If the scene occupies
only a small part of the camera’s view volume, then only a small part of the shadow map
contains useful information—and then since there is so little information about shadows, your
shadows won’t be very accurate. The default values assume a very large scene. For a relatively
small scene, you might set:

dl.shadow.camera.left = -20;

dl.shadow.camera.right = 20;

dl.shadow.camera.bottom = -20;

dl.shadow.camera.top = 20;

dl.shadow.camera.near = 1;

dl.shadow.camera.far = 30;

The shadow camera for a spotlight is of type THREE.PerspectiveCamera and uses a
perspective projection. (The use of a camera with a limited view is why you can have shadows
from spotlights but not from point lights.) For a spotlight sl, the shadow camera is configured by
the properties sl.shadow.camera.near, sl.shadow.camera.far, and sl.shadow.camera.fov (where
“fov” is the vertical field of view angle, given in degrees rather than radians). The default value
for fov is probably OK, except that if you change the spotlight’s cutoff angle, you will want to
change the fov to match. But you should be sure to set appropriate values for near and far, to
include all of your scene and as little extra as is practical. Again, near and far are distances
from sl.position.

To get more accurate shadows, you might want to increase the size of the shadow map. The
shadow map is a kind of texture image which by default is 512 by 512 pixels. You can increase

5.3. OTHER FEATURES 211

the accuracy of the shadows by using a larger shadow map. To do that for a light, light, set
the values of the properties light.shadow.mapSize.width and light.shadow.mapSize.height. For
example,

light.shadow.mapSize.width = 1024;

light.shadow.mapSize.height = 1024;

I’m not sure whether power-of-two values are absolutely required here, but they are commonly
used for textures.

5.3.4 Cubemap Textures and Skyboxes

We have created and viewed simple scenes, shown on a solid-colored background. It would be
nice to put our scenes in an “environment” such as the interior of a building, a nature scene, or
a public square. It’s not practical to build representations of such complex environments out
of geometric primitives, but we can get a reasonably good effect using textures. The technique
that is used in three.js is called a skybox . A skybox is a large cube — effectively, infinitely large
— where a different texture is applied to each face of the cube. The textures are images of some
environment. For a viewer inside the cube, the six texture images on the cube fit together to
provide a complete view of the environment in every direction. The six texture images together
make up what is called a cubemap texture . The images must match up along the edges of
the cube to form a seamless view of the environment.

A cube map of an actual physical environment can be made by taking six pictures of the
environment in six directions: left, right, up, down, forward, and back. (More realistically, it
is made by taking enough photographs to cover all directions, with overlaps, and then using
software to “stitch” the images together into a complete cube map.) The six directions are
referred to by their relation to the coordinate axes as: positive x, negative x, positive y,
negative y, positive z, and negative z, and the images must be listed in that order when you
specify the cube map. Here is an example. The first picture shows the six images of a cube
map laid out next to each other. The positive y image is at the top, the negative y image is at
the bottom. In between are the negative x, positive z, positive x, and negative z images laid
out in a row. The second picture shows the images used to texture a cube, viewed here from
the outside. You can see how the images match up along the edges of the cube:

(This cube map, and others used in this section, are by Emil Persson, who has made a large num-
ber of cube maps available for download at http://www.humus.name/index.php?page=Textures

212 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

under a creative commons license.)

For a skybox, conceptually, a very large cube would be used. The camera, lights, and any
objects that are to be part of the scene would be inside the cube. It is possible to construct a
skybox by hand in just this way.

However, Three.js makes it very easy to use a skybox as the background for a scene. It
has the class THREE.CubeTexture to represent cube maps, and you can enclose your scene in a
skybox simply by assigning a CubeTexture as the value of the property scene.background. (The
value of that property could also be a normal Texture or a Color.)

A CubeTexture can be created by a CubeTextureLoader, which can load the six images that
make up the cube map. The loader has a method named load() that works in the same way
as the load() method of a TextureLoader (Subsection 5.2.3), except that the first parameter to
the method is an array of six strings giving the URLs of the six images for the cube map. For
example:

let textureURLs = [// URLs of the six faces of the cube map

"cubemap-textures/park/posx.jpg", // Note: The order in which

"cubemap-textures/park/negx.jpg", // the images are listed is

"cubemap-textures/park/posy.jpg", // important!

"cubemap-textures/park/negy.jpg",

"cubemap-textures/park/posz.jpg",

"cubemap-textures/park/negz.jpg"

];

loader = new THREE.CubeTextureLoader();

cubeTexture = loader.load(textureURLs, onLoad, undefined, onError);

Here, onLoad is a function that will be called after the texture has finished loading. The
function could, for example, set scene.background equal to cubeTexture and re-render the scene
with the new background. The last parameter onError is a function that will be called if the
texture cannot be loaded. Only the first parameter is required.

The sample program threejs/skybox.html shows two WebGL scenes. The first scene shows a
cube with the six images from a cube map applied as normal textures to the six faces of a cube.
The second scene uses the same cube map as a skybox. If you rotate the view of the second
scene, you can look at all parts of the skybox and see how it forms a seamless environment that
completely encloses the scene.

5.3.5 Reflection and Refraction

A reflective surface shouldn’t just reflect light—it should reflect its environment. Three.js
can use environment mapping to simulate reflection. (Environment mapping is also called
“reflection mapping.”) Environment mapping uses a cube map texture. Given a point on a
surface, a ray is cast from the camera position to that point, and then the ray is reflected off
the surface. The point where the reflected ray hits the cube determines which point from the
texture should be mapped to the point on the surface. For a simulation of perfect, mirror-like
reflection, the surface point is simply painted with the color from the texture. Note that the
surface does not literally reflect other objects in the scene. It reflects the contents of the cube
map texture. However, if the same cube map texture is used on a skybox, and if the skybox is
the only other object in the scene, then it will look like the surface is a mirror that perfectly
reflects its environment.

This type of reflection is very easy to do in three.js. You only need to make a mesh material
and set its envMap property equal to the cubemap texture object. For example, if cubeTexture

5.3. OTHER FEATURES 213

is the texture object obtained using a THREE.CubeTextureLoader, as in the skybox example
above, we can make a sphere that perfectly reflects the texture by saying:

let geometry = new THREE.SphereGeometry(1,32,16);

let material = new THREE.MeshBasicMaterial({

color: "white", // Color will be multiplied by the environment map.

envMap: cubeTexture // CubeTexture to be used as an environment map.

});

let mirrorSphere = new THREE.Mesh(geometry, material);

For the effect to look good, you would want to use the same texture as the scene background.
Note that no lighting would be necessary in the scene, since the sphere uses aMeshBasicMaterial.
The colors seen on the sphere come entirely from the environment map and the basic color of the
sphere material. The environment map color is multiplied by the basic color. In this example,
the basic color of the material is white, and the sphere color is exactly equal to the color from
the texture. With a different base color, the environment map texture would be “tinted” with
that color. You could even apply a regular texture map to the sphere, to be used in place of
the color, so that the reflection of the skybox would be combined with the texture.

The sample program threejs/reflection.html demonstrates environment mapping. It can
show a variety of environment-mapped objects, with a variety of skybox textures, and it has
several options for the base color of the object. Here are two images from that program. The
one on the left shows a reflective arrowhead shape with a white base color. On the right, the
object is a model of a horse (taken from the three.js download) whose base color is pink:

A very similar program is available as a demo in the on-line version of this section.
Three.js can also do refraction . Refraction occurs when light passes through a transparent

or translucent object. A ray of light will be bent as it passes between the inside of the object
and the outside. The amount of bending depends on the so-called “indices of refraction” of
the material outside and the material inside the object. More exactly, it depends on the ratio
between the two indices. Even a perfectly transparent object will be visible because of the
distortion induced by this bending (unless the ratio is 1, meaning that there is no bending of
light at all).

In three.js, refraction is implemented using environment maps. As with reflection, a
refracting object does not show its actual environment; it refracts the cubemap texture that

214 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

is used as the environment map. For refraction, a special “mapping” must be used for the
environment map texture. The mapping property of a texture tells how that texture will be
mapped to a surface. For a cubemap texture being used for refraction, it should be set to
THREE.CubeRefractionMapping. (The default value of this property in a cubemap texture is
appropriate for reflection rather than refraction.) Here is an example of loading a cubemap
texture and setting its mapping property for use with refraction:

cubeTexture = new THREE.CubeTextureLoader().load(textureURLs);

cubeTexture.mapping = THREE.CubeRefractionMapping;

In addition to this, the refractionRatio property of the material that is applied to the refracting
object should be set. The value is a number between 0 and 1; the closer to 1, the less bending
of light. The default value is so close to 1 that the object will be almost invisible. This example
uses a value of 0.6:

let material = new THREE.MeshBasicMaterial({

color: "white",

envMap: cubeTexture,

refractionRatio: 0.6

});

This gives a strong refractive effect. If you set the material color to something other than white,
you will get something that looks like tinted glass. Another property that you might set is the
reflectivity. For a refractive object, this value tells how much light is transmitted through the
object rather than reflected from its surface. The default value, 1, gives 100% transmission of
light; smaller values make objects look like they are made out of “cloudy” glass that blocks
some of the light.

The sample program threejs/refraction.html is a copy of reflection.html that has been
modified to do refraction instead of reflection. The objects look like they are made of glass
instead of mirrors. The program has a checkbox that makes the glass look cloudy and one that
increases the refractionRatio from 0.6 to 0.9. The following images are from that program. A
perfectly transmissive arrowhead is shown in the first image, and a cloudy sphere in the second.
Notice how the sphere shows an inverted image of the objects behind it:

In my reflection and refraction examples, the environment is a skybox, and there is a single
object that reflects or refracts that environment. But what if a scene includes more than one

5.3. OTHER FEATURES 215

object? The objects won’t be in the cubemap texture. If you use the cubemap texture on
the objects, they won’t reflect or refract each other. There is no complete solution to this
problem in WebGL. However, you can make an object reflect or refract other objects by making
an environment map that includes those objects. If the objects are moving, this means that
you have to make a new environment map for every frame. Recall that an environment map
can be made by taking six pictures of the environment from different directions. Three.js has
a kind of camera that can do just that, THREE.CubeCamera. I won’t go into the full details,
but a CubeCamera can take a six-fold picture of a scene from a given point of view and make a
cubemap texture from those images. To use the camera, you have to place it at the location of
an object—and make the object invisible so it doesn’t show up in the pictures. Snap the picture,
and apply it as an environment map on the object. For animated scenes, you have to do this in
every frame, and you need to do it for every reflective/refractive object in the scene. Obviously,
this can get very computationally expensive! And the result still isn’t perfect. For one thing,
you won’t see multiple reflections, where objects reflect back and forth on each other several
times. For that, you need a different kind of rendering from the one used by OpenGL. We
will return to the topic of dynamic cubemaps in Subsection 7.4.4 and to alternative rendering
techniques in Chapter 8.

216 CHAPTER 5. THREE.JS: A 3D SCENE GRAPH API

Chapter 6

Introduction to WebGL

In this chapter, we turn to WebGL, the version of OpenGL for the Web. Three.js,
which was covered in the previous chapter, uses WebGL for 3D graphics. Of course, it is more
difficult to use WebGL directly, but doing so gives you full control over the graphics hardware.
And learning it will be a good introduction to modern graphics programming. WebGL is very
different from OpenGL 1.1, which we studied in Chapter 3 and Chapter 4. Nevertheless, it will
turn out that much of what you learned in previous chapters will carry over to WebGL.

It is not my intention to cover WebGL in its entirety. There are many WebGL features
that I will not even mention, and many of those are important for more advanced computer
graphics. However, I will cover the core features that are needed for 2D and 3D graphics, along
with a few of the more advanced aspects, as a bonus.

There are two versions of WebGL, both of them still in use. WebGL 1.0 is based on OpenGL
ES 2.0, a version of OpenGL designed for use on embedded systems such as smart phones and
tablets. OpenGL ES 1.0, the original OpenGL for embedded systems, was very similar to
OpenGL 1.1. However, the 2.0 version of OpenGL ES introduced major changes. It is actually
a smaller, simpler API that puts more responsibility on the programmer. For example, functions
for working with transformations, such as glRotatef and glPushMatrix, were eliminated from
the API, making the programmer responsible for keeping track of transformations. WebGL
does not use glBegin/glEnd to generate geometry, and it doesn’t use function such as glColor*
or glNormal* to specify attributes of vertices. WebGL 1.0 is supported in almost every web
browser. (On some devices, WebGL might be disabled because of hardware limitations.)

WebGL 2.0, which is based on OpenGL ES 3.0, is already supported in many devices, but
is still not as widely supported as the 1.0 version. Most programs written for WebGL 1.0 will
also work under WebGL 2.0, so almost everything that you learn about the 1.0 version will
carry over to the newer version. In this textbook, I will concentrate on WebGL 1.0, but I will
also cover some of the new features of WebGL 2.0. I will try to make it clear when I am talking
about features that only apply to WebGL 2.0.

There are two sides to any WebGL program. Part of the program is written in JavaScript,
the programming language for the web. The second part is written in GLSL, a language
for writing “shader” programs that run on the GPU. WebGL 1.0 uses GLSL ES 1.00 (the
OpenGL Shader Language for Embedded Systems, version 1.00). WebGL 2.0 can use shader
programs written in GLSL ES 1.00, but it can also use GLSL ES 3.00, which has some significant
differences as well as new features. I will try to always be clear about which language I am
discussing.

For this introductory chapter about WebGL, we will stick to basic 2D graphics. You will
learn about the structure of WebGL programs. You will learn most of the JavaScript side of

217

218 CHAPTER 6. INTRODUCTION TO WEBGL

the API, and you will learn how to write and use simple shaders. In the next chapter, we will
move on to 3D graphics, and you will learn a great deal more about GLSL.

6.1 The Programmable Pipeline

OpenGL 1.1 uses a fixed-function pipeline for graphics processing. Data is provided by
a program and passes through a series of processing stages that ultimately produce the pixel
colors seen in the final image. The program can enable and disable some of the steps in the
process, such as the depth test and lighting calculations. But there is no way for it to change
what happens at each stage. The functionality is fixed.

OpenGL 2.0 introduced a programmable pipeline . It became possible for the programmer
to replace certain stages in the pipeline with their own programs. This gives the programmer
complete control over what happens at that stage. In OpenGL 2.0, the programmability was
optional; the complete fixed-function pipeline was still available for programs that didn’t need
the flexibility of programmability. WebGL uses a programmable pipeline, and it is mandatory.
There is no way to use WebGL without writing programs to implement part of the graphics
processing pipeline.

The programs that are written as part of the pipeline are called shaders. For WebGL,
you need to write a vertex shader , which is called once for each vertex in a primitive, and
a fragment shader , which is called once for each pixel in the primitive. Aside from these
two programmable stages, the WebGL pipeline also contains several stages from the original
fixed-function pipeline. For example, the depth test is still part of the fixed functionality, and
it can be enabled or disabled in WebGL in the same way as in OpenGL 1.1.

In this section, we will cover the basic structure of a WebGL program and how data flows
from the JavaScript side of the program into the graphics pipeline and through the vertex and
fragment shaders.

I should note that later versions of OpenGL have introduced new programmable stages, in
addition to the vertex and fragment shaders, but they are not part of WebGL 1.0 or 2.0, and
they are not covered in this book.

6.1.1 The WebGL Graphics Context

To use WebGL, you need aWebGL graphics context. The graphics context is a JavaScript object
whose methods implement the JavaScript side of the WebGL API. WebGL draws its images in
an HTML canvas, the same kind of <canvas> element that is used for the 2D API that was
covered in Section 2.6. A graphics context is associated with a particular canvas. A graphics
context for WebGL 1.0 can be obtained by calling the function canvas.getContext(“webgl”),
where canvas is a DOM object representing the canvas. For WebGL 2.0, you would simply
use canvas.getContext(“webgl2”) instead. The return value of getContext() will be null if the
context cannot be created. So, getting a WebGL graphics context often looks something like
this:

canvas = document.getElementById("webglcanvas");

gl = canvas.getContext("webgl"); // or maybe canvas.getContext("webgl2")

if (! gl) {

throw new Error("WebGL not supported; can’t create graphics context.");

}

6.1. THE PROGRAMMABLE PIPELINE 219

Here, the first line gets a reference to the HTML canvas that WebGL will used throughout the
program for drawing. The name gl for the variable is up to you, but I will always use gl for the
WebGL graphics context in my discussion. This code assumes that the HTML source for the
web page includes a canvas element with id=“webglcanvas”, such as

<canvas width="800" height="600" id="webglcanvas"></canvas>

In the second line of the above code, canvas.getContext(“webgl”) will return null if the web
browser does not support “webgl” as a parameter to getContext. Since null is considered to
be false in JavaScript when used in a boolean context, the third line tests whether the return
value is null. In that case, the code throws an error, which can be handled elsewhere, probably
by showing an error message to the user. Furthermore, the code will throw an exception if the
browser has no support at all for <canvas>. My programs often use an initialization function
of the form

function init() {

try {

canvas = document.getElementById("webglcanvas");

gl = canvas.getContext("webgl"); // or "webgl2"

if (! gl) {

throw new Error("WebGL not supported.");

}

}

catch (e) {

.

. // report the error

.

return;

}

initGL(); // a function that initializes the WebGL graphics context

.

. // other JavaScript initialization

.

}

In this function, canvas and gl are global variables. And initGL() is a function defined elsewhere
in the script that initializes the graphics context, including creating and installing the shader
programs. The init() function should be called when the page is loaded. This can be arranged,
for example, by assigning “window.onload = init;” in the script.

Once the graphics context, gl, has been created, it can be used to call functions in the
WebGL API. For example, the command for enabling the depth test, which was written as
glEnable(GL DEPTH TEST) in OpenGL, becomes

gl.enable(gl.DEPTH TEST);

Note that both functions and constants in the API are referenced through the graphics context.
The name “gl” for the graphics context is conventional, but remember that it is just an ordinary
JavaScript variable whose name is up to the programmer.

(Some very old browsers required canvas.getContext(“experimental-webgl”) to create a
WebGL 1.0 context. This includes Internet Explorer 11, but at this point, no one should
be using Internet Explorer.)

220 CHAPTER 6. INTRODUCTION TO WEBGL

6.1.2 The Shader Program

Drawing with WebGL requires a shader program, which consists of a vertex shader and a
fragment shader. Shaders are written in some version of the GLSL programming language.
WebGL 1.0 used GLSL ES 1.00, while WebGL 2.0 can use either GLSL ES 1.00 or GLSL ES
3.00. The discussion here is about GLSL ES 1.00; I will explain some of the changes in the 3.00
version later.

GLSL is based on the C programming language. The vertex shader and fragment shader
are separate programs, each with its own main() function. The two shaders are compiled
separately and then “linked” to produce a complete shader program. The JavaScript API
for WebGL includes functions for compiling the shaders and then linking them. To use the
functions, the source code for the shaders must be JavaScript strings. Let’s see how it works.
It takes three steps to create the vertex shader.

let vertexShader = gl.createShader(gl.VERTEX SHADER);

gl.shaderSource(vertexShader, vertexShaderSource);

gl.compileShader(vertexShader);

The functions that are used here are part of the WebGL graphics context, gl, and the parameter
vertexShaderSource is the string that contains the source code for the shader. Errors in the
source code will cause the compilation to fail silently. You need to check for compilation errors
by calling the function

gl.getShaderParameter(vertexShader, gl.COMPILE STATUS)

which returns a boolean value to indicate whether the compilation succeeded. In the event that
an error occurred, you can retrieve an error message with

gl.getShaderInfoLog(vertexShader)

which returns a string containing the result of the compilation. (The exact format of the string
is not specified by the WebGL standard. The string is meant to be human-readable.)

The fragment shader can be created in a similar way. With both shaders in hand, you can
create and link the program. The shaders need to be “attached” to the program object before
linking. The code takes the form:

let prog = gl.createProgram();

gl.attachShader(prog, vertexShader);

gl.attachShader(prog, fragmentShader);

gl.linkProgram(prog);

Even if the shaders have been successfully compiled, errors can occur when they are linked
into a complete program. For example, the vertex and fragment shader can share certain kinds
of variable. If the two programs declare such variables with the same name but with different
types, an error will occur at link time. Checking for link errors is similar to checking for
compilation errors in the shaders.

The code for creating a shader program is always pretty much the same, so it is convenient
to pack it into a reusable function. Here is the function that I use for the examples in this
chapter:

/**

* Creates a program for use in the WebGL context gl, and returns the

* identifier for that program. If an error occurs while compiling or

* linking the program, an exception of type Error is thrown. The error

* string contains the compilation or linking error.

6.1. THE PROGRAMMABLE PIPELINE 221

*/

function createProgram(gl, vertexShaderSource, fragmentShaderSource) {

let vsh = gl.createShader(gl.VERTEX SHADER);

gl.shaderSource(vsh, vertexShaderSource);

gl.compileShader(vsh);

if (! gl.getShaderParameter(vsh, gl.COMPILE STATUS)) {

throw new Error("Error in vertex shader: " + gl.getShaderInfoLog(vsh));

}

let fsh = gl.createShader(gl.FRAGMENT SHADER);

gl.shaderSource(fsh, fragmentShaderSource);

gl.compileShader(fsh);

if (! gl.getShaderParameter(fsh, gl.COMPILE STATUS)) {

throw new Error("Error in fragment shader: " + gl.getShaderInfoLog(fsh));

}

let prog = gl.createProgram();

gl.attachShader(prog, vsh);

gl.attachShader(prog, fsh);

gl.linkProgram(prog);

if (! gl.getProgramParameter(prog, gl.LINK STATUS)) {

throw new Error("Link error in program: " + gl.getProgramInfoLog(prog));

}

return prog;

}

There is one more step: You have to tell the WebGL context to use the program. If prog is
a program identifier returned by the above function, this is done by calling

gl.useProgram(prog);

It is possible to create several shader programs. You can then switch from one program
to another at any time by calling gl.useProgram, even in the middle of rendering an image.
(Three.js, for example, uses a different program for each type of Material.)

It is advisable to create any shader programs that you need as part of initialization.
Although gl.useProgram is a fast operation, compiling and linking are rather slow, so it’s better
to avoid creating new programs while in the process of drawing an image.

Shaders and programs that are no longer needed can be deleted to free up the resources
they consume. Use the functions gl.deleteShader(shader) and gl.deleteProgram(program).

6.1.3 Data Flow in the Pipeline

The WebGL graphics pipeline renders an image. The data that defines the image comes from
JavaScript. As it passes through the pipeline, it is processed by the current vertex shader and
fragment shader as well as by the fixed-function stages of the pipeline. You need to understand
how data is placed by JavaScript into the pipeline and how the data is processed as it passes
through the pipeline.

The basic operation in WebGL is to draw a geometric primitive. WebGL uses just
seven of the OpenGL primitives that were introduced in Subsection 3.1.1. The primitives
for drawing quads and polygons have been removed. The remaining primitives draw
points, line segments, and triangles. In WegGL, the seven types of primitive are identified
by the constants gl.POINTS, gl.LINES, gl.LINE STRIP, gl.LINE LOOP, gl.TRIANGLES,
gl.TRIANGLE STRIP, and gl.TRIANGLE FAN, where gl is a WebGL graphics context.

222 CHAPTER 6. INTRODUCTION TO WEBGL

When WebGL is used to draw a primitive, there are two general categories of data that can
be provided for the primitive. The two kinds of data are referred to as attribute variables

(or just “attributes”) and uniform variables (or just “uniforms”). A primitive is defined
by its type and by a list of vertices. The difference between attributes and uniforms is that a
uniform variable has a single value that is the same for the entire primitive, while the value of
an attribute variable can be different for different vertices.

One attribute that should always be specified is the coordinates of the vertex. The vertex
coordinates must be an attribute since each vertex in a primitive will have its own set of
coordinates. Another possible attribute is color. We have seen that OpenGL allows you to
specify a different color for each vertex of a primitive. You can do the same thing in WebGL,
and in that case the color will be an attribute. On the other hand, maybe you want the entire
primitive to have the same, “uniform” color; in that case, color can be a uniform variable. Other
quantities that could be either attributes or uniforms, depending on your needs, include normal
vectors and material properties. Texture coordinates, if they are used, are almost certain to be
an attribute, since it doesn’t really make sense for all the vertices in a primitive to have the
same texture coordinates. If a geometric transform is to be applied to the primitive, it would
naturally be represented as a uniform variable.

It is important to understand, however, that WebGL does not come with any predefined
attributes, not even one for vertex coordinates. In the programmable pipeline, the attributes
and uniforms that are used are entirely up to the programmer. As far as WebGL is concerned,
attributes are just values that are passed into the vertex shader. Uniforms can be passed into
the vertex shader, the fragment shader, or both. WebGL does not assign a meaning to the
values. The meaning is entirely determined by what the shaders do with the values. The set of
attributes and uniforms that are used in drawing a primitive is determined by the source code
of the shaders that are in use when the primitive is drawn.

To understand this, we need to look at what happens in the pipeline in a more detail. When
drawing a primitive, the JavaScript program specifies values for any attributes and uniforms in
the shader program. For each attribute, it will specify an array of values, one for each vertex.
For each uniform, it will specify a single value. It must send these values to the to the GPU
before drawing the primitive. The primitive can then be drawn by calling a single JavaScript
function. At that point, the GPU takes over, and executes the shader programs. When drawing
the primitive, the GPU calls the vertex shader once for each vertex. The attribute values for
the vertex that is to be processed are passed as input into the vertex shader. Values of uniform
variables are also passed to the vertex shader. The way this works is that both attributes and
uniforms are represented as global variables in the vertex shader program. Before calling the
shader for a given vertex, the GPU sets the values of those variables appropriately for that
specific vertex.

As one of its outputs, the vertex shader must specify the coordinates of the vertex in the
clip coordinate system (see Subsection 3.3.1). It does that by assigning a value to a special
variable named gl Position. The position is often computed by applying a transformation to
the attribute that represents the coordinates in the object coordinate system, but exactly how
the position is computed is up to the programmer.

After the positions of all the vertices in the primitive have been computed, a fixed-function
stage in the pipeline clips away the parts of the primitive whose coordinates are outside the
range of valid clip coordinates (−1 to 1 along each coordinate axis). The primitive is then
rasterized; that is, it is determined which pixels lie inside the primitive. The GPU then calls
the fragment shader once for each pixel that lies in the primitive. The fragment shader has access

6.1. THE PROGRAMMABLE PIPELINE 223

to uniform variables (but not attributes). It can also use a special variable named gl FragCoord
that contains the clip coordinates of the pixel. Pixel coordinates are computed by interpolating
the values of gl Position that were specified by the vertex shader. The interpolation is done by
another fixed-function stage that comes between the vertex shader and the fragment shader.

Other quantities besides coordinates can work in much that same way. That is, the vertex
shader computes a value for the quantity at each vertex of a primitive. An interpolator takes
the values at the vertices and computes a value for each pixel in the primitive. The value for
a given pixel is then input into the fragment shader when the shader is called to process that
pixel. For example, color in OpenGL follows this pattern: The color of an interior pixel of
a primitive is computed by interpolating the color at the vertices. In GLSL, this pattern is
implemented using varying variables.

A varying variable is declared both in the vertex shader and in the fragment shader. The
vertex shader is responsible for assigning a value to the varying variable. Each vertex of a
primitive can assign a different value to the variable. The interpolator takes all the values
produced by executing the vertex shader for each vertex of the primitive, and it interpolates
those values to produce a value for each pixel. When the fragment shader is executed for a given
pixel, the value of the varying variable is the interpolated value for that pixel. The fragment
shader can use the value in its own computations.

Varying variables exist to communicate data from the vertex shader to the fragment shader.
They are defined in the shader source code. They are not used or referred to in the JavaScript
side of the API. Note that it is entirely up to the programmer to decide what varying variables
to define and what to do with them.

We have almost gotten to the end of the pipeline. After all that, the job of the fragment
shader is simply to specify a color for the pixel. It does that by assigning a value to a special
variable named gl FragColor. That value will then be used in the remaining fixed-function
stages of the pipeline.

To summarize: The JavaScript side of the program sends values for attributes and uniform
variables to the GPU and then issues a command to draw a primitive. The GPU executes the
vertex shader once for each vertex. The vertex shader can use the values of attributes and
uniforms. It assigns values to gl Position and to any varying variables that exist in the shader.
After clipping, rasterization, and interpolation, the GPU executes the fragment shader once for
each pixel in the primitive. The fragment shader can use the values of varying variables, uniform
variables, and gl FragCoord. It computes a value for gl FragColor. This diagram summarizes
the flow of data:

224 CHAPTER 6. INTRODUCTION TO WEBGL

Vertex Shader

�������� �hader

��������olor

���� ¡¢tes

¢£ ¤¥�m

¦�� �¡�§¨

¦��© £�

¦�� �¡�§¨

interpolated

¦��© £�

¦�� �¡�§¨

���ªosition

interpolator

��������oord

The diagram is not complete. There are a few more special variables that I haven’t mentioned.
And there is the important question of how textures are used. But if you understand the
diagram, you have a good start on understanding WebGL.

∗ ∗ ∗

For GLSL ES 3.00, the same diagram applies, except that there is no special variable
gl FragColor. Instead, the fragment shader must define its own output variable to represent the
color. In GLSL ES 1.00, the words “attribute” and “varying” are used when declaring variables
in the actual shader program source code. In source code for the 3.00 version, attribute variables
become “in” variables, since they are inputs to the vertex shader, and varying variables become
“out” variables in the vertex shader and “in” variables in the fragment shader. And the variable
gl FragColor is replaced by an “out” variable in the fragment shader. The use of the terms “in”
and “out” are actually more appropriate to systems with additional pipeline stages, where “out”
variables from one stage can become “in” variables to the next stage. In any case, people still
use the terms attribute and varying when discussing WebGL, even if it is using GLSL ES 3.00.

6.1.4 Values for Uniform Variables

It’s time to start looking at some actual WebGL code. We will concentrate on the JavaScript
side first, but you need to know a little about GLSL. GLSL has some familiar basic data types:
float, int, and bool. But it also has some new predefined data types to represent vectors and
matrices. For example, the data type vec3 represents a vector in 3D. The value of a vec3
variable is a list of three floating-point numbers. Similarly, there are data types vec2 and vec4
to represent 2D and 4D vectors.

Global variable declarations in a vertex shader can be marked as attribute, varying, or
uniform (or as in, out, or uniform in GLSL ES 3.00, but again, we will stick to the 1.00 version

6.1. THE PROGRAMMABLE PIPELINE 225

for the time being). A variable declaration with none of these modifiers defines a variable that
is local to the vertex shader. Global variables in a fragment can optionally be uniform or
varying, or they can be declared without a modifier. A varying variable should be declared in
both shaders, with the same name and type. This allows the GLSL compiler to determine what
attribute, uniform, and varying variables are used in a shader program.

The JavaScript side of the program needs a way to refer to particular attributes and uniform
variables. The function gl.getUniformLocation can be used to get a reference to a uniform
variable in a shader program, where gl refers to the WebGL graphics context. It takes as
parameters the identifier for the compiled program, which was returned by gl.createProgram,
and the name of the uniform variable in the shader source code. For example, if prog identifies a
shader program that has a uniform variable named color, then the location of the color variable
can be obtained with the JavaScript statement

colorUniformLoc = gl.getUniformLocation(prog, "color");

The location colorUniformLoc can then be used to set the value of the uniform variable. For
example:

gl.uniform3f(colorUniformLoc, 1, 0, 0);

The function gl.uniform3f is one of a family of functions that can be referred to as a group
as gl.uniform*. This is similar to the family glVertex* in OpenGL 1.1. The * represents a
suffix that tells the number and type of values that are provided for the variable. In this case,
gl.uniform3f takes three floating point values, and it is appropriate for setting the value of a
uniform variable of type vec3. The number of values can be 1, 2, 3, or 4. The type can be “f”
for floating point or “i” for integer. (For a boolean uniform, you should use gl.uniform1i and
pass 0 to represent false or 1 to represent true.) If a “v” is added to the suffix, then the values
are passed in an array. For example,

gl.uniform3fv(colorUniformLoc, [1, 0, 0]);

There is another family of functions for setting the value of uniform matrix variables. We will
get to that later.

The value of a uniform variable can be set any time after the shader program has been
compiled, and the value remains in effect until it is changed by another call to gl.uniform*.

If the string that is passed as the second parameter gl.getUniformLocation is not the name
of a uniform variable in the shader programs, then the return value is null. The return value
can also be null if the uniform variable is declared in the shader source code but is not “active”
in the program. A variable that is declared but not actually used is not active, and it does
not get a location in the compiled program. This has occasionally caused problems for me,
when I commented out part of a shader program for debugging purposes, and accidently made
a variable inactive by doing so.

6.1.5 Values for Attributes

Turning now to attributes, the situation is more complicated, because an attribute can take
a different value for each vertex in a primitive. The basic idea is that the complete set of
data for the attribute is copied in a single operation from a JavaScript array into memory that
is accessible to the GPU. Unfortunately, setting things up to make that operation possible is
non-trivial.

First of all, a regular JavaScript array is not suitable for this purpose. For efficiency, we
need the data to be in a block of memory holding numerical values in successive memory

226 CHAPTER 6. INTRODUCTION TO WEBGL

locations, and regular JavaScript arrays don’t have that form. To fix this problem, a new kind
of array, called typed arrays, was introduced into JavaScript. We encountered typed arrays
when working with three.js in the Chapter 5. There is a short introduction to typed arrays in
Subsection 5.1.3. A typed array has a fixed length, which is assigned when it is created, and it
can only hold numbers of a specified type. There are different kinds of typed array for different
kinds of numerical data. For now we will use Float32Array, which holds 32-bit floating point
numbers. Once you have a typed array, you can use it much like a regular array, but when you
assign any value to an element of a Float32Array, the value is converted into a 32-bit floating
point number. If the value cannot be interpreted as a number, it will be converted to NaN, the
“not-a-number” value.

Before data can be transferred from JavaScript into an attribute variable, it must be placed
into a typed array. When possible, for efficiency, you should work with typed arrays directly,
rather than working with regular JavaScript arrays and then copying the data into typed arrays.

∗ ∗ ∗

For use in WebGL, the attribute data must be transferred into a VBO (vertex buffer object).
VBOs were introduced in OpenGL 1.5 and were discussed briefly in Subsection 3.4.4. A VBO
is a block of memory that is accessible to the GPU. To use a VBO, you must first call the
function gl.createBuffer() to create it. For example,

colorBuffer = gl.createBuffer();

Before transferring data into the VBO, you must “bind” the VBO:

gl.bindBuffer(gl.ARRAY BUFFER, colorBuffer);

The first parameter to gl.bindBuffer is called the “target.” It specifies how the VBO will be
used. The target gl.ARRAY BUFFER is used when the buffer is being used to store values for
an attribute. Only one VBO at a time can be bound to a given target.

The function that transfers data into a VBO doesn’t mention the VBO—instead, it uses the
VBO that is currently bound. To copy data into that buffer, use gl.bufferData(). For example:

gl.bufferData(gl.ARRAY BUFFER, colorArray, gl.STATIC DRAW);

The first parameter is, again, the target. The data is transferred into the VBO that is bound to
that target. The second parameter is the typed array that holds the data on the JavaScript side.
All the elements of the array are copied into the buffer, and the size of the array determines
the size of the buffer. Note that this is a straightforward transfer of raw data bytes; WebGL
does not remember whether the data represents floats or ints or some other kind of data.

The third parameter to gl.bufferData is one of the constants gl.STATIC DRAW,
gl.STREAM DRAW, or gl.DYNAMIC DRAW. It is a hint to WebGL about how the data
will be used, and it helps WebGL to manage the data in the most efficient way. The value
gl.STATIC DRAW means that you intend to use the data many times without changing it.
For example, if you will use the same data throughout the program, you can load it into
a buffer once, during initialization, using gl.STATIC DRAW. WebGL will probably store the
data on the graphics card itself where it can be accessed most quickly by the graphics hardware.
The second value, gl.STEAM DRAW, is for data that will be used only once, or at most a few
times. (It can be “streamed” to the card when it is needed.) The value gl.DYNAMIC DRAW
is somewhere between the other two values; it is meant for data that will be used multiple
times, but with modifications.

∗ ∗ ∗

6.1. THE PROGRAMMABLE PIPELINE 227

Getting attribute data into VBOs is only part of the story. You also have to tell WebGL
to use the VBO as the source of values for the attribute. To do so, first of all, you need
to know the location of the attribute in the shader program. You can determine that using
gl.getAttribLocation. For example,

colorAttribLoc = gl.getAttribLocation(prog, "a color");

This assumes that prog is the shader program and “a color” is the name of the attribute variable
in the vertex shader. This is entirely analogous to gl.getUniformLocation (except that the return
value is an integer, and is -1 if the requested attribute does not exist or is not active).

Although an attribute usually takes different values at different vertices, it is possible to use
the same value at every vertex. In fact, that is the default behavior. The single attribute value
for all vertices can be set using the family of functions gl.vertexAttrib*, which work similarly to
gl.uniform*. In the more usual case, where you want to take the values of an attribute from a
VBO, you must enable the use of a VBO for that attribute. This is done by calling

gl.enableVertexAttribArray(colorAttribLoc);

where the parameter is the location of the attribute in the shader program, as returned by a
call to gl.getAttribLocation(). This command has nothing to do with any particular VBO. It
just turns on the use of buffers for the specified attribute. Often, it is reasonable to call this
method just once, during initialization. Use of data from the VBO can be turned off by calling

gl.disableVertexAttribArray(colorAttribLoc);

Finally, before you draw a primitive that uses the attribute data from a VBO, you have to
tell WebGL which buffer contains the data and how the bits in that buffer are to be interpreted.
This is done with gl.vertexAttribPointer(). The VBO must be bound to the ARRAY BUFFER
target when this function is called. For example,

gl.bindBuffer(gl.ARRAY BUFFER, colorBuffer);

gl.vertexAttribPointer(colorAttribLoc, 3, gl.FLOAT, false, 0, 0);

Assuming that colorBuffer refers to the VBO and colorAttribLoc is the location of the attribute,
this tells WebGL to take values for the attribute from that buffer. Often, you will call
gl.bindBuffer() just before calling gl.vertexAttribPointer(), but that is not necessary if the
desired buffer is already bound.

The first parameter to gl.vertexAttribPointer is the attribute location. The second is the
number of values per vertex. For example, if you are providing values for a vec2, the second
parameter will be 2 and you will provide two numbers per vertex; for a vec3, the second
parameter would be 3; for a float, it would be 1. The third parameter specifies the type of each
value. Here, gl.FLOAT indicates that each value is a 32-bit floating point number. Other values
include gl.BYTE, gl.UNSIGNED BYTE, gl.UNSIGNED SHORT, and gl.SHORT for integer
values. Note that in WebGL 1.0, all attributes are floating point values; if you provide integer
values for an attribute, they will be converted to floating point. The parameter value should
match the data type in the buffer. For example, if the data came from a Float32Array, then the
parameter should be gl.FLOAT. For the last three parameters in a call to gl.vertexAttribPointer,
I will always use false, 0, and 0. These parameters add flexibility that I won’t need; you can
look them up in the documentation if you are interested. (The false parameter has to do with
how integer values are converted into floating point values.)

In WebGL 2.0, attribute variables can have integer type. When gl.vertexAttribPointer()
is used to configure an attribute, the values provided for the attribute will always be converted
to floating point, so it is inappropriate for integer-valued attributes. For use with integer-valued

228 CHAPTER 6. INTRODUCTION TO WEBGL

attributes, WebGL 2.0 introduces a new function, gl.vertexAttribIPointer() that works correctly
with integer data.

There is a lot to take in here. Using a VBO to provide values for an attribute requires six
separate commands, and that is in addition to generating the data and placing it in a typed
array. Here is the full set of commands:

colorAttribLoc = gl.getAttribLocation(prog, "a color");

colorBuffer = gl.createBuffer();

gl.enableVertexAttribArray(colorAttribLoc);

gl.bindBuffer(gl.ARRAY BUFFER, colorBuffer);

gl.vertexAttribPointer(colorAttribLoc, 3, gl.FLOAT, false, 0, 0);

gl.bufferData(gl.ARRAY BUFFER, colorArray, gl.STATIC DRAW);

However, the six commands will not always occur at the same point in the JavaScript code.
The first three commands are often done as part of initialization. gl.bufferData would be called
whenever the data for the attribute needs to be changed; it might be used just once during
initialization, or it might be used whenever the data needs to be modified. gl.bindBuffer must
be called before gl.vertexAttribPointer or gl.bufferData, since it establishes the VBO that is
used by those two commands. Remember that all of this must be done for every attribute that
is used in the shader program.

6.1.6 Drawing a Primitive

After the shader program has been created and values have been set up for the uniform variables
and attributes, it takes just one more command to draw a primitive. One way to do that is
with the function gl.drawArrays:

gl.drawArrays(primitiveType, startVertex, vertexCount);

The first parameter is one of the seven constants that identify WebGL primitive types, such
as gl.TRIANGLES, gl.LINE LOOP, and gl POINTS. The second and third parameters are
integers that determine which subset of available vertices is used for the primitive. Before
calling gl.drawArrays, you will have placed attribute values for some number of vertices into
one or more VBOs. When the primitive is rendered, the attribute values for enabled attributes
are pulled from the VBOs. The startVetex is the starting vertex number of the data within the
VBOs, and vertexCount is the number of vertices in the primitive. Often, startVertex is zero,
and vertexCount is the total number of vertices for which data is available. For example, the
command for drawing a single triangle might be

gl.drawArrays(gl.TRIANGLES, 0, 3);

The use of the word “array” in gl.drawArrays and gl.ARRAY BUFFER might be a little
confusing, since the data is stored in vertex buffer objects rather than in JavaScript arrays.
When glDrawArrays was first introduced in OpenGL 1.1, it used ordinary arrays rather than
VBOs. Starting with OpenGL 1.5, glDrawArrays could be used either with ordinary arrays or
VBOs. In WebGL, support for ordinary arrays was dropped, and gl.drawArrays can only work
with VBOs, even though the name still refers to arrays.

We encountered the original version of glDrawArrays in Subsection 3.4.2. That section also
introduced an alternative function for drawing primitives, glDrawElements, which can be used
for drawing indexed face sets. A gl.drawElements function is also available in WebGL. With
gl.drawElements, attribute data is not used in the order in which it occurs in the VBOs. Instead,
there is a separate list of indices that determines the order in which the data is accessed.

6.1. THE PROGRAMMABLE PIPELINE 229

To use gl.drawElements, an extra VBO is required to hold the list of indices. When used
for this purpose, the VBO must be bound to the target gl.ELEMENT ARRAY BUFFER
rather than gl.ARRAY BUFFER. The VBO will hold integer values, which can be of type
gl.UNSIGNED BYTE or gl.UNSIGNED SHORT (or, for WebGL 2.0, gl.USIGNED INT).
The values can be loaded from a JavaScript typed array of type Uint8Array, for
gl.UNSIGNED BYTE, or Uint16Array, for gl.UNSIGNED SHORT. Creating the VBO and fill-
ing it with data is again a multistep process. For example,

elementBuffer = gl.createBuffer();

gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, elementBuffer);

let data = new Uint8Array([2,0,3, 2,1,3, 1,4,3]);

gl.bufferData(gl.ELEMENT ARRAY BUFFER, data, gl.STREAM DRAW);

Assuming that the attribute data has also been loaded into VBOs, gl.drawElements can then
be used to draw the primitive. A call to gl.drawElements takes the form

gl.drawElements(primitiveType, count, dataType, startByte);

The VBO that contains the vertex indices must be bound to the ELEMENT ARRAY BUFFER
target when this function is called. The first parameter to gl.drawElements is a primitive type
such as gl.TRIANGLE FAN. The count is the number of vertices in the primitive. The dataType
specifies the type of data that was loaded into the VBO; it will be either gl.UNSIGNED SHORT
or gl.UNSIGNED BYTE. The startByte is the starting point in the VBO of the data for the
primitive; it is usually zero. (Note that the starting point is given in terms of bytes, not vertex
numbers.) A typical example would be

gl.drawElements(gl.TRIANGLES, 9, gl.UNSIGNED BYTE, 0);

We will have occasion to use this function later. If you find it confusing, you should review
Subsection 3.4.2. The situation is much the same in WebGL as it was in OpenGL 1.1.

6.1.7 WebGL 2.0: Vertex Array Objects

The large number of functions needed to work with attributes can seem excessive. The situation
is worse in a program that draws several different objects. Each object can require its own
buffers and its own settings for attribute pointers. Before drawing each object, it would be
necessary to call gl.bindBuffer() and gl.vertexAttribPointer() for each attribute. A typical
3D graphics program would use attributes for vertex coordinates, normal vectors, material
properties, and texture coordinates. So, there would be a lot of function calls for each object.

To help with this situation, WebGL 2.0 introduced Vertex Array Objects (VAOs). A
VAO is a section of memory, typically stored on the graphics card. It holds settings that are
used by rendering functions such as gl.drawArrays(). This includes the enabled state of each
attribute, references to the buffers used for the attribute data, and the values of all properties
that are set by calling gl.vertexAttribPointer(). It also includes the settings and a reference to
the buffer used by gl.drawElements(), as well as the attribute divisors that are discussed in the
next subsection.

WebGL 2.0 has a default VAO, which it uses when no other VAO has been selected. To use
an alternative VAO, you first have to create it, by calling gl.createVertexArray():

vao = gl.createVertexArray();

The return value, vao, is an identifier for the VAO that has been created. In the new VAO, all
properties have their default values. In particular, all vertex attributes are disabled and have
no associated buffers. To actually use a VAO, you need to bind it:

230 CHAPTER 6. INTRODUCTION TO WEBGL

gl.bindVertexArray(vao);

Functions that affect or use attributes apply to the VAO that is currently bound. For example,
the settings in a call to gl.vertexAttribPointer() are stored in the current VAO. And a call to
gl.drawArrays() gets all the data that it needs to draw a primitive from the current VAO. A
program can switch from one VAO to another at any time simply by calling gl.bindVertexArray.
To go back to using the default VAO, a program can call gl.bindVertexArray(0).

The idea is that a program that draws several objects can use a different VAO for each
object. The VAO for an object must be bound when the settings for the object are configured.
But before drawing the object, the program simply needs to bind the VAO for that object.
That single function call replaces a potentially a large number of function calls that would be
needed to restore the appropriate settings for each attribute individually. The advantage is
more than just a more nicely organized program—it is also much more efficient, since only one
command needs to be sent to the GPU to configure all of the attributes.

The sample WebGL 2.0 program webgl/VAO-test-webgl2.html uses a different VAO for each
of six different objects. That program uses many techniques that we have not yet covered, but
you can look at the drawModel() function to see how it uses VAOs and VBOs.

6.1.8 WebGL 2.0: Instanced Drawing

It’s common for a scene to contain multiple copies of the same primitive (that is, using the
same vertex coordinates), but with different transformations, colors, or other properties for
each copy. WebGL 2.0 makes it possible to draw all those copies with a single function call.
This is called instanced drawing or instancing, and the individual copies of the primitive are
called instances. The functions that use instanced drawing are gl.drawArraysInstanced() and
gl.drawElementsInstanced().

Instanced properties—the properties that vary from one instance to another—are things
that would likely be uniform variables when drawing each instance separately. That is, each
instance gets just one value of the property that applies to all the vertices of the instance.
Nevertheless, the properties are represented by attribute variables in the shader program, not
uniform variables, and they are configured as attributes.

To specify that an attribute is an instanced property, you just need to specify a “divisor”
for that attribute. This is done by calling gl.vertexAttribDivisor :

g.vertexAttribDivisor(attribID, divisor);

Here, attribID is the identifier for the attribute, as returned by gl.getAttribLocation(). The
divisor is a non-negative integer. Passing zero as the divisor will turn off instancing for the
attribute. If divisor is positive, then each value of the attribute will apply to that many
instances. For example, if divisor is 3, then the first entry in the attribute value array applies
to the first, second, and third instances; the second value in the array applies to the fourth,
fifth, and sixth instances; and so on. In practice, the value of divisor is usually one, meaning
that each instance has its own entry in the attribute value array.

For an instanced property, in addition to setting the divisor, it is still necessary to enable
the attribute, load data for it into a VBO, and configure it with gl.vertexAttribPointer.
And, of course, it is necessary to draw the primitive using gl.drawArraysInstanced() or
gl.drawElementsInstanced(), and not with gl.drawArrays() or gl.drawElements().

The sample WebGL 2.0 program webgl/instancing-test-webgl2.html is an example of
instanced drawing. (Again, there is a lot in the program that you won’t understand until we have
covered more of WebGL). The program draws 30 colored disks, where a disk is approximated

6.2. FIRST EXAMPLES 231

by a primitive of type gl.TRIANGLE FAN. Three attributes are used: an attribute that holds
the coordinates of the vertices, an instanced attribute that holds the colors for the disks, and
an instanced attribute that holds a different translation for each disk.

Another point of interest in the program is its used of vertex buffer objects. The disks can
be animated. The disks move, but their colors don’t change. Since the colors don’t change, the
color values for the disks are loaded into a VBO once, during program initialization. The usage
parameter in gl.bufferData is set to gl.STATIC DRAW because the data will not be modified.
However, because the disks are moving, the values for the translations of the disks have to
change in each frame. So, new data is loaded into the corresponding VBO for each frame, with
usage gl.STREAM DRAW because the data that is being loaded will only be used once.

Finally, I should note that VAOs and instancing require WebGL 2.0, but the same
functionality is available in many implementations of WebGL 1.0 as optional extensions. Webgl
extensions will be discussed in Section 7.5.

6.2 First Examples

We are ready to start working towards our first WebGL programs. This section begins
with a few more details about the WebGL graphics context, followed by a short introduction
to GLSL, the programming language for WebGL shaders. With that in hand, we can turn to
the standard first example: the RGB color triangle.

6.2.1 WebGL Context Options

We saw in Subsection 6.1.1 that a WebGL graphics context is created by the function
canvas.getContext, where canvas is a reference to the <canvas> element where the graphics
context will draw. This function takes an optional second parameter that can be used to set
the value of certain options in the graphics context. The second parameter is only needed if you
want to give a non-default value to at least one of the options. The parameter is a JavaScript
object whose properties are the names of the options. Here is an example of context creation
with options:

let options = {

alpha: false,

depth: false

};

gl = canvas.getContext("webgl", options); // (or "webgl2")

All of the options are boolean-valued. I will discuss the most useful ones here:

alpha — determines whether the drawing buffer has an alpha component. This is the alpha
component for the image canvas as a whole. If there is an alpha component, then it is possible
for pixels in the canvas to be transparent or translucent, letting the background (on the web
page behind the canvas) show through. The default value is true. It is safe to set the value
to false, if you want the canvas to be fully opaque. Setting it to false does not stop you from
doing alpha blending of the drawing color with the image color; the RGB color components
can still be computed by blending. However, setting the value to false is only necessary if your
program outputs pixels with alpha component less than 1.0, and you don’t want your image
to blend with the background of the canvas. (Note however that a graphics context with an
alpha component might be handled more efficiently, because web pages use RGBA colors for
their display.)

232 CHAPTER 6. INTRODUCTION TO WEBGL

depth — determines whether a depth buffer is allocated. The default value is true. You
only need a depth buffer if you enable the depth test. The depth buffer is generally not needed
for 2D graphics. If your application doesn’t need it, eliminating the depth buffer can save some
memory in the GPU.

antialias — is used to request that antialiasing be applied to the image. A WebGL
implementation might ignore the request, for example if antialiasing is not supported by the
GPU. The default value is true. Antialiasing can improve the quality of an image, but it can
also significantly increase the computation time.

preserveDrawingBuffer — determines whether the contents of the drawing buffer are
discarded after the image has been copied to the web page. The default value is false. The
drawing buffer is internal to WebGL. Its contents only become visible on the screen when the
web browser copies the image onto the web page. The default value for preserveDrawingBuffer
means that once that happens, WebGL can discard its own copy of the image, which allows the
GPU to free up resources for other operations. As long as your rendering functions completely
redraw the image every time they called, the default is fine. You should set the value to true
only if you need to keep the image around so that you can add to it incrementally over time.

6.2.2 A Bit of GLSL

The next section will cover GLSL more thoroughly. But you will need to know something about
the language to understand the examples in this section. This section discusses GLSL ES 1.00
only, but remember that that language can be used with both WebGL 1.0 and WebGL 2.0.

A vertex or fragment shader can contain global variable declarations, type definitions, and
function definitions. One of the functions must be main(), which is the entry point for the
shader; that is, it is the function that is called by the GPU to process the vertex or fragment.
The main() routine takes no parameters and does not return a value, so it takes the form

void main() {

.

.

.

}

(Alternatively, it can be declared as void main(void).)

Control structures are limited. If statements take the same form as in C or Java. But some
limitations are placed on the for loop syntax, and while and do. . . while loops are not allowed.
Data structures include arrays and structs, again with some limitations. We will cover all this
in some detail in the next section.

GLSL’s strength lies in its built-in data types and functions for working with vectors and
matrices. In this section, we will only need the data types float, vec2, vec3, and vec4. These
types represent, respectively, 1, 2, 3, or 4 floating point numbers. Variable declarations are
similar to C. Some examples are:

attribute vec3 a coords; // (only in vertex shader)

vec3 rgb;

float width, height;

uniform vec2 u size;

varying vec4 v color;

Attribute, uniform, and varying variables were discussed in Section 6.1. They are used for
communication between JavaScript and the shader program and between the vertex shader

6.2. FIRST EXAMPLES 233

and the fragment shader. In the above examples, I used the prefixes “a ”, “u ”, and “v ” in
the names of the variables, but that is not required.

It is common to construct a value for a vector from individual numbers or from shorter
vectors. GLSL has a flexible notation for doing this. Using the variables declared in the above
examples, we can write

rgb = vec3(1.0, 0.7, 0.0); // construct a vec3 from constants

v color = vec4(rgb, 1.0); // construct a vec4 from a vec3 and a constant

gl Position = vec4(a coords, 0.0, 1.0); // vec4 from a vec2 and 2 constants

In the last assignment statement, gl Position is the special built-in variable that is used in the
vertex shader to give the coordinates of the vertex. gl Position is of type vec4, requiring four
numbers, because the coordinates are specified as homogeneous coordinates (Subsection 3.5.3).
The special variable gl FragCoord in the fragment shader is also a vec4, giving the coordinates
of the pixel as homogeneous coordinates. And gl FragColor is a vec4, giving the four RGBA
color components for the pixel.

A vertex shader needs, at a minimum, an attribute to give the coordinates of the vertex.
For 2D drawing, it’s natural for that attribute to be of type vec2. If we assume that the values
for the attribute are already expressed in clip coordinates, then the complete source code for
the vertex shader could be as simple as:

attribute vec2 coords;

void main() {

gl Position = vec4(coords, 0.0, 1.0);

}

For a corresponding minimal fragment shader, we might simply draw everything in yellow.

precision mediump float;

void main() {

gl FragColor = vec4(1.0, 1.0, 0.0, 1.0);

}

The strange first line in this fragment shader has not been explained, but something like it is
required. It will be explained in the next section.

6.2.3 The RGB Triangle in WebGL

We are ready to look at our first full WebGL example, which will draw the usual RGB color
triangle, as shown here:

The source code can be found in webgl/webgl-rgb-triangle.html. The code includes the usual
init() and createProgram() functions as discussed in Subsection 6.1.1 and Subsection 6.1.2,

234 CHAPTER 6. INTRODUCTION TO WEBGL

except that I have turned off the “alpha” and “depth” options in the WebGL context. I won’t
discuss those two functions further.

The example uses an attribute of type vec2 to specify the coordinates of the vertices of the
triangle. Coordinates range from −1 to 1 in the default WebGL coordinate system. For the
triangle, the vertex coordinates that I use are in that range, so no coordinate transformation
is needed. Since the color is different at each vertex of the triangle, the vertex color is also an
attribute. I use an attribute of type vec3 for the vertex colors, since no alpha component is
needed in this program.

The color of interior pixels in the triangle is interpolated from the colors at the vertices. The
interpolation means that we need a varying variable to represent the color. A varying variable
is assigned a value in the vertex shader, and its value is used in the fragment shader.

It looks like we need two color variables: an attribute and a varying variable. We can’t use
the same variable for both purposes. The attribute carries the vertex color from JavaScript into
the vertex shader; the varying variable carries the color from the vertex shader to the fragment
shader. In this case, the color value going out of the vertex shader is the same as the value
coming in, so the shader just has to copy the value from the color attribute to the varying
variable. This pattern is actually fairly common. Here is the vertex shader:

attribute vec2 a coords;

attribute vec3 a color;

varying vec3 v color;

void main() {

gl Position = vec4(a coords, 0.0, 1.0);

v color = a color;

}

The fragment shader only has to copy the incoming color value from the varying variable into
gl FragColor, which specifies the outgoing color for the fragment:

precision mediump float;

varying vec3 v color;

void main() {

gl FragColor = vec4(v color, 1.0);

}

In order to compile the shader program, the source code for the shaders has to be in
JavaScript strings. In this case, I construct the strings by concatenating constant strings
representing the individual lines of code. For example, the fragment shader source code is
included in the JavaScript script as the global variable

const fragmentShaderSource =

"precision mediump float;\n" +

"varying vec3 v color;\n" +

"void main() {\n" +

" gl FragColor = vec4(v color, 1.0);\n" +

"}\n";

The line feed character, “\n”, at the end of each line is not required, but it allows the GLSL
compiler to include a meaningful line number in any error message that it generates.

Also on the JavaScript side, we need a global variable for the WebGL context. And we need
to provide values for the attribute variables. The rather complicated process was discussed
in Subsection 6.1.5. We need global variables to represent the location of each attribute in

6.2. FIRST EXAMPLES 235

the shader program, and to represent the VBOs that will hold the attribute values. I use the
variables

let gl; // The WebGL graphics context.

let attributeCoords; // Location of the attribute named "a coords".

let bufferCoords; // A vertex buffer object to hold the values for a coords.

let attributeColor; // Location of the attribute named "a color".

let bufferColor; // A vertex buffer object to hold the values for a color.

The graphics context is created in the init() function. The other variables are initialized in a
function initGL() that is called from init(). That function also creates the shader program,
using the createProgram() function from Subsection 6.1.2:

function initGL() {

let prog = createProgram(gl, vertexShaderSource, fragmentShaderSource);

gl.useProgram(prog);

attributeCoords = gl.getAttribLocation(prog, "a coords");

bufferCoords = gl.createBuffer();

attributeColor = gl.getAttribLocation(prog, "a color");

bufferColor = gl.createBuffer();

}

To set up the values for an attribute, we need six different JavaScript commands (and more
if you count placing the attribute values into a typed array). The commands getAttribLocation
and createBuffer will most likely be called just once for each attribute, so I put them in my
initialization routine. The other four commands are in draw(), the function that draws the
image. In this program, draw() is called just once, so the division of the code into two functions
is not really necessary, but in general, a draw function is meant to be called many times. (It
would be a particularly bad idea to create a new VBO every time draw() is called!)

Before drawing the triangle, the draw() function fills the canvas with a black background.
This is done using the WebGL functions gl.clearColor and gl.clear, which have exactly the same
functionality as the OpenGL 1.1 functions glClearColor and glClear. Here is the code:

function draw() {

gl.clearColor(0,0,0,1); // specify the color to be used for clearing

gl.clear(gl.COLOR BUFFER BIT); // clear the canvas (to black)

/* Set up values for the "a coords" attribute */

let coords = new Float32Array([-0.9,-0.8, 0.9,-0.8, 0,0.9]);

gl.bindBuffer(gl.ARRAY BUFFER, bufferCoords);

gl.bufferData(gl.ARRAY BUFFER, coords, gl.STREAM DRAW);

gl.vertexAttribPointer(attributeCoords, 2, gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(attributeCoords);

/* Set up values for the "a color" attribute */

let color = new Float32Array([0,0,1, 0,1,0, 1,0,0]);

gl.bindBuffer(gl.ARRAY BUFFER, bufferColor);

gl.bufferData(gl.ARRAY BUFFER, color, gl.STREAM DRAW);

gl.vertexAttribPointer(attributeColor, 3, gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(attributeColor);

236 CHAPTER 6. INTRODUCTION TO WEBGL

/* Draw the triangle. */

gl.drawArrays(gl.TRIANGLES, 0, 3);

}

In this function, the variable coords contains values for the attribute named “a coords” in
the vertex shader. That attribute represents the x and y coordinates of the vertex. Since the
attribute is of type vec2, two numbers are required for each vertex. The value for coords is
created here with a Float32Array constructor that takes an ordinary JavaScript array as its
parameter; the values from the JavaScript array are copied into the newly created typed array.
Similarly, the variable color contains values for the “a color” attribute in the vertex shader,
with three numbers per vertex.

We have now accounted for all the pieces of the RGB triangle program. Read the complete
source code to see how it fits together.

6.2.4 Shape Stamper

Our next example will introduce a few new features. The example is a simple interactive
program where the user can place shapes in a canvas by clicking the canvas with the mouse.
Properties of the shape are taken from a set of popup menus. The properties include the color
and degree of transparency of the shape, as well as which of several possible shapes is drawn.
The shape is centered at the point where the user clicks.

The sample program is webgl/shape-stamper.html. There is also a demo version the program,
c6/shape-stamper-demo.html, which you can find in the on-line version of this section.

In the RGB triangle example, color is an attribute, since a different color is assigned to
each vertex of the triangle primitive. In the shape-stamper program, all vertices, and in fact all
pixels, in a primitive have the same color. That means that color can be a uniform variable.
The example also allows transparency, so colors need an alpha component as well as the RGB
components. It was convenient in the program to treat the alpha and RGB components as
separate quantities, so I represent them as two separate uniform variables in the shader program.
The color and alpha uniforms are used in the fragment shader to assign the fragment’s color. In
fact, that’s the only thing the fragment shader does, so the complete source code is as follows:

precision mediump float;

uniform vec3 u color;

uniform float u alpha;

void main() {

gl FragColor = vec4(u color, u alpha);

}

To work with a uniform variable on the JavaScript side, we need to know its location in the
shader program. The program gets the locations of the two uniform variables in the intiGL()
function using the commands

uniformColor = gl.getUniformLocation(prog, "u color");

uniformAlpha = gl.getUniformLocation(prog, "u alpha");

The program has two popup menus that let the user select the color and alpha that are to be
used for drawing a primitive. When a shape is drawn, the values from the menus determine
the values of the uniforms:

6.2. FIRST EXAMPLES 237

let colorNumber = Number(document.getElementById("colorChoice").value);

let alpha = Number(document.getElementById("opacityChoice").value);

gl.uniform3fv(uniformColor, colorList[colorNumber]);

gl.uniform1f(uniformAlpha, alpha);

Values for uniform variables are set using the gl.uniform* family of functions. In this case,
colorList [colorNumber] is an array of three numbers holding the RGB color components for the
color, so the function gl.uniform3fv is used to set the value: The “3f” means that 3 floating
point values are provided, and the “v” means that the three values are in an array. Note that
three floating point values are required to match the type, vec3, of the uniform variable in the
shader. The value of alpha is a single floating point number, so the corresponding uniform
variable is set using gl.uniform1f.

In order for the alpha component of the color to have any effect, alpha blending must be
enabled. This is done as part of initialization with the two commands

gl.enable(gl.BLEND);

gl.blendFunc(gl.SRC ALPHA, gl.ONE MINUS SRC ALPHA);

The first line enables use of the alpha component. The second tells how the alpha component
is to be used. The “blendFunc” used here is appropriate for transparency in 2D. The same
commands were used in Subsection 3.1.2 in OpenGL 1.1.

∗ ∗ ∗

When the program starts, the user sees a blank white canvas. When the user clicks the
canvas, a shape is added. When the user clicks again, a second shape is added—and the first
shape better still be there! However, this is not the default behavior for WebGL!

When the user clicks the canvas, an event-handler function for the mousedown event is
called. The shape is drawn in that function. When the function returns, WebGL tells the web
browser that the image has been modified, and the web browser copies the new image to the
screen. Once that happens, as discussed earlier in this section, the default behavior for WebGL
is to discard the image. But this means that the second mouse click is drawing on a blank
canvas, since the shape from the first mouse click has been erased.

To fix this problem, the preserveDrawingBuffer option in the WebGL graphics context must
be set to true. The shape-stamper program creates the context with

let options = { // No need for alpha channel or depth buffer, but we

// need to preserve the image in the drawing buffer.

alpha: false,

depth: false,

preserveDrawingBuffer: true

};

gl = canvas.getContext("webgl", options);

Note that this program does not have a draw() function that redraws the entire image. All
the drawing is done in the mouse-handling function, doMouseDown. Things could have been
done differently. The program could have used a data structure to store information about the
shapes that have been drawn. Clicking the canvas would add an item to the list, and the entire
image would then be redrawn, including the new shape. In the actual program, however, the
only record of what’s in the image is the image itself. (In the terminology of Section 1.1, it is
a painting program rather than a drawing program.)

∗ ∗ ∗

238 CHAPTER 6. INTRODUCTION TO WEBGL

WebGL uses a default coordinate system in which each of the coordinates ranges from −1
to 1. Of course, we would like to use a more convenient coordinate system, which means that
we need to apply a coordinate transformation to transform the coordinates that we use into
the default coordinate system. In the shape-stamper program, the natural coordinate system is
pixel coordinates on the canvas. In the pixel coordinate system, the x -coordinate ranges from
0 at the left to canvas.width at the right, and y ranges from 0 at the top to canvas.height at
the bottom. The equations for transforming pixel coordinates (x1,y1) to default coordinates
(x2,y2) are

x2 = -1 + 2*(x1 / canvas.width);

y2 = 1 - 2*(y1 / canvas.height);

In WebGL, the coordinate transformation is usually applied in the vertex shader. In this case, to
implement the transformation, the vertex shader just needs to know the width and height of the
canvas. The program provides the width and height to the vertex shader as uniform variables.
The original pixel coordinates of the vertex are input to the vertex shader as an attribute. The
shader applies the coordinate transformation to compute the value of gl Position, which must
be expressed in the default coordinate system. Here is the vertex shader source code:

attribute vec2 a coords; // pixel coordinates

uniform float u width; // width of canvas

uniform float u height; // height of canvas

void main() {

float x = -1.0 + 2.0*(a coords.x / u width);

float y = 1.0 - 2.0*(a coords.y / u height);

gl Position = vec4(x, y, 0.0, 1.0);

}

Transformations can be much more complicated than this, especially in 3D, but the general
pattern holds: Transformations are represented by uniform variables and are applied in the
vertex shader. In general, transformations are implemented as matrices. We will see later that
uniform variables can be matrices and that the shader language GLSL has good support for
matrix operations.

In order to draw a shape, we need to store the pixel coordinates for that shape in a
Float32Array ; then, we have to load the values from that array into the buffer associated with
the “a coords” attribute; and finally, we must call gl.drawArrays to do the actual drawing. The
coordinates for the shape can be computed based on what type of shape is being drawn and on
the point where the user clicked. For example, the coordinate array for a circle is created by
the following code, where x and y are the pixel coordinates for the point that was clicked:

coords = new Float32Array(64);

k = 0;

for (let i = 0; i < 32; i++) {

let angle = i/32 * 2*Math.PI;

coords[k++] = x + 50*Math.cos(angle); // x-coord of vertex i

coords[k++] = y + 50*Math.sin(angle); // y-coord of vertex i

}

The circle is approximated as a 32-sided regular polygon, with a radius of 50 pixels. Two
coordinates are required for each vertex, so the length of the array is 64. The code for the other
shapes is similar. Once the array has been created, the shape is drawn using

6.2. FIRST EXAMPLES 239

gl.bindBuffer(gl.ARRAY BUFFER, bufferCoords);

gl.bufferData(gl.ARRAY BUFFER, coords, gl.STREAM DRAW);

gl.vertexAttribPointer(attributeCoords, 2, gl.FLOAT, false, 0, 0);

gl.drawArrays(gl.TRIANGLE FAN, 0, coords.length/2);

In the last line, coords.length/2 is the number of vertices in the shape, since the array holds two
numbers per vertex. Note also that the last parameter to gl.bufferData is gl.STREAM DRAW,
which is appropriate when the data in the VBO will only be used once or a few times before
being discarded.

∗ ∗ ∗

Although the demo version of the sample program has the same functionality, I implemented
shape drawing differently in the two versions. Notice that all circles in the program are the
same; they are just in different locations. It should be possible to draw the circle in its own
object coordinates, and then apply a modeling transformation to move the circle to its desired
position in the scene. This is the approach that I take in the demo version of the program.

There are four kinds of shape: circles, squares, triangles, and stars. In the demo version, I
create a separate VBO for each kind of shape. The VBO for a shape contains vertex coordinates
for that shape in object coordinates, with the shape centered at (0,0). Since the object
coordinates will never change, the VBO can be created once and for all as part of program
initialization. For example, the VBO for the circle is created with

coords = new Float32Array(64);

let k = 0; // index into the coords array

for (let i = 0; i < 32; i++) {

let angle = i/32 * 2*Math.PI;

coords[k++] = 50*Math.cos(angle); // x-coord of vertex

coords[k++] = 50*Math.sin(angle); // y-coord of vertex

}

bufferCoordsCircle = gl.createBuffer();

gl.bindBuffer(gl.ARRAY BUFFER, bufferCoordsCircle);

gl.bufferData(gl.ARRAY BUFFER, coords, gl.STATIC DRAW);

Note the use of gl.STATIC DRAW in the last line. It is appropriate since the data can be
reused to draw many different circles.

To draw a shape with its center at (x,y), a translation must be applied to the coordinates in
the VBO. I added the translation to the vertex shader, with a new uniform variable to represent
the translation amount:

attribute vec2 a coords;

uniform float u width;

uniform float u height;

uniform vec2 u translation;

void main() {

float x = -1.0 + 2.0*((a coords.x + u translation.x) / u width);

float y = 1.0 - 2.0*((a coords.y + u translation.y) / u height);

gl Position = vec4(x, y, 0.0, 1.0);

}

You would probably find it worthwhile to read the full source code for the demo as well as
the sample program.

240 CHAPTER 6. INTRODUCTION TO WEBGL

6.2.5 The POINTS Primitive

The final example in this section demonstrates the gl.POINTS primitive. A POINTS primitive
is basically a set of disconnected vertices. By default, each vertex is rendered as a single pixel.
However, a program can specify a larger size. In OpenGL 1.1, this was done with the function
gl PointSize(). In WebGL, that function does not exist. Instead, the size is under the control
of the vertex shader.

When working on one of the vertices of a POINTS primitive, the vertex shader should
assign a value to the special built-in variable gl PointSize. The variable is of type float. It
gives the size of the vertex, in pixels. The vertex is rendered as a square, centered at the vertex
position, whose width and height are given by gl PointSize. What this really means is that
the fragment shader will be called once for each pixel in that square. Note that there is an
implementation-dependent limit on the size of points, which can be fairly small. The only size
that is guaranteed to exist is one pixel, but most implementations seem to support point sizes
at least up to 64 pixels, and possibly much larger.

When the fragment shader is called for a POINTS primitive, it is processing one pixel in the
square of pixels surrounding the vertex. The special fragment shader variable gl PointCoord
tells the shader the location of the pixel within that square. The value of gl PointCoord is an
input to the shader. The type of gl PointCoord is vec2, so it has two floating point components.
The value of each component is in the range 0 to 1. The first component, gl PointCoord.x, is 0
at the left edge of the square and 1 at the right. The second component, gl PointCoord.y, is 0
at the top of the square and 1 at the bottom. So, for example, the value is (0,0) at the top-left
corner, (1,0) at the top-right corner, and (0.5,0.5) at the center of the square. (That, at least, is
what the specification says, but I have encountered implementations that incorrectly put (0,0)
at the bottom left corner. Hopefully that is fixed in modern web browsers.)

If the fragment shader uses gl PointCoord in its computation, the color of the square can
vary from pixel to pixel. As a simple example, setting

gl FragColor = vec4(gl PointCoord.x, 0.0, 0.0, 1.0);

would render each vertex in the primitive as a square color gradient whose color varies
horizontally from black on the left edge of the square to red on the right edge. In the sample
program, I use gl PointCoord to render the vertex as a disk instead of a square. The technique
uses a new GLSL statement, discard, which is available only in the fragment shader. When the
fragment shader executes the statement

discard;

the fragment shader terminates, and all further processing of the pixel is prevented. In
particular, the color of the pixel in the image does not change. I use discard if the distance
from gl PointCoord to the center, (0.5,0.5), is greater than 0.5. This discards pixels that do
not lie in the disk of radius 0.5. GLSL has a function for computing the distance between two
vectors, so the test in the fragment shader is written

float distanceFromCenter = distance(gl PointCoord, vec2(0.5,0.5));

if (distanceFromCenter >= 0.5) {

discard; // don’t draw this pixel!

}

The sample program is webgl/moving-points.html. It shows an animation of colored disks
moving in the canvas and bouncing off the edges. All of the disks are drawn in one step as a
single primitive of type gl.POINTS. The size of the disks is implemented as a uniform variable,

6.2. FIRST EXAMPLES 241

so that all the disks have the same size, but the uniform size can be different in different frames
of the animation. In the program, the user controls the size with a popup menu. There is also
a demo version of the program, in the on-line version of this section.

In the program, the user can select whether the disks have random colors or are all colored
red. Since each disk is a vertex of a single POINTS primitive, the fact that the disks can have
different colors means that the color has to be given by an attribute variable. To implement
random colors, a Float32Array is filled with random numbers, three for each vertex. The values
are loaded into a VBO, and the values for the color attribute are taken from the VBO. But what
happens when all the disks are red? Do we have to fill an array with multiple copies of “1, 0, 0”
and use that data for the attribute? In fact, we don’t. If we disable the VertexAttribArray for
the color attribute, then that attribute will have the same value for every vertex. The value is
specified by the gl.vertexAttrib* family of functions. So, in the sample program, the code for
providing values for the color attribute is

if (randomColors) {

// Use the attribute values from the color VBO,

// which was filled during initialization.

gl.enableVertexAttribArray(attributeColor);

}

else {

// Turn off VertexAttribArray,

// and set a constant attribute color.

gl.disableVertexAttribArray(attributeColor);

gl.vertexAttrib3f(attributeColor, 1, 0, 0);

}

See the source code for full details of the example.

6.2.6 WebGL Error Handling

It is a sad fact that OpenGL programmers often find themselves looking at a blank screen, with
no clear indication of what went wrong. In many cases, this is due to a programming logic
error, such as accidently drawing a region of 3D space that contains no geometry. However,
sometimes it’s due to an error in the use of the API. In WebGL, and in OpenGL more generally,
an error such as an illegal parameter value will not in general crash the program or produce
any automatic notification of the error. Instead, when WebGL detects such an error, it ignores
the illegal function call, and it sets the value of an error code that gives some indication of the
nature of the error.

A program can check the current value of the error code by calling gl.getError(). This
function returns an integer error code. The return value is gl.NO ERROR if no error has
occurred. Any other return value means that an error has occurred. Once an error code has
been set, it stays set until gl.getError() is called, even if other, correct WebGL operations have
been executed in the meantime. Calling gl.getError() retrieves the value of the error code and
resets its value to gl.NO ERROR. (So, if you call gl.getError() twice in a row, the second call
will always return gl.NO ERROR.) This means that when gl.getError() returns an error, the
error might actually have been generated by an instruction that was executed some time ago.

As an example, consider a call to gl.drawArrays(primitive,first,count). If primitive is not one
of the seven legal WebGL primitives, then WebGL will set the error code to gl.INVALID ENUM.
If first or count is negative, the error code is set to gl.INVALID VALUE. If no shader program
has been installed with gl.useProgram, the error is gl.INVALID OPERATION. If no data has

242 CHAPTER 6. INTRODUCTION TO WEBGL

been specified for an enabled vertex attribute, an error of type gl.INVALID STATE occurs.
These four error codes are, in fact, the most common.

It is both impractical and inefficient to call gl.getError after each WebGL function call.
However, when something goes wrong, it can be used as a debugging aid. When I suspect an
error, I might insert code such as

console.log("Error code is " + gl.getError());

at several points in my code. The numeric value of gl.NO ERROR is zero. Any non-zero value
means that an error occurred at some point before the call to gl.getError. By moving the output
statements around in the code, I can narrow in on the statement that actually produced the
error.

Note that some browsers automatically output certain information about incorrect use of
WebGL to their JavaScript console, which is part of the development tools built into many
browsers. That console is also the destination for messages written using console.log(). It’s
always a good idea to check the console when running a WebGL program that is under
development!

6.3 GLSL

You have seen a few short, simple examples of shader programs written in GLSL. In fact,
shader programs are often fairly short, but they are not always so simple. To understand the
more complex shaders that we will be using in the rest of this book, you will need to know
more about GLSL. This section aims to give a short introduction to the major features of the
language. This is a rather technical section. You should read it to get some familiarity with
GLSL, and then use it as a reference when needed.

For WebGL 1.0, shaders must be written in version 1.00 of GLSL ES. WebGL 2.0 can use
either version 1.00 or version 3.00, but some features of WebGL 2.0 are only available when
shaders are written in GLSL ES 3.00. Although the two versions of GLSL are very similar,
there are major differences and incompatibilities. Unless otherwise noted, the discussion here
applies to both versions.

The vertex shader and the fragment shader in a shader program must be written using the
same version of GLSL. A GLSL ES 3.00 shader program must begin with the line

#version 300 es

This must be the very first line of the shader source code. It cannot even be preceded by blank
lines or comments. A shader program that does not start with this line is a version 1.00 shader.
A version 1.00 shader does not include a declaration of the version number.

6.3.1 Basic Types

Variables in GLSL must be declared before they are used. GLSL is a strictly typed language,
and every variable is given a type when it is declared.

GLSL has built-in types to represent scalars (that is, single values), vectors, and matrices.
The scalar types are float, int, and bool. Version 3.00 adds an unsigned integer type, uint. A
GPU might not support integers or booleans on the hardware level, so it is possible that the
int and bool types are actually represented as floating point values.

The types vec2, vec3, and vec4 represent vectors of two, three, and four floats. There are
also types to represent vectors of ints (ivec2, ivec3, and ivec4) and bools (bvec2, bvec3, and

6.3. GLSL 243

bvec4) — and, in version 3.00, of unsigned integers (uvec2, uvec3, and uvec4). GLSL has very
flexible notation for referring to the components of a vector. One way to access them is with
array notation. For example, if v is a four-component vector, then its components can be
accessed as v [0], v [1], v [2], and v [3]. But they can also be accessed using the dot notation as
v.x, v.y, v.z, andv.w. The component names x, y, z, and w are appropriate for a vector that
holds coordinates. However, vectors can also be used to represent colors, and the components
of v can alternatively be referred to as v.r, v.g, v.b, and v.a. Finally, they can be referred to as
v.s, v.t, v.p, and v.q — names appropriate for texture coordinates.

Furthermore, GLSL allows you to use multiple component names after the dot, as in v.rgb
or v.zx or even v.yyy. The names can be in any order, and repetition is allowed. This is called
swizzling , and v.zx is an example of a swizzler. The notation v.zx can be used in an expression
as a two-component vector. For example, if v is vec4 (1.0,2.0,3.0,4.0), then v.zx is equivalent to
vec2 (3.0,1.0), and v.yyy is like vec3 (2.0,2.0,2.0). Swizzlers can even be used on the left-hand
side of an assignment, as long as they don’t contain repeated components. For example,

vec4 coords = vec4(1.0, 2.0, 3.0, 4.0);

vec3 point = vec3(5.0, 6.0, 7.0);

coords.yzw = coords.wyz; // Now, coords is (1.0, 4.0, 2.0, 3.0)

point.xy = coords.xx; // Now, point is (1.0, 1.0, 7.0)

A notation such as vec2 (1.0, 2.0) is referred to as a “constructor,” although it is not a
constructor in the sense of Java or C++, since GLSL is not object-oriented, and there is no
new operator. A constructor in GLSL consists of a type name followed by a list of expressions in
parentheses, and it represents a value of the type specified by the type name. Any type name can
be used, including the scalar types. The value is constructed from the values of the expressions
in parentheses. An expression can contribute more than one value to the constructed value; we
have already seen this in examples such as

vec2 v = vec2(1.0, 2.0);

vec4 w = vec4(v, v); // w is (1.0, 2.0, 1.0, 2.0)

Note that the expressions can be swizzlers:

vec3 v = vec3(1.0, 2.0, 3.0);

vec3 w = vec3(v.zx, 4.0); // w is (3.0, 1.0, 4.0)

Extra values from the last parameter will be dropped. This makes is possible to use a
constructor to shorten a vector. However, it is not legal to have extra parameters that contribute
no values at all to the result:

vec4 rgba = vec4(0.1, 0.2, 0.3, 0.4);

vec3 rgb = vec3(rgba); // takes 3 items from rgba; rgb is (0.1, 0.2, 0.3)

float r = float(rgba); // r is 0.1

vec2 v = vec2(rgb, rgba); // ERROR: No values from rgba are used.

As a special case, when a vector is constructed from a single scalar value, all components
of the vector will be set equal to that value:

vec4 black = vec4(1.0); // black is (1.0, 1.0, 1.0, 1.0)

When constructing one of the built-in types, type conversion will be applied if necessary.
For purposes of conversion, the boolean values true/false convert to the numeric values zero
and one; in the other direction, zero converts to false and any other numeric value converts
to true. As far as I know, constructors are the only context in which GLSL does automatic
type conversion. For example, you need to use a constructor to assign an int value to a float

variable, and it is illegal to add an int to a float:

244 CHAPTER 6. INTRODUCTION TO WEBGL

int k = 1;

float x = float(k); // OK; "x = k" would be a type mismatch error

x = x + 1.0; // OK

x = x + 1; // ERROR: Can’t add values of different types.

∗ ∗ ∗

The built-in matrix types are mat2, mat3, and mat4. They represent, respectively, two-
by-two, three-by-three, and four-by-four matrices of floating point numbers. (There are no
matrices of integers or booleans, but there are some additional matrix types for representing
non-square matrices.) The elements of a matrix can be accessed using array notation, such as
M [2][1]. If a single index is used, as in M [2], the result is a vector. For example, if M is of type
mat4, then M [2] is a vec4. Arrays in GLSL, as in OpenGL, use column-major order . This
means that M [2] is column number 2 in M rather than row number 2 (as it would be in Java),
and M [2][1] is the element in column 2 and row 1.

A matrix can be constructed from the appropriate number of values, which can be provided
as scalars, vectors or matrices. For example, a mat3 can be constructed from nine float or from
three vec3 parameters:

mat3 m1 = mat3(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);

vec3 v = vec3(1, 2, 3);

mat3 m2 = mat3(v, v, v);

Keep in mind that the matrix is filled in column-major order; that is, the first three numbers
go into column 0, the next three into column 1, and the last three into column 2.

As a special case, if a matrix M is constructed from a single scalar value, then that value
is put into all the diagonal elements of M (M [0][0], M [1][1], and so on). The non-diagonal
elements are all set equal to zero. For example, mat4 (1.0) constructs the four-by-four identity
matrix.

The only other built-in types are the so-called “sampler types”, which are used for accessing
textures. The sampler types can be used only in limited ways. They are not numeric types and
cannot be converted to or from numeric types. The will be covered in the next section.

6.3.2 Data Structures

A GLSL program can define new types using the struct keyword. The syntax is the same as in
C, with some limitations. A struct is made up of a sequence of named members, which can be
of different types. The type of a member can be any of the built-in types, an array type, or a
previously defined struct type. For example,

struct LightProperties {

vec4 position;

vec3 color;

float intensity;

};

This defines a type named LightProperties. The type can be used to declare variables:

LightProperties light;

The members of the variable light are then referred to as light.position, light.color, and
light.intensity. Struct types have constructors, but their constructors do not support type
conversion: The constructor must contain a list of values whose types exactly match the types
of the corresponding members in the struct. For example,

6.3. GLSL 245

light = LightProperties(vec4(0.0, 0.0, 0.0, 1.0), vec3(1.0), 1.0);

GLSL also supports arrays. Only one-dimensional arrays are allowed. The base type of an
array can be any of the basic types or it can be a struct type. The size of the array must be
specified in the variable declaration as an integer constant. For example

int A[10];

vec3 palette[8];

LightProperties lights[3];

In version 1.00, there are no array constructors, and it is not possible to initialize an array as
part of its declaration. Version 3.00 does have array constructors, and it allows type names
such as “int[10], representing an array of 10 integers:

int[4] B; // B is an array of 4 ints; GLSL ES 3.00 only!

B = int[4] (2, 3, 5, 7); // Array constructor; GLSL ES 3.00 only!

Array indexing uses the usual syntax, such as A[0] or palette[i+1] or lights[3].color. In
GLSL ES 1.00, there are some strong limitations on the expressions that can be used as array
indices. With one exception, an expression that is used as the index for an array can contain
only integer constants and for loop variables (that is, variables that are used as loop control
variables in for loops). For example, the expression palette[i+1] would only be legal inside a
for of the form for (int i = The single exception is that arbitrary index expressions can
be used for arrays of uniforms in a vertex shader (and then only if the array does not contain
samplers). Note that these restrictions do not apply in GLSL ES 3.00.

Just as in C, there is no check for array index out of bounds errors. It is up to the
programmer to make sure that array indices are valid.

6.3.3 Qualifiers

Variable declarations can be modified by various qualifiers. You have seen examples of the
qualifiers attribute, uniform, and varying. These are called storage qualifiers. The qualifiers
attribute and varying do not exist in version 3.00; instead, an attribute is declared in the vertex
shader using the storage qualifier in, and a varying variable is declared using out in the vertex
shader and in in the fragment shader. The uniform qualifier is used in both versions. Only
global variables, not local variables in function definition, can be attribute, uniform, or varying
variables.

The attribute qualifier can only be used in a GLSL ES 1.00 vertex shader, and it only
applies to the built-in floating point types float, vec2, vec3, vec4, mat2, mat3, and mat4.
(Matrix attributes are not supported directly on the JavaScript side. A matrix attribute has
to be treated as a set of vector attributes, one for each column. The attribute locations for
the columns are successive integers, and the WebGL function gl.getAttribLocation will return
the location for the first column. Matrix attributes would be rare, though perhaps useful for
instanced drawing, and I won’t go into further detail about them here.)

In GLSL ES 3.00, the in qualifier on a vertex shader variable defines it to be an attribute
variable, and it can be applied to integer and unsigned integer scalars and vectors, as well as
to the floating point types.

Also in GLSL ES 3.00, the out qualifier can be used on integer and floating point scalars and
vectors in the fragment shader. In version 1.00, a fragment shader has the predefined variable
gl FragColor of type vec4 to specify the color of the pixel. In version 3.00, a fragment shader
can have multiple outputs, and the outputs are not necessarily colors. Because the output type

246 CHAPTER 6. INTRODUCTION TO WEBGL

does not have to be vec4, it is not possible to have a predefined output variable. For now,
we will only use one fragment shader output representing a color. So, a version 3.00 fragment
shader will have one out variable of type vec4. (When we discuss framebuffers in Section 7.4,
we will see how multiple outputs can be used.)

Both the vertex shader and the fragment shader can use uniform variables. The same
variable can occur in both shaders, as long as the types in the two shaders are the same.
Uniform variables can be of any type, including array and structure types. Now, JavaScript
only has functions for setting uniform values that are scalar variables, vectors, or matrices.
There are no functions for setting the values of structs or arrays. The solution to this problem
requires treating every component of a struct or array as a separate uniform value. For example,
consider the declarations

struct LightProperties {

vec4 position;

vec3 color;

float intensity;

};

uniform LightProperties light[4];

The variable light contains twelve basic values, which are of type vec4, vec3, or float. To work
with the light uniform in JavaScript, we need twelve variables to represent the locations of the
12 components of the uniform variable. When using gl.getUniformLocation to get the location
of one of the 12 components, you need to give the full name of the component in the GLSL
program. For example: gl.getUniformLocation(prog, “light[2].color”). It is natural to store the
12 locations in an array of JavaScript objects that parallels the structure of the array of structs
on the GLSL side. Here is typical JavaScript code to create the structure and use it to initialize
the uniform variables:

lightLocations = new Array(4);

for (i = 0; i < light.length; i++) {

lightLocations[i] = {

position: gl.getUniformLocation(prog, "light[" + i + "].position");

color: gl.getUniformLocation(prog, "light[" + i + "].color");

intensity: gl.getUniformLocation(prog, "light[" + i + "].intensity");

};

}

for (i = 0; i < light.length; i++) {

gl.uniform4f(lightLocations[i].position, 0, 0, 0, 1);

gl.uniform3f(lightLocations[i].color, 1, 1, 1);

gl.uniform1f(lightLocations[i].intensity, 0);

}

For uniform shader variables that are matrices, the JavaScript function that is used to set
the value of the uniform is gl.uniformMatrix2fv for a mat2, gl.uniformMatrix3fv for a mat3,
or gl.uniformMatrix4fv for a mat4. Even though the matrix is two-dimensional, the values are
stored in a one dimensional array. The values are loaded into the array in column-major order.
For example, if transform is a uniform mat3 in the shader, then JavaScript can set its value to
be the identity matrix with

transformLoc = gl.getUniformLocation(prog, "transform");

gl.uniformMatrix3fv(transformLoc, false, [1,0,0, 0,1,0, 0,0,1]);

6.3. GLSL 247

In Version 1.00, the second parameter must be false. In Version 3.00, the second parameter
can be true to indicate that the entries of the matrix are provided in row-major rather than
column-major order. Note that the 3 in uniformMatrix3fv refers to the number of rows and
columns in the matrix, not to the length of the array, which must be 9. (By the way, it is OK
to use a typed array rather than a normal JavaScript array for the value of a uniform.)

A varying variable should be declared with the same name and type in both the vertex shader
and fragment shader. In version 1.00, the storage qualifier for declaring varying variables is
varying, and it can only be used for for the built-in floating point types (float, vec2, vec3, vec4,
mat2, mat3, and mat4) and for arrays of those types.

In version 3.00, a varying variable can also be an integer or unsigned integer scalar or
vector. But there is a complication because it doesn’t make sense to apply interpolation to
integer values. So, a varying variable of integer type must be declared with the additional
qualifier flat, which means it will not be interpolated. Instead, the value from the first vertex
of a triangle or line segment will be used for every pixel. (Floating point varying variables can
also, optionally, be declared as flat.) For example:

flat in ivec3 A; // GLSL ES 3.00 fragment shader only!

Another possible storage qualifier is const, which means that the value of the variable cannot
be changed after it has been initialized. The declaration of a const variable must include
initialization.

∗ ∗ ∗

A variable declaration can also be modified by precision qualifiers. The possible precision
qualifiers are highp, mediump, and lowp. A precision qualifier sets the minimum range of possible
values for an integer variable or the minimum range of values and number of decimal places for
a floating point variable. GLSL doesn’t assign a definite meaning to the precision qualifiers,
but mandates some minimum requirements. For example, in version 1.00, lowp integers must
be able to represent values in at least the range −28 to 28; mediump integers, in the range −210

to 210; and highp integers, in the range −216 to 216. For version 3.00, highp variables always
use 32 bits, and the requirements for mediump and lowp are higher. It is even possible that all
values are 32-bit values and the precision qualifiers have no real effect. But GPUs in embedded
systems can be more limited.

A precision qualifier can be used on any variable declaration, including local variables and
function parameters. If the variable also has a storage qualifier, the storage qualifier comes
first. For example

lowp int n;

varying highp float v;

uniform mediump vec3 colors[3];

A varying variable can have different precisions in the vertex and in the fragment shader. The
default precision for integers and floats in the vertex shader is highp. Fragment shaders are not
required to support highp, although it is likely that they do so, except perhaps on older mobile
hardware. In the fragment shader, the default precision for integers is mediump, but floats do
not have a default precision. This means that every floating point variable in the fragment
shader has to be explicitly assigned a precision. Alternatively, it is possible to set a default
precision for floats with the statement

precision mediump float;

248 CHAPTER 6. INTRODUCTION TO WEBGL

This statement was used at the start of each of the fragment shaders in the previous section.
Of course, if the fragment shader does support highp, this restricts the precision unnecessarily.
You can avoid that by using this code at the start of the fragment shader:

#ifdef GL FRAGMENT PRECISION HIGH

precision highp float;

#else

precision mediump float;

#endif

This sets the default precision to highp if it is available and to mediump if not. The lines
starting with “#” are preprocessor directives—an aspect of GLSL that I don’t want to get into.

∗ ∗ ∗

The next qualifier, invariant , is even more difficult to explain, and it has only a limited
use. Invariance refers to the requirement that when the same expression is used to compute
the value of the same variable (possibly in different shaders), then the value that is assigned to
the variable should be exactly the same in both cases. This is not automatically the case. For
example, the values can be different if a compiler uses different optimizations or evaluates the
operands in a different order in the two expressions. The invariant qualifier on the variable will
force the compiler to use exactly the same calculations for the two assignment statements. The
qualifier can only be used on declarations of varying variables. It must be the first qualifier in
the declaration. For example,

invariant varying mediump vec3 color;

It can also be used to make the predefined variables such as gl Position and gl FragCoord
invariant, using a statement such as

invariant gl Position;

Invariance can be important in a multi-pass algorithm that applies two or more shader
programs in succession to compute an image. It is important, for example, that both shaders get
the same answer when they compute gl Position for the same vertex, using the same expression
in both vertex shaders. Making gl Position invariant in the shaders will ensure that.

∗ ∗ ∗

The last type of qualifier, a “layout” qualifier, is only available in version 3.00. It can be
used to specify the integer ID of an attribute variable, as an alternative to using the JavaScript
function gl.getAttribLocation() to query the ID. An example would be

layout(location = 0) in vec3 a coords; // GLSL ES 3.00 vertex shader only!

The same kind of layout qualifier can be used on an out variable in a GLSL ES 3.00 fragment
shader that has multiple outputs. In that case, it specifies which of several output destinations
should be used for that variable.

6.3.4 Expressions

Expressions in GLSL can use the arithmetic operators +, −, *, /, ++ and −− for integer and
floating point values. In version 3.00, the remainder operator, %, as well as left and right shift
and bitwise logical operators, are also available for integer types. There is no automatic type
conversion in expressions. If x is of type float, the expression x+1 is illegal. You have to say
x+1.0 or x+float(1).

6.3. GLSL 249

The arithmetic operators have been extended in various ways to work with vectors and
matrices. If you use * to multiply a matrix and a vector, in either order, it multiplies them in
the linear algebra sense, giving a vector as the result. The types of the operands must match
in the obvious way; for example, a vec3 can only be multiplied by a mat3, and the result is a
vec3. When used with two matrices of the same size, * does matrix multiplication.

If +, −, *, or / is used on a vector and a scalar of the same basic type, then the operation
is performed on each element of the vector. For example, vec2 (3.0,3.0) / 2.0 is the vector
vec2 (1.5,1.5), and 2*ivec3(1,2,3) is the vector ivec3 (2,4,6). When one of these operators is
applied to two vectors of the same type, the operation is applied to each pair of components,
and the result is a vector. For example, the value of

vec3(1.0, 2.0, 3.0) + vec3(4.2, -7.0, 1.7)

is the vector vec3 (5.2,-5.0,4.7). Note in particular that the usual vector arithmetic operations—
addition and subtraction of vectors, multiplication of a vector by a scalar, and multiplication
of a vector by a matrix—are written in the natural way is GLSL.

The relational operators <, >, <=, and >= can only be applied to integer and floating point
scalars, and the types of the two operands must match exactly. However, the equality operators
== and != have been extended to work on all of the built-in types except sampler types. Two
vectors are equal only if the corresponding pairs of components are all equal. The same is true
for matrices. The equality operators cannot be used with arrays, but they do work for structs,
as long as the structs don’t contain any arrays or samplers; again, every pair of members in
two structs must be equal for the structs to be considered equal.

GLSL has logical operators !, &&, ||, and ^^ (the last one being an exclusive or operation).
The operands must be of type bool.

Finally, there are the assignment operators =, +=, −=, *=, and /=, with the usual meanings.

∗ ∗ ∗

GLSL also has a large number of predefined functions, more than I can discuss here. All of
the functions that I will mention here require floating-point values as parameters, even if the
function would also make sense for integer values.

Most interesting, perhaps, are functions for vector algebra. See Section 3.5 for the definitions
of these operations. These functions have simple formulas, but they are provided as functions
for convenience and because they might have efficient hardware implementations in a GPU.
The function dot(x,y) computes the dot product x ·y of two vectors of the same length. The
return value is a float; cross(x,y) computes the cross product x×y, where the parameters and
return value are of type vec3 ; length(x) is the length of the vector x and distance(x,y) gives
the distance between two vectors; normalize(x) returns a unit vector that points in the same
direction as x. There are also functions named reflect and refract that can be used to compute
the direction of reflected and refracted light rays; I will cover them when I need to use them.

The function mix (x,y,t) computes x*(1−t) + y*t. If t is a float in the range 0.0 to 1.0, then
the return value is a linear mixture, or weighted average, of x and y. This function might be
used, for example, to do alpha-blending of two colors. The function clamp(x,low,high) clamps
x to the range low to high; the return value could be computed as min(max (x,low),high). If
rgb is a vector representing a color, we could ensure that all of the components of the vector lie
in the range 0 to 1 with the command

rgb = clamp(rgb, 0.0, 1.0);

If s and t are floats, with s < t, then smoothstep(s,t,x) returns 0.0 for x less than s and
returns 1.0 for x greater than t. For values of x between s and t, the return value is smoothly

250 CHAPTER 6. INTRODUCTION TO WEBGL

interpolated from 0.0 to 1.0. Here is an example that might be used in a fragment shader for
rendering a gl.POINTS primitive, with transparency enabled:

float dist = distance(gl PointCoord, vec2(0.5));

float alpha = 1.0 - smoothstep(0.45, 0.5, dist);

if (alpha == 0.0) {

discard; // discard fully transparent pixels

}

gl FragColor = vec4(1.0, 0.0, 0.0, alpha);

This would render the point as a red disk, with the color fading smoothly from opaque to
transparent around the edge of the disk, as dist increases from 0.45 to 0.5. Note that for the
functions mix, clamp, and smoothstep, the x and y parameters can be vectors as well as floats.
In that case, they operate on each component of the vector individually.

The usual mathematical functions are available in GLSL, including sin, cos, tan, asin, acos,
atan, log, exp, pow, sqrt, abs, floor, ceil, min, and max. (In version 3.00, abs, min, and max
also apply to integer types.) For these functions, the parameters can be any of the types
float, vec2, vec3, or vec4. The return value is of the same type, and the function is applied
to each component separately. For example, the value of sqrt(vec3 (16.0,9.0,4.0)) is the vector
vec3 (4.0,3.0,2.0). For min and max, there is also a second version of the function in which
the first parameter is a vector and the second parameter is a float. For those versions, each
component of the vector is compared to the float; for example, max (vec3 (1.0,2.0,3.0),2.5) is
vec3(2.5,2.5,3.0).

The function mod(x,y) computes the modulus, or remainder, when x is divided by y. The
return value is computed as x − y*floor(x/y). As with min and max, y can be either a vector
or a float. The mod function can be used as a substitute for the % operator, which is not
supported in GLSL ES 1.00.

There are also functions for working with sampler variables. I will discuss some of them in
the next section.

6.3.5 Function Definitions

A GLSL program can define new functions, with a syntax similar to C. Unlike C, function
names can be overloaded; that is, two functions can have the same name, as long as they have
different numbers or types of parameters. A function must be declared before it is used. As in
C, it can be declared by giving either a full definition or a function prototype.

Function parameters can be of any type. The return type for a function can be any type
except for array types. A struct type can be a return type, as long as the structure does not
include any arrays. When an array is used a formal parameter, the length of the array must be
specified by an integer constant. For example,

float arraySum10(float A[10]) {

float sum = 0.0;

for (int i = 0; i < 10; i++) {

sum += A[i];

}

return sum;

}

Function parameters can be modified by the qualifiers in, out, or inout. The default, if no
qualifier is specified, is in. The qualifier indicates whether the parameter is used for input to
the function, output from the function, or both. For input parameters, the value of the actual

6.3. GLSL 251

parameter in the function call is copied into the formal parameter in the function definition,
and there is no further interaction between the formal and actual parameters. For output
parameters, the value of the formal parameter is copied to the actual parameter when the
function returns. For an inout parameter, the value is copied in both directions. This type
of parameter passing is referred to as “call by value/return.” Note that the actual parameter
for an out or inout parameter must be something to which a value can be assigned, such as
a variable or swizzler. (All parameters in C, Java, and JavaScript are input parameters, but
passing a pointer as a parameter can have an effect similar to an inout parameter. GLSL, of
course, has no pointers.) For example,

void cumulativeSum(in float A[10], out float B[10]) {

B[0] = A[0];

for (int i = 1; i < 10; i++) {

B[i] = B[i-1] + A[i];

}

}

Note that recursion is not supported for functions in GLSL.

6.3.6 Control Structures

The only control structures in GLSL ES 1.00 for WebGL are the if statement and a very
restricted form of the for loop. There is no while or do..while loop, and there is no switch
statement. However, all of these are supported in GLSL ES 3.00.

If statements are supported with the full syntax from C, including else and else if. In
version 3.00, the syntax for all control structures is pretty much the same as in C.

In a for loop in a version 1.00 shader, the loop control variable must be declared in the
loop, and it must be of type int or float. The initial value for the loop control variable must
be a constant expression (that is, it can include operators, but all the operands must be literal
constants or const variables) The code inside the loop is not allowed to change the value of the
loop control variable. The test for ending the loop can only have the form var op expression,
where var is the loop control variable, the op is one of the relational or equality operators,
and the expression is a constant expression. Finally, the update expression must have one of
the forms var++, var--, var+=expression, or var-=expression, where var is the loop control
variable, and expression is a constant expression. Of course, this is the most typical form for
for loops in other languages. Some examples of legal first lines for for loops:

for (int i = 0; i < 10; i++)

for (float x = 1.0; x < 2.0; x += 0.1)

for (int k = 10; k != 0; k -= 1)

In version 3.00, these restrictions do not apply. Note that all loops can include break and
continue statements.

6.3.7 Limits

WebGL puts limits on certain resources that are used by WebGL and its GLSL programs, such
as the number of attribute variables or the size of a texture image. The limits are due in many
cases to hardware limits in the GPU, and they depend on the device on which the program
is running, and on the implementation of WebGL on that device. The hardware limits can

252 CHAPTER 6. INTRODUCTION TO WEBGL

be lower on mobile devices such as tablets and phones, but modern tablets and phones have
pretty impressive GPUs. Although the limits can vary, WebGL imposes a set of minimum
requirements that all implementations must satisfy. I will give the minimums for WebGL 1.0.
The minimums for WebGL 2.0 are greater.

For example, any WebGL implementation must allow at least 8 attributes in a vertex shader.
The actual limit for a particular implementation might be more, but cannot be less. The actual
limit is available in a GLSL program as the value of a predefined constant, gl MaxVertexAttribs.
More conveniently, it is available on the JavaScript side as the value of the expression

gl.getParameter(gl.MAX VERTEX ATTRIBS)

Attribute variables of type float, vec2, vec3, and vec4 all count as one attribute against the
limit. For a matrix-valued attribute, each column counts as a separate attribute as far as the
limit goes.

Similarly, there are limits on varying variables, and there are separate limits on uniform
variables in the vertex and fragment shaders. (The limits are on the number of four-component
“vectors.” There can be some packing of separate variables into a single vector, but the packing
that is used does not have to be optimal. No packing is done for attribute variables.) The
limits must satisfy

gl MaxVertexAttribs >= 8;

gl MaxVertexUniformVectors >= 128;

gl MaxFragmentUniformVectors >= 16;

gl MaxVaryingVectors >= 8;

There are also limits in GLSL on the number of texture units, which means essentially the
number of textures that can be used simultaneously. These limits must satisfy

gl MaxTextureImageUnits >= 8; // limit for fragment shader

gl MaxVertexTextureImageUnits >= 0; // limit for vertex shader

gl MaxCombinedTextureImageUnits >= 8; // total limit for both shaders

Textures are usually used in fragment shaders, but they can sometimes be useful in vertex
shaders. Note however, that gl MaxVertexTextureImageUnits can be zero, which means that
implementations are not required to allow texture units to be used in vertex shaders. (This
possibility is for WebGL 1.0 only.)

There are also limits on other things, including viewport size, texture image size, line width
for line primitives, and point size for the POINTS primitive. All of the limits can be queried
from the JavaScript side using gl.getParameter().

At the end of the on-line version of this section, you will find a live demo that shows the
actual values of the resource limits on the device on which it is running. The demo shows the
limits for a WebGL 1.0 graphics context. You can use it to check the capabilities of various
devices on which you want your WebGL programs to run. In general, the actual limits will be
significantly larger than the required minimum values.

6.4 Image Textures

Textures play an essential role in 3D graphics, and support for image textures is built
into modern GPUs on the hardware level. In this section, we look at the WebGL API for image
textures. Image textures in OpenGL 1.1 were covered in Section 4.3. Much of that section is
still relevant in modern OpenGL, including WebGL. So, as we cover image textures in WebGL,

6.4. IMAGE TEXTURES 253

much of the material will not be new to you. However, there is one feature that is new since
OpenGL 1.1: texture units.

One of the significant differences between WebGL 1.0 and WebGL 2.0 is an increase in
support for different types of textures and for different ways of using textures. Access to most
of the new features requires using GLSL ES 3.00 for the shader programs. We will stick to
WebGL 1.0 for most of this section, but will discuss some of the new WebGL 2.0 features in
the final subsection.

6.4.1 Texture Units and Texture Objects

A texture unit, also called a texture mapping unit (TMU) or a texture processing unit (TPU),
is a hardware component in a GPU that does sampling. Sampling is the process of computing
a color from an image texture and texture coordinates. Mapping a texture image to a surface is
a fairly complex operation, since it requires more than just returning the color of the texel that
contains some given texture coordinates. It also requires applying the appropriate minification
or magnification filter, possibly using mipmaps if available. Fast texture sampling is one of the
key requirements for good GPU performance.

Texture units are not to be confused with texture objects. We encountered texture objects
in Subsection 4.3.7. A texture object is a data structure that contains the color data for an
image texture, and possibly for a set of mipmaps for the texture, as well as the values of texture
properties such as the minification and magnification filters and the texture repeat mode. A
texture unit must access a texture object to do its work. The texture unit is the processor; the
texture object holds the data that is processed.

(By the way, I should really be more careful about throwing around the terms “GPU”
and “hardware.” Although a texture unit probably does use an actual hardware component in
the GPU, it could also be emulated, more slowly, in software. And even if there is hardware
involved, having eight texture units does not necessarily mean that there are eight hardware
components; the texture units might share time on a smaller number of hardware components.
Similarly, I said previously that texture objects are stored in memory in the GPU, which might
or might not be literally true in a given case. Nevertheless, you will probably find it conceptually
easier to think of a texture unit as a piece of hardware and a texture object as a data structure
in the GPU.)

∗ ∗ ∗

In GLSL, texture lookup is done using sampler variables. A sampler variable is a variable
in a shader program. In GLSL ES 1.00, the only sampler types are sampler2D and samplerCube.
A sampler2D is used to do lookup in a standard texture image; a samplerCube is used to do
lookup in a cubemap texture (Subsection 5.3.4). The value of a sampler variable is a reference
to a texture unit. The value tells which texture unit is invoked when the sampler variable is
used to do texture lookup. Sampler variables must be declared as global uniform variables. It
is not legal for a shader program to assign a value to a sampler variable. The value must come
from the JavaScript side.

On the JavaScript side, the available texture units are numbered 0, 1, 2, . . . , where the
maximum value is implementation dependent. The number of units can be determined as the
value of the expression

gl.getParameter(gl.MAX COMBINED TEXTURE IMAGE UNITS)

(Please remember, again, that gl here is the name of a JavaScript variable that refers to the
WebGL context, and that the name is up to the programmer.)

254 CHAPTER 6. INTRODUCTION TO WEBGL

As far as JavaScript is concerned, the value of a sampler variable is an integer. If you want
a sampler variable to use texture unit number 2, then you set the value of the sampler variable
to 2. This can be done using the function gl.uniform1i (Subsection 6.1.4). For example, suppose
a shader program declares a sampler variable

uniform sampler2D u texture;

To set its value from JavaScript, you need the location of the variable in the shader program.
If prog is the shader program, the location is obtained by calling

u texture location = gl.getUniformLocation(prog, "u texture");

Then, you can tell the sampler variable to use texture unit number 2 by calling

gl.uniform1i(u texture location, 2);

Note that the integer value is not accessible in GLSL. The integer tells the sampler which
texture unit to use, but there is no way for the shader program to find out the number of the
unit that is being used.

∗ ∗ ∗

To use an image texture, you also need to create a texture object, and you need to load an
image into the texture object. You might want to set some properties of the texture object,
and you might want to create a set of mipmaps for the texture. And you will have to associate
the texture object with a texture unit. All this is done on the JavaScript side.

The command for creating a texture object is gl.createTexture(). The command in
OpenGL 1.1 was glGenTextures. The WebGL command is easier to use. It creates a single
texture object and returns a reference to it. For example,

textureObj = gl.createTexture();

This just allocates some memory for the object. In order to use it, you must first “bind” the
texture object by calling gl.bindTexture. For example,

gl.bindTexture(gl.TEXTURE 2D, textureObj);

The first parameter, gl.TEXTURE 2D, is the texture target. This target is used for working
with an ordinary texture image. There is a different target for cubemap textures.

The function gl.texImage2D is used to load an image into the currently bound texture
object. We will come back to that in the next subsection. But remember that this command
and other commands always apply to the currently bound texture object. The texture object is
not mentioned in the command; instead, the texture object must be bound before the command
is called.

You also need to tell a texture unit to use the texture object. Before you can do that, you
need to make the texture unit “active,” which is done by calling the function gl.activeTexture.
The parameter is one of the constants gl.TEXTURE0, gl.TEXTURE1, gl.TEXTURE2, . . . ,
which represent the available texture units. (The values of these constants are not 0, 1, 2,)
Initially, texture unit number 0 is active. To make texture unit number 2 active, for example,
use

gl.activeTexture(gl.TEXTURE2);

(This function should really have been called activeTextureUnit, or maybe bindTextureUnit,
since it works similarly to the various WebGL “bind” functions.) If you then call

gl.bindTexture(gl.TEXTURE 2D, textureObj);

6.4. IMAGE TEXTURES 255

to bind a texture object, while texture unit 2 is active, then the the texture object textureObj
is bound to texture unit number 2 for gl.TEXTURE 2D operations. The binding just tells the
texture unit which texture object to use. That is, when texture unit 2 does TEXTURE 2D
lookups, it will do so using the image and the settings that are stored in textureObj. A texture
object can be bound to several texture units at the same time. However, a given texture unit
can have only one bound TEXTURE 2D at a time.

So, working with texture images in WebGL involves working with texture objects, texture
units, and sampler variables. The relationship among the three is illustrated in this picture:

 .

 .

 .

«¬®¯°m sampler±² ³´

«¬®¯°m sampler±² µ´
 .

 .

 .

¶e³·«°¸ ¹¬· º
»¼½¾¶¿À¶¹Á¿ºÂ

¶e³·«°¸ ¹¬· Ã
»¼½¾¶¿À¶¹Á¿ÃÂ

teÄÅ

teÄÆ

teÄÇ

Texture Objects Texture Units
Sampler Variables

in Fragment Shader

Created with:

tex3 = gl.createTexture();

gl.bindTexture(gl.TEXTURE_2D, tex3);

gl.texImage2D(gl.TEXTURE_2D, . . .);

Association set up with:

gl.activeTexture(gl.TEXTURE1);

gl.bindTexture(gl.TEXTURE_2D, tex3);

Association set up with:

xLoc = gl.getUniformLocation(prog, "x");

gl.uniform1i(xLoc, 1);

A sampler variable uses a texture unit, which uses a texture object, which holds a texture
image. The JavaScript commands for setting up this chain are shown in the illustration. To
apply a texture image to a primitive, you have to set up the entire chain. Of course, you also
have to provide texture coordinates for the primitive, and you need to use the sampler variable
in the shader program to access the texture.

Suppose that you have several images that you would like to use on several different
primitives. Between drawing primitives, you need to change the texture image that will be
used. There are at least three different ways to manage the images in WebGL:

1. You could use a single texture object and a single texture unit. The bound texture object,
the active texture unit, and the value of the sampler variable can be set once and never
changed. To change to a new image, you would use gl.texImage2D to load the image into
the texture object. This is essentially how things were done in OpenGL 1.0. It’s very
inefficient, except when you are going to use each image just once. That’s why texture
objects were introduced.

2. You could use a different texture object for each image, but use just a single texture unit.
The active texture and the value of the sampler variable will never have to be changed.
You would switch to a new texture image using gl.bindTexture to bind the texture object
that contains the desired image.

3. You could use a different texture unit for each image. You would load each image into
its own texture object and bind that object to one of the texture units. You would switch
to a new texture image by changing the value of the sampler variable.

256 CHAPTER 6. INTRODUCTION TO WEBGL

I don’t know how options 2 and 3 compare in terms of efficiency. Note that you are only forced

to use more than one texture unit if you want to apply more than one texture image to the
same primitive. To do that, you will need several sampler variables in the shader program.
They will have different values so that they refer to different texture units, and the color of
a pixel will somehow depend on samples from both images. This picture shows two textures
being combined in simple ways to compute the colors of pixels in a textured square:

In the image on the left, a grayscale “brick” image is multiplied by an “Earth” image; that is,
the red component of a pixel is computed by multiplying the red component from the brick
texture by the red component from the Earth texture, and same for green and blue. On the
right, the same Earth texture is subtracted from a “cloth” texture. Furthermore, the pattern
is distorted because the texture coordinates were modified before being used to sample the
textures, using the formula texCoords.y += 0.25*sin(6.28*texCoords.x). That’s the kind of
thing that could only be done with programmable shaders! The images are taken from the
on-line demo c6/multi-texture.html. Try it out!

You might want to view the source code to see how the textures are programmed. Two
texture units are used. The values of two uniform sampler variables, u texture1 and u texture2,
are set during initialization with the code

u texture1 location = gl.getUniformLocation(prog, "u texture1");

u texture2 location = gl.getUniformLocation(prog, "u texture2");

gl.uniform1i(u texture1 location, 0);

gl.uniform1i(u texture2 location, 1);

The values are never changed. The program uses several texture images. There is a texture
object for each image. On the JavaScript side, the IDs for the texture objects are stored in
an array, textureObjects. Two popup menus allow the user to select which texture images are
applied to the primitive. This is implemented in the drawing routine by binding the two selected
texture objects to texture units 0 and 1, which are the units used by the two sampler variables.
The code for that is:

let tex1Num = Number(document.getElementById("textureChoice1").value);

gl.activeTexture(gl.TEXTURE0);

gl.bindTexture(gl.TEXTURE 2D, textureObjects[tex1Num]);

let tex2Num = Number(document.getElementById("textureChoice2").value);

gl.activeTexture(gl.TEXTURE1);

gl.bindTexture(gl.TEXTURE 2D, textureObjects[tex2Num]);

6.4. IMAGE TEXTURES 257

Getting images into the texture objects is another question, which we turn to next.

6.4.2 Working with Images

An image can be loaded into a texture object using the function gl.texImage2D. For use with
WebGL, this function usually has the form

gl.texImage2D(target, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE, image);

The target is gl.TEXTURE 2D for ordinary textures; there are other targets for loading
cubemap textures. The second parameter is the mipmap level, which is 0 for the main
image. Although it is possible to load individual mipmaps, that is rarely done. The next two
parameters give the format of the texture inside the texture object and in the original image. In
WebGL 1.0, the two format parameters should have the same value. Since web images are stored
in RGBA format, gl.RGBA is probably the most efficient choice, and there is rarely a need to
use anything else. But you can use gl.RGB if you don’t need the alpha component. And by
using gl.LUMINANCE or gl.LUMINANCE ALPHA, you can convert the image to grayscale.
(Luminance is a weighted average of red, green, and blue that approximates the perceived
brightness of a color.) The fourth parameter is always going to be gl.UNSIGNED BYTE,
indicating that the colors in the image are stored using one byte for each color component.
Although other values are possible, they don’t really make sense for web images.

The last parameter in the call to gl.texImage2D is the image. Ordinarily, image will be a
DOM image element that has been loaded asynchronously by JavaScript. The image can also
be a <canvas> element. This means that you can draw on a canvas, using the HTML canvas
2D graphics API, and then use the canvas as the source for a texture image. You can even do
that with an off-screen canvas that is not visible on the web page.

The image is loaded into the texture object that is currently bound to target in the currently
active texture unit. There is no default texture object; that is, if no texture has been bound
when gl.texImage2D is called, an error occurs. The active texture unit is the one that has been
selected using gl.activeTexture, or is texture unit 0 if gl.activeTexture has never been called. A
texture object is bound to the active texture unit by gl.bindTexture. This was discussed earlier
in this section.

Using images in WebGL is complicated by the fact that images are loaded asynchronously.
That is, the command for loading an image just starts the process of loading the image. You
can specify a callback function that will be executed when the loading completes. The image
won’t actually be available for use until after the callback function is called. When loading an
image to use as a texture, the callback function should load the image into a texture object.
Often, it will also call a rendering function to draw the scene, with the texture image.

The sample program webgl/simple-texture.html is an example of using a single texture on a
triangle. Here is a function that is used to load the texture image in that program. The texture
object is created before the function is called.

/**

* Loads a texture image asynchronously. The first parameter is the url

* from which the image is to be loaded. The second parameter is the

* texture object into which the image is to be loaded. When the image

* has finished loading, the draw() function will be called to draw the

* triangle with the texture. (Also, if an error occurs during loading,

* an error message is displayed on the page, and draw() is called to

* draw the triangle without the texture.)

*/

258 CHAPTER 6. INTRODUCTION TO WEBGL

function loadTexture(url, textureObject) {

const img = new Image(); // A DOM image element to represent the image.

img.onload = function() {

// This function will be called after the image loads successfully.

// We have to bind the texture object to the TEXTURE 2D target before

// loading the image into the texture object.

gl.bindTexture(gl.TEXTURE 2D, textureObject);

try {

gl.texImage2D(gl.TEXTURE 2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED BYTE,img);

gl.generateMipmap(gl.TEXTURE 2D); // Create mipmaps; you must either

// do this or change the minification filter.

}

catch (e) { // Probably a security exception, because this page has been

// loaded through a file:// URL.

document.getElementById("headline").innerHTML =

"Sorry, couldn’t load texture.
" +

"Some web browsers won’t use images from a local disk";

}

draw(); // Draw the canvas, with or without the texture.

};

img.onerror = function() {

// This function will be called if an error occurs while loading.

document.getElementById("headline").innerHTML =

"<p>Sorry, texture image could not be loaded.</p>";

draw(); // Draw without the texture; triangle will be black.

};

img.src = url; // Start loading of the image.

// This must be done after setting onload and onerror.

}

Note that image textures for WebGL 1.0 should be power-of-two textures. That is, the
width and the height of the image should each be a power of 2, such as 128, 256, or 512. You
can, in fact, use non-power-of-two textures, but you can’t use mipmaps with such textures,
and the only texture repeat mode that is supported by such textures is gl.CLAMP TO EDGE.
(WebGL 2.0 does not have these restrictions.)

(The try..catch statement is used in this function because most web browsers will throw a
security exception when a page attempts to use an image from the local file system as a texture.
This means that if you attempt to run a program that uses textures from a downloaded version
of this book, the programs that use textures might not work.)

∗ ∗ ∗

There are several parameters associated with a texture object, including the texture repeat
modes and the minification and magnification filters. They can be set using the function
gl.texParameteri. The setting applies to the currently bound texture object. Most of the
details are the same as in OpenGL 1.1 (Subsection 4.3.3). For example, the minification filter
can be set to LINEAR using

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.LINEAR);

Recall that the default minification filter won’t work without mipmaps. To get a working
texture, you have to change the minification filter or install a full set of mipmaps. Fortunately,
WebGL has a function that will generate the mipmaps for you:

gl.generateMipmap(gl.TEXTURE 2D);

6.4. IMAGE TEXTURES 259

The texture repeat modes determine what happens when texture coordinates lie outside
the range 0.0 to 1.0. There is a separate repeat mode for each direction in the texture
coordinate system. In WebGL, the possible values are gl.REPEAT, gl.CLAMP TO EDGE,
and gl.MIRRORED REPEAT. The default is gl.REPEAT. The mode CLAMP TO EDGE
was called CLAMP in OpenGL 1.1, and MIRRORED REPEAT is new in WebGL. With
MIRRORED REPEAT, the texture image is repeated to cover the entire plane, but every
other copy of the image is reflected. This can eliminate visible seams between the copies. To
set a texture to use mirrored repeat in both directions, use

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE WRAP S, gl.MIRRORED REPEAT);

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE WRAP T, gl.MIRRORED REPEAT);

∗ ∗ ∗

In WebGL, texture coordinates are usually input to the vertex shader as an attribute of
type vec2. They are communicated to the fragment shader in a varying variable. Often, the
vertex shader will simply copy the value of the attribute into the varying variable. Another
possibility is to apply an affine texture transformation to the coordinates in the vertex shader
before passing them on to the fragment shader. In the fragment shader, the texture coordinates
are used to sample a texture. The GLSL ES 1.00 function for sampling an ordinary texture is

texture2D(samplerVariable, textureCoordinates);

where samplerVariable is the uniform variable of type sampler2D that represents the texture,
and textureCoordinates is a vec2 containing the texture coordinates. The return value is an
RGBA color, represented as a value of type vec4. As a very minimal example, here is a fragment
shader that simply uses the sampled value from the texture as the color of the pixel.

precision mediump float;

uniform sampler2D u texture;

varying vec2 v texCoords;

void main() {

vec4 color = texture2D(u texture, v texCoords);

gl FragColor = color;

}

This shader is from the sample program webgl/simple-texture.html.
Textures are sometimes used on primitives of type gl.POINTS. In that case, it’s natural to

get the texture coordinates for a pixel from the special fragment shader variable gl PointCoord.
A point is rendered as a square, and the coordinates in gl PointCoord range from 0.0 to 1.0
over that square. So, using gl PointCoord means that one copy of the texture will be pasted
onto the point. If the POINTS primitive has more than one vertex, you will see a copy of the
texture at the location of each vertex. This is an easy way to put an image, or multiple copies
of an image, into a scene. The technique is sometimes referred to as “point sprites.”

Here is an example of a textured primitive of type gl.POINTS. Only a circular cutout from
each square point is drawn. The picture is from an on-line demo, c6/textured-points.html.

260 CHAPTER 6. INTRODUCTION TO WEBGL

∗ ∗ ∗

The pixel data for a texture image in WebGL is stored in memory starting with the row of
pixels at the bottom of the image and working up from there. When WebGL creates the texture
by reading the data from an image, it assumes that the image uses the same format. However,
images in a web browser are stored in the opposite order, starting with the pixels in the top row
of the image and working down. The result of this mismatch is that texture images will appear
upside down. You can account for this by modifying your texture coordinates. However, you
can also tell WebGL to invert the images for you as it “unpacks” them. To do that, call

gl.pixelStorei(gl.UNPACK FLIP Y WEBGL, 1);

Generally, you can do this as part of initialization. Note however that for gl.POINTS primitives,
the coordinate system used by gl PointCoord is already upside down, with the y-coordinate
increasing from top to bottom. So, if you are loading an image for use on a POINTS primitive,
you might want to set gl.UNPACK FLIP Y WEBGL to its default value, 0.

6.4.3 More Ways to Make Textures

We have seen how to create a texture from an image or canvas element using gl.texImage2D.
There are several more ways to make an image texture in WebGL. First of all, the function

glCopyTexImage2D(target, mipmapLevel, internalFormat,

x, y, width, height, border);

which was covered in Subsection 4.3.6 also exists in WebGL. This function copies data from the
color buffer (where WebGL renders its images) into the currently bound texture object. The
data is taken from the rectangular region in the color buffer with the specified width and height
and with its lower left corner at (x,y). The internalFormat is usually gl.RGBA. For WebGL,
the border must be zero. For example,

glCopyTexImage2D(gl.TEXTURE 2, 0, gl.RGBA, 0, 0, 256, 256, 0);

This takes the texture data from a 256-pixel square in the bottom left corner of the color buffer.
(In a later chapter, we will see that it is actually possible, and more efficient, for WebGL to
render an image directly to a texture object, using something called a “framebuffer.”)

More interesting, perhaps, is the ability to take the texture data directly from an array of
numbers. The numbers will become the color component values for the pixels in the texture.
The function that is used for this is an alternative version of texImage2D :

6.4. IMAGE TEXTURES 261

texImage2D(target, mipmapLevel, internalFormat, width, height,

border, dataFormat, dataType, dataArray)

and a typical function call would have the form

gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, 16, 16,

0, gl.RGBA, gl.UNSIGNED BYTE, pixels);

Compared to the original version of texImage2D, there are three extra parameters, width, height,
and border. The width and height specify the size of the texture image. For WebGL, the border
must be zero, and for WebGL 1.0, the internalFormat and dataFormat must be the same.

The last parameter in this version of texImage2D must be a typed array of type Uint8Array

or Uint16Array, depending on the dataFormat of the texture. My examples will use Uint8Array

and texture format gl.RGBA or gl.LUMINANCE.

For an RGBA texture, four color component values are needed for each pixel. The values
will be given as unsigned bytes, with values ranging from 0 to 255, in a Uint8Array. The length
of the array will be 4*width*height (that is, four times the number of pixels in the image). The
data for the bottom row of pixels comes first in the array, followed by the row on top of that,
and so on, with the pixels in a given row running from left to right. And within the data for
one pixel, the red component comes first, followed by the blue, then the green, then the alpha.

As an example of making up texture data from scratch, let’s make a 16-by-16 texture image,
with the image divided into four 8-by-8 squares that are colored red, white, and blue. The code
uses the fact that when a typed array is created, it is initially filled with zeros. We just have
to change some of those zeros to 255.

let pixels = new Uint8Array(4*16*16); // four bytes per pixel

for (let i = 0; i < 16; i++) {

for (let j = 0; j < 16; j++) {

let offset = 64*i + 4*j ; // starting index of data for this pixel

pixels[offset + 3] = 255; // alpha value for the pixel

if (i < 8 && j < 8) { // bottom left quadrant is red

pixels[offset] = 255; // set red component to maximum

}

else if (i >= 8 && j >= 8) { // top right quadrant is blue

pixels[offset + 2] = 255; // set blue component to maximum

}

else { // the other two quadrants are white

pixels[offset] = 255; // set all components to maximum

pixels[offset + 1] = 255;

pixels[offset + 2] = 255;

}

}

}

texture = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, texture);

gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, 16, 16,

0, gl.RGBA, gl.UNSIGNED BYTE, pixels);

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.LINEAR);

The last line is there because the default minification filter won’t work without mipmaps.
The texture uses the default magnification filter, which is also gl.LINEAR. This texture is used

262 CHAPTER 6. INTRODUCTION TO WEBGL

on the leftmost square in the image shown below. The image is from the sample program
webgl/texture-from-pixels.html.

Note the blending along the edges between colors in the leftmost square. The blending is
caused by the gl.LINEAR magnification filter. The second square uses the same texture, but
with the gl.NEAREST magnification filter, which eliminates the blending. The same effect
can be seen in the next two squares, which use a black/white checkerboard pattern, one with
gl.Linear as the magnification filter and one using gl.NEAREST. The texture is repeated ten
times horizontally and vertically on the square. In this case, the texture is a tiny 2-by-2 image
with two black and two white pixels.

As another example, consider the rightmost square in the image. The gradient effect on
that square comes from a texture. The texture size is 256-by-1 pixels, with the color changing
from black to white along the length of the texture. One copy of the texture is mapped to the
square. For the gradient texture, I used gl.LUMINANCE as the texture format, which means
that the data consists of one byte per pixel, giving the grayscale value for that pixel. The
texture can be created using

let pixels = new Unit8Array(256); // One byte per pixel

for (let i = 0; i < 256; i++) {

pixels[i] = i; // Grayscale value for pixel number i is i.

}

gl.texImage2D(gl.TEXTURE 2D, 0, gl.LUMINANCE, 256, 1,

0, gl.LUMINANCE, gl.UNSIGNED BYTE, pixels);

See the sample program for more detail.

6.4.4 Cubemap Textures

We encountered cubemap textures in Subsection 5.3.4, where saw how they are used in three.js
for skyboxes and environment mapping. WebGL has built-in support for cubemap textures.
Instead of representing an ordinary image texture, a texture object can hold a cubemap texture.
And two texture objects can be bound to the same texture unit simultaneously, one holding an
ordinary texture and one holding a cubemap texture. The two textures are bound to different
targets, gl.TEXTURE 2D and gl.TEXTURE CUBE MAP. A texture object, texObj, is bound
to the cubemap target in the currently active texture unit by calling

gl.bindTexture(gl.TEXTURE CUBE MAP, texObj);

A given texture object can be either a regular texture or a cubemap texture, not both. Once
it has been bound to one texture target, it cannot be rebound to the other target.

A cubemap texture consists of six images, one for each face of the cube. A texture object
that holds a cubemap texture has six image slots, identified by the constants

gl.TEXTURE CUBE MAP NEGATIVE X

gl.TEXTURE CUBE MAP POSITIVE X

gl.TEXTURE CUBE MAP NEGATIVE Y

6.4. IMAGE TEXTURES 263

gl.TEXTURE CUBE MAP POSITIVE Y

gl.TEXTURE CUBE MAP NEGATIVE Z

gl.TEXTURE CUBE MAP POSITIVE Z

The constants are used as the targets in gl.texImage2D and gl.copyTexImage2D, in place of
gl.TEXTURE 2D. (Note that there are six targets for loading images into a cubemap texture
object, but only one target, gl.TEXTURE CUBE MAP, for binding the texture object to a
texture unit.) A cubemap texture is often stored as a set of six images, which must be loaded
separately into a texture object. Of course, it is also possible for WebGL to create a cubemap
by rendering the six images.

As usual for images on the web, there is the problem of asynchronous image loading to
be dealt with. Here, for example, is a function that creates a cubemap texture in my sample
program webgl/cubemap-fisheye.html :

function loadCubemapTexture() {

const tex = gl.createTexture();

let imageCt = 0; // Number of images that have finished loading.

load("cubemap-textures/park/negx.jpg", gl.TEXTURE CUBE MAP NEGATIVE X);

load("cubemap-textures/park/posx.jpg", gl.TEXTURE CUBE MAP POSITIVE X);

load("cubemap-textures/park/negy.jpg", gl.TEXTURE CUBE MAP NEGATIVE Y);

load("cubemap-textures/park/posy.jpg", gl.TEXTURE CUBE MAP POSITIVE Y);

load("cubemap-textures/park/negz.jpg", gl.TEXTURE CUBE MAP NEGATIVE Z);

load("cubemap-textures/park/posz.jpg", gl.TEXTURE CUBE MAP POSITIVE Z);

function load(url, target) {

let img = new Image();

img.onload = function() {

gl.bindTexture(gl.TEXTURE CUBE MAP, tex);

try {

gl.texImage2D(target, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE, img);

}

catch (e) {

document.getElementById("headline").innerHTML =

"Can’t access texture. Note that some browsers" +

" can’t use a texture from a local file.";

return;

}

imageCt++;

if (imageCt === 6) { // all 6 images have been loaded

gl.generateMipmap(gl.TEXTURE CUBE MAP);

document.getElementById("headline").innerHTML =

"Funny Cubemap (Fisheye Camera Effect)";

textureObject = tex;

draw();

}

};

img.onerror = function() {

document.getElementById("headline").innerHTML =

"SORRY, COULDN’T LOAD TEXTURES";

};

img.src = url;

}

}

264 CHAPTER 6. INTRODUCTION TO WEBGL

The images for a cubemap must all be the same size. They must be square. The size should,
as usual, be a power of two. For a cubemap texture, texture parameters such as the minification
filter are set using the target gl.TEXTURE CUBE MAP, and they apply to all six faces of the
cube. For example,

gl.texParameteri(gl.TEXTURE CUBE MAP, gl.TEXTURE MIN FILTER, gl.LINEAR);

Similarly, gl.generateMipmap will generate mipmaps for all six faces (so it should not be called
until all six images have been loaded).

∗ ∗ ∗

In a shader program, a cube map texture is represented by a uniform variable of type
samplerCube. In GLSL ES 1.00, the texture is sampled using function textureCube. For example,

vec4 color = textureCube(u texture, vector);

The first parameter is the samplerCube variable that represents the texture. The second
parameter is a vec3. Cube map textures are not sampled using regular texture coordinates.
Instead, a 3D vector is used. The goal is to pick out a point in the texture. The texture lies on
the surface of a cube. To use a vector to pick out a point in the texture, cast a ray from the
center of the cube in the direction given by the vector, and check where that ray intersects the
cube. That is, if you put the starting point of the vector at the center of the cube, it points to
the point on the cube where the texture is to be sampled.

Since we aren’t doing 3D graphics in this chapter, we can’t use cube maps in the ordinary
way. The sample program webgl/cubemap-fisheye.html uses a cube map in an interesting, if not
very useful way. The program uses 2D texture coordinates. The fragment shader transforms
a pair of 2D texture coordinates into a 3D vector that is then used to sample the cubemap
texture. The effect is something like a photograph produced by a fisheye camera. Here’s what
it looks like.

The picture on the left imitates a fisheye camera with a 170-degree field of view. On the right
the field of view is 330-degrees, so that pixels near the edge of the disk actually show parts of
the cube that lie behind the camera.

For each picture, the program draws a square with texture coordinates ranging from 0.0
to 1.0. In the texture coordinate system, pixels at a distance greater than 0.5 from the point
(0.5,0.5) are colored white. Within the disk of radius 0.5, each circle around the center is
mapped to a circle on the unit sphere. That point is then used as the direction vector for
sampling the cubemap texture. The point in the texture that appears at the center of the disk
is the point where the cube intersects the positive z-axis, that is, the center of the “positive

6.4. IMAGE TEXTURES 265

z” image from the cube map. You don’t actually need to understand this, but here, for your
information, is the fragment shader that does the work:

#ifdef GL FRAGMENT PRECISION HIGH

precision highp float;

#else

precision mediump float;

#endif

uniform samplerCube u texture;

uniform float u angle; // field of view angle

varying vec2 v texCoords;

void main() {

float dist = distance(v texCoords, vec2(0.5));

if (dist > 0.5)

gl FragColor = vec4(1.0); // white

else {

float x,y; // coords relative to a center at (0.5,0.5)

x = v texCoords.x - 0.5;

y = v texCoords.y - 0.5;

vec2 circ = normalize(vec2(x,y)); // on the unit circle

float phi = radians(u angle/2.0)*(2.0*dist); // "latitude"

vec3 vector = vec3(sin(phi)*circ.x, sin(phi)*circ.y, cos(phi));

gl FragColor = textureCube(u texture, vector);

}

}

6.4.5 A Computational Example

A GPU can offer an immense amount of processing power. Although GPUs were originally
designed to apply that power to rendering images, it was quickly realized that the same power
could be harnessed to do much more general types of programming. Not every programming
task can take advantage of the highly parallel architecture of the typical GPU, but if a task
can be broken down into many subtasks that can be run in parallel, then it might be possible
to speed up the task significantly by adapting it to run on a GPU. Modern GPUs have become
much more computationally versatile, but in GPUs that were designed to work only with colors,
that might mean somehow representing the data for a computation as color values. The trick
often involves representing the data as colors in a texture, and accessing the data using texture
lookup functions.

The sample program webgl/webgl-game-of-life.html is a simple example of this approach.
The program implements John Conway’s well-known Game of Life (which is not really a game).
A Life board consists of a grid of cells that can be either alive or dead. There is a set of rules
that takes the current state, or “generation,” of the board and produces a new generation. Once
some initial state has been assigned to each cell, the game can play itself, producing generation
after generation, according to the rules. The rules compute the state of a cell in the next
generation from the states of the cell and its eight neighboring cells in the current generation.
To apply the rules, you have to look at each neighboring cell and count the number of neighbors
that are alive. The same process is applied to every cell, so it is a highly parallelizable task
that can be easily adapted to run on a GPU.

In the sample program, the Life board is a 1024-by-1024 canvas, with each pixel representing
a cell. Living cells are colored white, and dead cells are black. The program uses WebGL to

266 CHAPTER 6. INTRODUCTION TO WEBGL

compute the next generation of the board from the current board. The work is done in a
fragment shader. To trigger the computation, a single square is drawn that covers the entire
canvas, which causes the fragment shader to be called for every pixel in the canvas. The
fragment shader needs access to the current color of the fragment and of its eight neighbors,
but it has no way to query those colors directly. To give the shader access to that information,
the program copies the board into a texture object, using the function gl.copyTexImage2D().
The fragment shader can then get the information that it needs using the GLSL texture lookup
function texture2D().

An interesting point is that the fragment shader needs the texture coordinates not just for
itself but for its neighbors. The texture coordinates for the fragment itself are passed into the
fragment shader as a varying variable, with values in the range 0 to 1 for each coordinate. It can
get the texture coordinates for a neighbor by adding an offset to its own texture coordinates.
Since the texture is 1024-by-1024 pixels, the texture coordinates for a neighbor need to be offset
by 1.0/1024.0. Here is the complete GLSL ES 1.00 fragment shader program:

#ifdef GL FRAGMENT PRECISION HIGH

precision highp float;

#else

precision mediump float;

#endif

varying vec2 v coords; // texture coordinates for this cell

const float scale = 1.0/1024.0; // 1.0 / canvas size; (offset between

// neighboring cells, in texture coords)

uniform sampler2D source; // the texture holding the previous generation

void main() {

int alive; // is this cell alive ?

if (texture2D(source,v coords).r > 0.0)

alive = 1;

else

alive = 0;

// Count the living neighbors. To check for living, just test

// the red component of the color, which will be 1.0 for a

// living cell and 0.0. for a dead cell.

int neighbors = 0; // will be the number of neighbors that are alive

if (texture2D(source,v coords+vec2(scale,scale)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(scale,0)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(scale,-scale)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(0,scale)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(0,-scale)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(-scale,scale)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(-scale,0)).r > 0.0)

neighbors += 1;

if (texture2D(source,v coords+vec2(-scale,-scale)).r > 0.0)

6.4. IMAGE TEXTURES 267

neighbors += 1;

// Output the new color for this cell. using the rules of Life.

float color = 0.0; // color for dead cell

if (alive == 1) {

if (neighbors == 2 || neighbors == 3)

color = 1.0; // color for living cell; cell stays alive

}

else if (neighbors == 3)

color = 1.0; // color for living cell; cell comes to life

gl FragColor = vec4(color, color, color, 1);

}

There are some other points of interest in the program. When the WebGL graphics context
is created, anti-aliasing is turned off to make sure that every pixel is either perfectly black or
perfectly white. Antialiasing could smear out the colors by averaging the colors of nearby pixels.
Similarly, the magnification and minification filters for the texture are set to gl.NEAREST to
avoid averaging of colors. Also, there is the issue of setting the initial configuration onto the
board—that’s done by drawing onto the board using another shader program with a different
fragment shader.

On my computer, the webgl/webgl-game-of-life.html can easily compute 360 generations per
second. I urge you to try it. It can be fun to watch.

General purpose programming on GPUs has become more and more important. Modern
GPUs can do computations that have nothing to do with color, using various numerical data
types. WebGL 2.0, as we’ll see, has moved a bit in that direction, but accessing the full
computational power of GPUs from the Web will require a new API. WebGPU , currently
under development and already available as an experimental feature in some web browsers, is
an attempt to fulfill that need. (However, unlike WebGL, it is not based on OpenGL.)

6.4.6 Textures in WebGL 2.0

One of the major changes in WebGL 2.0 is greatly increased support for textures. A large
number of new texture formats have been added. RGBA color components in OpenGL are
represented as floating point values in the range zero to one, but in practice are often stored as
one-byte unsigned integers, with values in the range 0 to 255, which matches the format that
is used for displaying colors on most screens. In fact, you don’t really have control over how
colors are represented internally for use on displays. There have been computer displays that
used only 16 bits per pixel instead of 32, and new HDR (High Dynamic Range) displays can
use even more bits per pixel. But when storing data in a texture, it’s not really necessary to
match the color format that is used on a physical display.

WebGL 2.0 introduced a large number of so-called “sized” texture formats, which give the
programmer control over how the data in the texture is represented. For example, if the format
is gl.RGBA32F, then the texture contains four 32-bit floating point numbers for each pixel,
one for each of the four RGBA color components. The format gl.R32UI indicates one 32-bit
unsigned integer per pixel. And gl.RG8I means two 8-bit integers per pixel. And gl.RGBA8
corresponds to the usual format, using one 8-bit unsigned integer for each color component.
These sized formats are used for the internal format of a texture, the internalFormat parameter
in a call to a function like gl.texImage2D(), which specifies how the data is actually stored in the

268 CHAPTER 6. INTRODUCTION TO WEBGL

texture. You can use textures with sized internal formats as image textures for rendering. But
32 bits for a color component encodes far more different colors than could ever be distinguished
visually. These data formats are particularly useful for computational applications, where you
really need to control what kind of data you are working with. But to effectively compute with
data stored in textures, we really need to be able to write data to textures, as well as read from
textures. And for that, we need framebuffers, which won’t be covered until Section 7.4. For
now, we will just look at a few aspects of the WebGL 2.0 API for working with textures.

Various versions of the texImage2D() function can be used to initialize a texture from an
image or from an array of data—or to zero, when no data source is provided. WebGL 2.0
has another, potentially more efficient, function for allocating the storage for a texture and
initializing it to zero:

gl.texStorage2D(target, levels, internalFormat, width, height);

The first parameter is gl.TEXTURE 2D or gl.TEXTURE CUBE MAP. The second parameter
specifies the number of mipmap level that should be generated; generally, this will be 1. The
width and height give the size of the texture, and of course the internalFormat specifies the
data format for the texture. The internalFormat must be one of the sized internal formats,
such as gl.RGBA8.

WebGL 2.0 has support for 3D textures, which hold data for a 3D grid of texels, with
functions gl.texImage3D() and gl.texStorage3D(). It has depth textures, which store depth
values like those used in the depth test and are commonly used for shadow mapping. And
it can work with compressed textures, which can decrease the amount of data that needs to
be transferred between the CPU and the GPU. However, I will leave you to explore these
capabilities on your own if you need them.

Shader programs use sampler variables to read data from textures. The shader programming
language GLSL ES 3.00 introduces a number of new sampler types to deal with the new texture
formats in WebGL 2.0. Where GLSL ES 1.00 had only sampler2D and samplerCube, the newer
language adds types such as sampler3D for 3D textures, isampler2D for sampling textures
whose values are signed integers, and sampler2DShadow for sampling depth textures. For
example, for sampling a texture with a 32-bit integer format, you might declare a sampler
variable such as

uniform highp isampler2D datatexture;

The precision qualifier, highp, must be specified because isampler2D variables do not have a
default precision. Using high precision ensures that you can read 32-bit integers exactly. (The
sampler2D type has default precision lowp, which is sufficient when color components are really
8-bit integers but which might not be what you want for floating point data textures.)

GLSL ES 1.00 uses the function texture2D() to sample a 2D texture and textureCube() for
sampling a cubemap texture. Rather than have a separate function for each sampler type,
GLSL ES 3.00 removes texture2D and textureCube and replaces them with a single overloaded
function texture(), which can be used to sample any kind of texture. So, the datatexture defined
above might be sampled using

highp ivec4 data = texture(datatexture, coords);

where coords is a vec2 holding the texture coordinates. But in fact, you might want to access
texel values more directly. There is a new texelFecth() function that fetches texel values from a
texture, treating the texture as an array of texels. Texels are accessed using integer coordinates
that range from 0 up to the size of the texture. Applied to datatexture, this could look like

6.5. IMPLEMENTING 2D TRANSFORMS 269

highp ivec4 data = texelFetch(datatexture, 0, ivec2(i,j));

where i ranges from 0 to the width of the texture minus one, and j ranges from 0 to the height
minus one. The second parameter, 0 here, specifies the mipmap level that is being accessed.
(For integer textures, you are not likely to be using mipmaps.)

(The sample program webgl/texelFetch-MonaLisa-webgl2.html is a rather fanciful example
of using texelFetch(), though with an ordinary image texture rather than a data texture.)

There is a lot more that could be said about WebGL 2.0 textures, but it would take us well
beyond what I need for this introductory textbook.

6.5 Implementing 2D Transforms

This chapter uses WebGL for 2D drawing. Of course, the real motivation for using
WebGL is to have high-performance 3D graphics on the web. We will turn to that in the next
chapter. With WebGL, implementing transformations is the responsibility of the programmer,
which adds a level of complexity compared to OpenGL 1.1. But before we attempt to deal with
that complexity in three dimensions, this short section shows how to implement transforms and
hierarchical modeling in a 2D context.

6.5.1 Transforms in GLSL

Transforms in 2D were covered in Section 2.3. To review: The basic transforms are scaling,
rotation, and translation. A sequence of such transformations can be combined into a single
affine transform. A 2D affine transform maps a point (x1,y1) to the point (x2,y2) given by
formulas of the form

x2 = a*x1 + c*y1 + e

y2 = b*x1 + d*y1 + f

where a, b, c, d, e, and f are constants. As explained in Subsection 2.3.8, this transform can
be represented as the 3-by-3 matrix

ca e

db f

ÈÈ 1

With this representation, a point (x,y) becomes the three-dimensional vector (x,y,1), and the
transformation can be implemented as multiplication of the vector by the matrix.

To apply a transformation to a primitive, each vertex of the primitive has to be multiplied
by the transformation matrix. In GLSL, the natural place to do that is in the vertex shader.
Technically, it would be possible to do the multiplication on the JavaScript side, but GLSL can
do it more efficiently, since it can work on multiple vertices in parallel, and it is likely that the
GPU has efficient hardware support for matrix math. (It is, by the way, a property of affine
transformations that it suffices to apply them at the vertices of a primitive. Interpolation of
the transformed vertex coordinates to the interior pixels of the primitive will give the correct
result; that is, it gives the same answer as interpolating the original vertex coordinates and
then applying the transformation in the fragment shader.)

In GLSL, the type mat3 represents 3-by-3 matrices, and vec3 represents three-dimensional
vectors. When applied to a mat3 and a vec3, the multiplication operator * computes the
product. So, a transform can applied using a simple GLSL assignment statement such as

270 CHAPTER 6. INTRODUCTION TO WEBGL

transformedCoords = transformMatrix * originalCoords;

For 2D drawing, the original coordinates are likely to come into the vertex shader as an attribute
of type vec2. We need to make the attribute value into a vec3 by adding 1.0 as the z -coordinate.
The transformation matrix is likely to be a uniform variable, to allow the JavaScript side to
specify the transformation. This leads to the following minimal GLSL ES 1.00 vertex shader for
working with 2D transforms. (For a GLSL ES 3.00 version, the “attribute” qualifier is replaced
by “in”, and a first line “#version 300 es” is added.)

attribute vec2 a coords;

uniform mat3 u transform;

void main() {

vec3 transformedCoords = u transform * vec3(a coords,1.0);

gl Position = vec4(transformedCoords.xy, 0.0, 1.0);

}

The input coordinates are given as a vec2, (x,y), but we need a vec3, (x,y,1), to multiply by
the matrix, so the first line of main() adds 1.0 as the z -coordinate. In the next line, the value
for gl Position must be a vec4. For a 2D point, the z -coordinate should be 0.0, not 1.0, so we
use only the x - and y-coordinates from transformedCoords.

On the JavaScript side, the function gl.uniformMatrix3fv is used to specify a value for a
uniform of type mat3 (Subsection 6.3.3). To use it, the nine elements of the matrix should be
stored in an array in column-major order. For loading an affine transformation matrix into a
mat3, the command would be something like this:

gl.uniformMatrix3fv(u transform location, false, [a, b, 0, c, d, 0, e, f, 1]);

6.5.2 Transforms in JavaScript

To work with transforms on the JavaScript side, we need a way to represent the transforms.
We also need to keep track of a “current transform” that is the product all the individual
modeling transformations that are in effect. The current transformation changes whenever a
transformation such as rotation or translation is applied. We need a way to save a copy of the
current transform before drawing a complex object and to restore it after drawing. Typically,
a stack of transforms is used for that purpose. You should be well familiar with this pattern
from both 2D and 3D graphics. The difference here is that the data structures and operations
that we need are not built into the standard API, so we need some extra JavaScript code to
implement them.

As an example, I have written a JavaScript class, AffineTransform2D, to represent affine
transforms in 2D. This is a very minimal implementation. The data for an object of type
AffineTransform2D consists of the numbers a, b, c, d, e, and f in the transform matrix. There
are methods in the class for multiplying the transform by scaling, rotation, and translation
transforms. These methods modify the transform to which they are applied, by multiplying it
on the right by the appropriate matrix. Here is a full description of the API, where transform
is an object of type AffineTransform2D:

• transform = new AffineTransform2D(a,b,c,d,e,f) — creates a AffineTransform2D

with the matrix shown at the beginning of this section.

• transform = new AffineTransform2D() — creates an AffineTransform2D representing
the identity transform.

6.5. IMPLEMENTING 2D TRANSFORMS 271

• transform = new AffineTransform2D(original) — where original is an AffineTrans-

form2D, creates a copy of original.

• transform.rotate(r) — modifies transform by composing it with the rotation matrix
for a rotation by r radians.

• transform.translate(dx,dy)—modifies transform by composing it with the translation
matrix for a translation by (dx,dy).

• transform.scale(sx,sy) — modifies transform by composing it with the scaling matrix
for scaling by a factor of sx horizontally and sy vertically.

• transform.scale(s) — does a uniform scaling, the same as transform.scale(s,s).

• array = transform.getMat3() — returns an array of nine numbers containing the
matrix for transform in column-major order.

In fact, an AffineTransform2D object does not represent an affine transformation as a matrix.
Instead, it stores the coefficients a, b, c, d, e, and f as properties of the object. With this
representation, the scale method in the AffineTransform2D class can defined as follows:

scale(sx, sy = sx) { // Default value for sy is the value of sx.

this.a *= sx;

this.b *= sx;

this.c *= sy;

this.d *= sy;

return this;

}

This code multiplies the transform represented by “this” object by a scaling matrix, on the
right. Other methods have similar definitions, but you don’t need to understand the code in
order to use the API.

∗ ∗ ∗

Before a primitive is drawn, the current transform must be sent as a mat3 into the
vertex shader, where the mat3 will be used to transform the vertices of the primitive.
The method transform.getMat3 () returns the transform as an array that can be passed to
gl.uniformMatrix3fv, which sends it to the shader program.

To implement the stack of transformations, we can use an array of objects of type
AffineTransform2D. In JavaScript, an array does not have a fixed length, and it comes with
push() and pop() methods that make it possible to use the array as a stack. For convenience,
we can define functions pushTransform() and popTransform() to manipulate the stack. Here,
the current transform is stored in a global variable named transform:

let transform = new AffineTransform2D(); // Initially the identity.

const transformStack = []; // An array to serve as the transform stack.

/**

* Push a copy of the current transform onto the transform stack.

*/

function pushTransform() {

transformStack.push(new AffineTransform2D(transform));

}

/**

* Remove the top item from the transform stack, and set it to be the current

* transform. If the stack is empty, nothing is done (and there is no error).

272 CHAPTER 6. INTRODUCTION TO WEBGL

*/

function popTransform() {

if (transformStack.length > 0) {

transform = transformStack.pop();

}

}

This code is from the sample program webgl/simple-hierarchy2D.html, which demonstrates
using AffineTransform2D and a stack of transforms to implement hierarchical modeling. Here
is a screenshot of one of the objects drawn by that program:

and here’s the code that draws it:

function square() {

gl.uniformMatrix3fv(u transform loc, false, transform.getMat3());

gl.bindBuffer(gl.ARRAY BUFFER, squareCoordsVBO);

gl.vertexAttribPointer(a coords loc, 2, gl.FLOAT, false, 0, 0);

gl.drawArrays(gl.LINE LOOP, 0, 4);

}

function nestedSquares() {

gl.uniform3f(u color loc, 0, 0, 1); // Set color to blue.

square();

for (let i = 1; i < 16; i++) {

gl.uniform3f(u color loc, i/16, 0, 1 - i/16); // Red/Blue mixture.

transform.scale(0.8);

transform.rotate(framenumber / 200);

square();

}

}

The function square() draws a square that has size 1 and is centered at (0,0) in its own
object coordinate system. The coordinates for the square have been stored in a buffer,
squareCoordsVBO, and a coords loc is the location of an attribute variable in the shader
program. The variable transform holds the current modeling transform that must be applied
to the square. It is sent to the shader program by calling

gl.uniformMatrix3fv(u transform loc, false, transform.getMat3());

The second function, nestedSquares(), draws 16 squares. Between the squares, it modifies the
modeling transform with

6.5. IMPLEMENTING 2D TRANSFORMS 273

transform.scale(0.8);

transform.rotate(framenumber / 200);

The effect of these commands is cumulative, so that each square is a little smaller than the
previous one, and is rotated a bit more than the previous one. The amount of rotation depends
on the frame number in an animation.

The nested squares are one of three compound objects drawn by the program. The function
draws the nested squares centered at (0,0). In the main draw() routine, I wanted to move them
and make them a little smaller. So, they are drawn using the code:

pushTransform();

transform.translate(-0.5,0.5); // Move center of squares to (-0.5, 0.5).

transform.scale(0.85); // Reduce size from 1 to 0.85.

nestedSquares();

popTransform();

The pushTransform() and popTransform() ensure that all of the changes made to the modeling
transform while drawing the squares will have no effect on other objects that are drawn later.
Transforms are, as always, applied to objects in the opposite of the order in which they appear
in the code.

I urge you to read the source code and take a look at what it draws. The essential ideas for
working with transforms are all there. It would be good to understand them before we move
on to 3D.

274 CHAPTER 6. INTRODUCTION TO WEBGL

Chapter 7

3D Graphics with WebGL

The previous chapter covered WebGL, but only in the context of two-dimensional
graphics. As we move into 3D, we will have to work with more complex transformations. For
that, we will rely mainly on an open-source JavaScript library for vector and matrix math. We
will also need to implement lighting and material, which we will do directly in GLSL.

We begin the chapter by duplicating most of the capabilities of OpenGL 1.1 that were
covered in Chapter 3 and Chapter 4. But we will soon move beyond that by adding features
such as spotlights, Phong shading, and environment mapping.

7.1 Transformations in 3D

We have already seen in Chapter 6 how to draw primitives using WebGL, and how to
implement 2D transformations. Drawing primitives is the same in 3D, except that there are
three coordinates per vertex instead of two. Transformations in 3D are also similar to 2D,
but for transformations the increase in complexity that comes with the third dimension is
substantial. This section covers the geometric side of 3D graphics with WebGL. In the next
section, we will move on to the question of lighting and materials.

7.1.1 About Shader Scripts

But before we begin working more seriously with WebGL, it will be nice to have a better way
to include shader source code on a web page. Up until now, I have created the source code
strings by concatenating a bunch of JavaScript string literals, one for each line of code. That
format is hard to read and very hard to edit. There are at least two other techniques that are
often used. One is to put the GLSL shader source code inside <script> elements. Here is an
example for a vertex shader:

<script type="x-shader/x-vertex" id="vshader">

attribute vec3 a coords;

uniform mat4 modelviewProjection;

void main() {

vec4 coords = vec4(a coords,1.0);

gl Position = modelviewProjection * coords;

}

</script>

This relies on the fact that a web browser will not recognize the type listed in the <script>

element, so it will not try to execute the script. However, it does store the content of the

275

276 CHAPTER 7. 3D GRAPHICS WITH WEBGL

<script> element in the DOM data structure that represents the web page. The content can
be retrieved as a string using the standard DOM API. I won’t explain the API functions that
are used, but here is a function that takes the id of the script element as its parameter and
returns a string containing the text from inside the element:

function getTextContent(elementID) {

let element = document.getElementById(elementID);

let node = element.firstChild;

let str = "";

while (node) {

if (node.nodeType == 3) // this is a text node

str += node.textContent;

node = node.nextSibling;

}

return str;

}

The sample program webgl/glmatrix-cube-unlit.html uses this technique. The other idea is to
define the source code as a JavaScript template string. (See Subsection A.3.1). A template
string is enclosed between single backquote characters and can span multiple lines. (The
“backquote” is also called a “backtick.”) Template strings were only introduced into JavaScript
as part of ES6. They can include the values of JavaScript expressions, but we don’t need that
capability here. Here is how the above shader could be defined as a template string:

const vertexShaderSource = ‘

attribute vec3 a coords;

uniform mat4 modelviewProjection;

void main() {

vec4 coords = vec4(a coords,1.0);

gl Position = modelviewProjection * coords;

}‘;

This technique is used in many of the sample programs in this chapter. Note that if you define a
GLSL ES 3.00 shader as a template string, you should be sure to include the required first line,
#version 3.00 es, immediately after the opening backquote, since that line cannot be preceded
by a blank line.

7.1.2 Introducing glMatrix

Transformations are essential to computer graphics. The WebGL API does not provide any
functions for working with transformations. In Section 6.5, we used a simple JavaScript class
to represent modeling transformations in 2D. Things get more complex in three dimensions.
For 3D graphics with WebGL, the JavaScript side will usually have to create both a modelview
transform and a projection transform, and it will have to apply rotation, scaling, and translation
to the modelview matrix, all without help from WebGL. Doing so is much easier if you have a
JavaScript library to do the work. One commonly used library is glMatrix , a free JavaScript
library for vector and matrix math written by Brandon Jones and Colin MacKenzie IV. It is
available from https://glmatrix.net. This textbook uses Version 2.3 of the library, from 2015,
although newer versions are available. According to its license, this file can be freely used and
distributed. My programs use the script gl-matrix-min.js. You can find a copy in the source
folder in the web site download of this book. This file is a “minified” JavaScript file, which is

7.1. TRANSFORMATIONS IN 3D 277

not meant to be human-readable. (You can also read the full source for version 2.2, in human-
readable form including comments, in the file webgl/gl-matrix.js, which can be found in the
directory source/webgl in the web-site download of this book, and more information can be
found on the glmatrix web site.)

The glMatrix API can be made available for use on a web page with a script element such
as

<script src="gl-matrix-min.js"></script>

This assumes that gl-matrix-min.js is in the same directory as the web page.
The glMatrix library defines what it calls “classes” named vec2, vec3, and vec4 for working

with vectors of 2, 3, and 4 numbers. It defines mat3 for working with 3-by-3 matrices and
mat4 for 4-by-4 matrices. The names should not be confused with the GLSL types of the same
names; glMatrix in entirely on the JavaScript side. However, a glMatrix mat4 can be passed to
a shader program to specify the value of a GLSL mat4, and similarly for the other vector and
matrix types.

Each glMatrix class defines a set of functions for working with vectors and matrices. In fact,
however, although the documentation uses the term “class,” glMatrix is not object-oriented.
Its classes are really just JavaScript objects, and the functions in its classes are what would
be called static methods in Java. Vectors and matrices are represented in glMatrix as arrays,
and the functions in classes like vec4 and mat4 simply operate on those arrays. There are no
objects of type vec4 or mat4 as such, just arrays of length 4 or 16 respectively. The arrays can
be either ordinary JavaScript arrays or typed arrays of type Float32Array. If you let glMatrix
create the arrays for you, they will be Float32Arrays, but all glMatrix functions will work with
either kind of array. For example, if the glMatrix documentation says that a parameter should
be of type vec3, it is OK to pass either a Float32Array or a regular JavaScript array of three
numbers as the value of that parameter.

Note that it is also the case that either kind of array can be used in WebGL functions
such as gl.uniform3fv() and gl.uniformMatrix4fv(). glMatrix is designed to work with those
functions. For example, a mat4 in glMatrix is an array of length 16 that holds the elements of
a 4-by-4 array in column-major order, the same format that is used by gl.uniformMatrix4fv.

∗ ∗ ∗

Each glMatrix class has a create() function which creates an array of the appropriate length
and fills it with default values. For example,

transform = mat4.create();

sets transform to be a new Float32Array of length 16, initialized to represent the identity matrix.
Similarly,

vector = vec3.create();

creates a Float32Array of length 3, filled with zeros. Each class also has a function clone(x)
that creates a copy of its parameter x. For example:

saveTransform = mat4.clone(modelview);

Most other functions do not create new arrays. Instead, they modify the contents of their
first parameter. For example, mat4.multiply(A,B,C) will modify A so that it holds the matrix
product of B and C. Each parameter must be a mat4 (that is, an array of length 16) that already
exists. It is OK for some of the arrays to be the same. For example, mat4.multiply(A,A,B) has
the effect of multiplying A times B and modifying A so that it contains the answer.

278 CHAPTER 7. 3D GRAPHICS WITH WEBGL

There are functions for multiplying a matrix by standard transformations such as scaling
and rotation. For example if A and B are mat4s and v is a vec3, then mat4.translate(A,B,v)
makes A equal to the product of B and the matrix that represents translation by the vector v.
In practice, we will use such operations mostly on a matrix that represents the modelview
transformation. So, suppose that we have a mat4 named modelview that holds the current
modelview transform. To apply a translation by a vector [dx,dy,dz], we can say

mat4.translate(modelview, modelview, [dx,dy,dz]);

This is equivalent to calling glTranslatef (dx,dy,dz) in OpenGL. That is, if we draw some
geometry after this statement, using modelview as the modelview transformation, then the
geometry will first be translated by [dx,dy,dz] and then will be transformed by whatever was
the previous value of modelview. Note the use of a vector to specify the translation in this
command, rather than three separate parameters; this is typical of glMatrix. To apply a scaling
transformation with scale factors sx, sy, and sz, use

mat4.scale(modelview, modelview, [sx,sy,sz]);

For rotation, glMatrix has four functions, including three for the common cases of rotation
about the x, y, or z axis. The fourth rotation function specifies the axis of rotation as the line
from (0,0,0) to a point (dx,dy,dz). This is equivalent to glRotatef(angle,dx,dy,dz) Unfortunately,
the angle of rotation in these functions is specified in radians rather than in degrees:

mat4.rotateX(modelview, modelview, radians);

mat4.rotateY(modelview, modelview, radians);

mat4.rotateZ(modelview, modelview, radians);

mat4.rotate(modelview, modelview, radians, [dx,dy,dz]);

These functions allow us to do all the basic modeling and viewing transformations that
we need for 3D graphics. To do hierarchical graphics, we also need to save and restore the
transformation as we traverse the scene graph. For that, we need a stack. We can use a regular
JavaScript array, which already has push and pop operations. So, we can create the stack as
an empty array:

const matrixStack = [];

We can then push a copy of the current modelview matrix onto the stack by saying

matrixStack.push(mat4.clone(modelview));

and we can remove a matrix from the stack and set it to be the current modelview matrix with

modelview = matrixStack.pop();

These operations are equivalent to glPushMatrix () and glPopMatrix () in OpenGL.

∗ ∗ ∗

The starting point for the modelview transform is usually a viewing transform. In OpenGL,
the function gluLookAt is often used to set up the viewing transformation (Subsection 3.3.4).
The glMatrix library has a “lookAt” function to do the same thing:

mat4.lookAt(modelview, [eyex,eyey,eyez], [refx,refy,refz], [upx,upy,upz]);

Note that this function uses three vec3’s in place of the nine separate parameters in gluLookAt,
and it places the result in its first parameter instead of in a global variable. This function call
is actually equivalent to the two OpenGL commands

7.1. TRANSFORMATIONS IN 3D 279

glLoadIdentity();

gluLookAt(eyex,eyey,eyez,refx,refy,refz,upx,upy,upz);

So, you don’t have to set modelview equal to the identity matrix before calling mat4.lookAt,
as you would usually do in OpenGL. However, you do have to create the modelview matrix at
some point before using mat4.lookAt, such as by calling

let modelview = mat4.create();

If you do want to set an existing mat4 to the identity matrix, you can do so with the
mat4.identity function. For example,

mat4.identity(modelview);

You could use this as a starting point if you wanted to compose the view transformation out
of basic scale, rotate, and translate transformations.

Similarly, glMatrix has functions for setting up projection transformations. It has functions
equivalent to glOrtho, glFrustum, and gluPerspective (Subsection 3.3.3), except that the field-
of-view angle in mat4.perspective is given in radians rather than degrees:

mat4.ortho(projection, left, right, bottom, top, near, far);

mat4.frustum(projection, left, right, bottom, top, near, far);

mat4.perspective(projection, fovyInRadians, aspect, near, far);

As with the modelview transformation, you do not need to load projection with the identity
before calling one of these functions, but you must create projection as a mat4 (or an array of
length 16).

7.1.3 Transforming Coordinates

Of course, the point of making a projection and a modelview transformation is to use them to
transform coordinates while drawing primitives. In WebGL, the transformation is usually done
in the vertex shader. The coordinates for a primitive are specified in object coordinates. They
are multiplied by the modelview transformation to covert them into eye coordinates and then
by the projection matrix to covert them to the final clip coordinates that are actually used for
drawing the primitive. Alternatively, the modelview and projection matrices can be multiplied
together to get a matrix that represents the combined transformation; object coordinates can
then be multiplied by that matrix to transform them directly into clip coordinates.

In the shader program, coordinate transforms are ususally represented as GLSL uniform
variables of type mat4. The shader program can use either separate projection and modelview
matrices or a combined matrix (or both). Sometimes, a separate modelview transform matrix is
required, because certain lighting calculations are done in eye coordinates, but here is a minimal
GLSL ES 1.00 vertex shader that uses a combined matrix:

attribute vec3 a coords; // (x,y,z) object coordinates of vertex.

uniform mat4 modelviewProjection; // Combined transformation matrix.

void main() {

vec4 coords = vec4(a coords,1.0); // Add 1.0 for the w-coordinate.

gl Position = modelviewProjection * coords; // Transform the coordinates.

}

280 CHAPTER 7. 3D GRAPHICS WITH WEBGL

This shader is from the sample program webgl/glmatrix-cube-unlit.html. That program lets the
user view a colored cube, using just basic color with no lighting applied. The user can select
either an orthographic or a perspective projection and can rotate the cube using the keyboard.
The rotation is applied as a modeling transformation consisting of separate rotations about
the x -, y-, and z -axes. For transformation matrices on the JavaScript side, the program uses
the mat4 class from the glMatrix library to represent the projection, modelview, and combined
transformation matrices:

const projection = mat4.create(); // projection matrix

const modelview = mat4.create(); // modelview matrix

const modelviewProjection = mat4.create(); // combined matrix

(These variables can be const since the same matrix objects will be used throughout the
program, even though the numbers in the objects will change.) Only modelviewProjection
corresponds to a shader variable. The location of that variable in the shader program is obtained
during initialization using

u modelviewProjection = gl.getUniformLocation(prog, "modelviewProjection");

The transformation matrices are computed in the draw() function, using functions from the
glMatrix mat4 class. The value for modelviewProjection is sent to the shader program using
gl.uniformMatrix4fv before the primitives that make up the cube are drawn. Here is the code
that does it:

/* Set the value of projection to represent the projection transformation */

if (document.getElementById("persproj").checked) {

mat4.perspective(projection, Math.PI/5, 1, 4, 8);

}

else {

mat4.ortho(projection, -2, 2, -2, 2, 4, 8);

}

/* Set the value of modelview to represent the viewing transform. */

mat4.lookAt(modelview, [2,2,6], [0,0,0], [0,1,0]);

/* Apply the modeling tranformation to modelview. */

mat4.rotateX(modelview, modelview, rotateX);

mat4.rotateY(modelview, modelview, rotateY);

mat4.rotateZ(modelview, modelview, rotateZ);

/* Multiply the projection matrix times the modelview matrix to give the

combined transformation matrix, and send that to the shader program. */

mat4.multiply(modelviewProjection, projection, modelview);

gl.uniformMatrix4fv(u modelviewProjection, false, modelviewProjection);

If separate modelview and projection matrices are used in the shader program, then the
modelview matrix can be applied to transform object coordinates to eye coordinates, and the
projection can then be applied to the eye coordinates to compute gl Position. Here is a minimal
vertex shader that does that:

attribute vec3 a coords; // (x,y,z) object coordinates of vertex.

uniform mat4 modelview; // Modelview transformation.

uniform mat4 projection; // Projection transformation

void main() {

7.1. TRANSFORMATIONS IN 3D 281

vec4 coords = vec4(a coords,1.0); // Add 1.0 for w-coordinate.

vec4 eyeCoords = modelview * coords; // Apply modelview transform.

gl Position = projection * eyeCoords; // Apply projection transform.

}

7.1.4 Transforming Normals

Normal vectors are essential for lighting calculations (Subsection 4.1.3). When a surface is
transformed in some way, it seems that the normal vectors to that surface will also change.
However, that is not true if the transformation is a translation. A normal vector tells what
direction a surface is facing. Translating the surface does not change the direction in which the
surface is facing, so the nomal vector remains the same. Remember that a vector doesn’t have
a position, just a length and a direction. So it doesn’t even make sense to talk about moving
or translating a vector.

Your first guess might be that the normal vector should be transformed by just the
rotation/scaling part of the transformation. The guess is that the correct transformation
is represented by the 3-by-3 matrix that is obtained by dropping the right column and the
bottom row from the 4-by-4 coordinate transformation matrix. (The right column represents the
translation part of the transformation, and the bottom row is only there because implementing
translation in a matrix requires the use of homogeneous coordinates to represent vectors.
Normal vectors, where translation is not an issue, do not use homogeneous coordinates.) But
that can’t be correct in all cases. Consider, for example, a shear transform. As this illustration
shows, if the normal vectors to an object are subjected to the same shear transformation as the
object, the resulting vectors will not be perpendicular to the object:

Same transform is

applied to normal

vectors and object.

Transformed object

with the correct

normal vectors.

Original object,

with normal vectors

shown in red.

Nevertheless, it is possible to get the correct transformation matrix for normal vectors from
the coordinate transformation matrix. It turns out that you need to drop the fourth row and
the fourth column and then take something called the “inverse transpose” of the resulting 3-
by-3 matrix. You don’t need to know what that means or why it works. The glMatrix library
will compute it for you. The function that you need is normalFromMat4, and it is defined in
the mat3 class:

mat3.normalFromMat4(normalMatrix, coordinateMatrix);

In this function call, coordinateMatrix is the mat4 that represents the transformation that is
applied to coordinates, and normalMatrix is a mat3 that already exists. This function computes
the inverse transpose of the rotation/scale part of coordinateMatrix and places the answer in
normalMatrix. Since we need normal vectors for lighting calculations, and lighting calculations
are done in eye coordinates, the coordinate transformation that we are interested in is usually
the modelview transform.

282 CHAPTER 7. 3D GRAPHICS WITH WEBGL

The normal matrix should be sent to the shader program, where it is needed to transform
normal vectors for use in lighting calculations. Lighting requires unit normal vectors, that is,
normal vectors of length one. The normal matrix does not in general preserve the length of a
vector to which it is applied, so it will be necessary to normalize the transformed vector. GLSL
has a built-in function for normalizing vectors. A vertex shader that implements lighting might
take the form:

attribute vec3 a coords; // Untransformed object coordinates.

attribute vec3 normal; // Normal vector.

uniform mat4 projection; // Projection transformation matrix.

uniform mat4 modelview; // Modelview transformation matrix.

uniform mat3 normalMatrix; // Transform matrix for normal vectors.

.

. // Variables to define light and material properties.

.

void main() {

vec4 coords = vec4(a coords,1.0); // Add a 1.0 for the w-coordinate.

vec4 eyeCoords = modelview * coords; // Transform to eye coordinates.

gl Position = projection * eyeCoords; // Transform to clip coordinates.

vec3 transformedNormal = normalMatrix*normal; // Transform normal vector.

vec3 unitNormal = normalize(transformedNormal); // Normalize.

.

. // Use eyeCoords, unitNormal, and light and material

. // properties to compute a color for the vertex.

.

}

We will look at several specific examples in the next section.

I will note that GLSL ES 3.00 (but not GLSL ES 1.00) has built-in functions for computing
the inverse and the transpose of a matrix, making it fairly easy to compute the normal matrix
in the shader. However, it might still be more efficient to compute the matrix once on the
JavaScript side, rather than computing it in every execution of the vertex shader.

7.1.5 Rotation by Mouse

Computer graphics is a lot more interesting when there is user interaction. The 3D experience
is enhanced considerably just by letting the user rotate the scene, to view it from various
directions. The unlit cube example lets the user rotate the scene using the keyboard. But using
the mouse for rotation gives the user much better control. I have written two JavaScript classes,
SimpleRotator and TrackballRotator, to implement two different styles of rotation-by-mouse.

The SimpleRotator class is defined in the file webgl/simple-rotator.js. To use it on a web
page, you need to include that file in a <script> tag, and you need to create an object of type
SimpleRotator :

rotator = new SimpleRotator(canvas, callback, viewDistance);

The first parameter must be a DOM <canvas> element. It should be the canvas where WebGL
renders the scene. The SimpleRotator constructor adds a listener for mouse events to the
canvas; it also handles touch events on a touchscreen. The second parameter to the constructor
is optional. If it is defined, it must be a function. The function is called, with no parameters,
each time the rotation changes. Typically, the callback function is the function that renders the
image in the canvas. The third parameter is also optional. If defined, it must be a non-negative

7.1. TRANSFORMATIONS IN 3D 283

number. It gives the distance of the viewer from the center of rotation. The default value is
zero, which can be OK for an orthographic projection but is usually not correct.

A SimpleRotator keeps track of a viewing transformation that changes as the user rotates
the scene. The most important function is rotator.getViewMatrix (). This function returns an
array of 16 numbers representing the matrix for the viewing transformation in column-major
order. The matrix can be sent directly to the shader program using gl.uniformMatrix4fv, or
it can be used with functions from the glMatrix library as the initial value of the modelview
matrix.

The sample program webgl/cube-with-simple-rotator.html is an example of using a SimpleRo-

tator. The program uses a perspective projection defined by the glMatrix function

mat4.perspective(projection, Math.PI/8, 1, 8, 12);

The viewDistance for the rotator has to be between the near and far distances in the projection.
Here, near is 8 and far is 12, and the viewDistance can be set to 10. The rotator is created
during initialization using the statement

rotator = new SimpleRotator(canvas, draw, 10);

In the draw() function, the viewing transformation is obtained from the rotator before drawing
the scene. There is no modeling transformation in this program, so the view matrix is also
the modelview matrix. That matrix is multiplied by the projection matrix using a glMatrix
function, and the combined transformation matrix is sent to the shader program:

let modelview = rotator.getViewMatrix();

mat4.multiply(modelviewProjection, projection, modelview);

gl.uniformMatrix4fv(u modelviewProjection, false, modelviewProjection);

That’s really all that you need to know if you just want to use SimpleRotator in your own
programs. I have also written an alternative rotator class, TrackballRotator, which is defined
in the JavaScript file webgl/trackball-rotator.js. A TrackballRotator can be used in the same
way as a SimpleRotator. The main difference is that a TrackballRotator allows completely free
rotation while a SimpleRotator has the constraint that the y-axis will always remain vertical in
the image.

The sample program webgl/cube-with-trackball-rotator.html uses a TrackballRotator, but is
otherwise identical to the SimpleRotator example. Also, the demo c7/rotators.html in the online
version of this section lets you try out both kinds of rotator.

By default, the center of rotation for either type of rotator is the origin, even if the origin is
not at the center of the image. However, you can change the center of rotation to be the point
(a,b,c) by calling rotation.setRotationCenter([a,b,c]). The parameter must be an array of three
numbers. Typically, (a,b,c) would be the point displayed at the center of the image (the point
that would be the view reference point in gluLookAt).

∗ ∗ ∗

You don’t need to understand the mathematics that is used to implement a rotator. In fact,
TrackballRotator uses some advanced techniques that I don’t want to explain here. However,
SimpleRotator is, well, more simple, and it’s nice to know how it works. So, I will explain how
the view transformation is computed for a SimpleRotator. Actually, it will be easier to think
in terms of the corresponding modeling transformation on the scene as a whole. (Recall the
equivalence between modeling and viewing (Subsection 3.3.4).)

The modeling transformation includes a rotation about the y-axis followed by a rotation
about the x -axis. The sizes of the rotations change as the user drags the mouse. Left/right

284 CHAPTER 7. 3D GRAPHICS WITH WEBGL

motion controls the rotation about the y-axis, while up/down motion controls the rotation
about the x -axis. The rotation about the x -axis is restricted to lie in the range −85 to 85
degrees. Note that a rotation about the y-axis followed by a rotation about the x -axis always
leaves the y-axis pointing in a vertical direction when projected onto the screen.

Suppose the center of rotation is (tx,ty,tz) instead of (0,0,0). To implement that, before
doing the rotations, we need to translate the scene to move the point (tx,ty,tz) to the origin.
We can do that with a translation by (-tx,-ty,-tz). Then, after doing the rotation, we need to
translate the origin back to the point (tx,ty,tz).

Finally, if the viewDistance is not zero, we need to push the scene viewDistance units away
from the viewer. We can do that with a translation by (0,0,-viewDistance). If d is the view
distance, ry is the rotation about the y-axis, and rx is the rotation about the x -axis, then the
sequence of modeling transformations that we need to apply to the scene is as follows:

1. Move the view center to the origin: Translate by (-tx,-ty,-tz).

2. Rotate the scene by ry radians about the y-axis.

3. Rotate the scene by rx radians about the x -axis.

4. Move the origin back to view center: Translate by (tx,ty,tz).

5. Move the scene away from the viewer: Translate by (0,0,-d).

Keeping in mind that modeling transformations are applied to objects in the opposite of the
order in which they occur in the code, the view matrix could be created by the following glMatrix
commands:

viewmatrix = mat4.create();

mat4.translate(viewmatrix, viewmatrix, [0,0,-d]);

mat4.translate(viewmatrix, viewmatrix, [tx,ty,tz]);

mat4.rotateX(viewmatrix, viewmatrix, rx);

mat4.rotateY(viewmatrix, viewmatrix, ry);

mat4.translate(viewmatrix, viewmatrix, [-tx,-ty,-tz]);

In fact, in my code, I create the view matrix directly, based on the matrices for the individual
transformations. The 4-by-4 matrices for rotation and translation are given in Subsection 3.5.2.
The view matrix for a SimpleRotator is the matrix product of five translation and rotation
matrices:

cos(ry) sin(ry)0 0

-sin(ry) cos(ry)

1 0

0 0

0 0

0 0

0 1

cos(rx) -sin(rx)

1 0

sin(rx) cos(rx)

0 0

0 0

0 0

0 0

0 1

1 0 0 -tx

0 1 0 -ty

0 0 1 ÉÊË

Ì Ì Ì Í

Í Ì Ì tx

Ì Í Ì ÊÎ

Ì Ì Í ÊË

Ì Ì Ì Í

Í Ì Ì Ì

Ì Í Ì Ì

Ì Ì Í ÉÏ

Ì Ì Ì Í

Translate ÐÑ
Ò ÓÔÕÖ×ÔØÙÚÛÜe
ÔÛ Ý Þirection

Translate

origin to

ßàÙÚÙÔàÛáÕÛÙÕß

âàÙÚÙÕ ÐÑ ßã
ßÚÞÔÚÛØ ÚÐàäÙ

the xÒÚãÔØ

Translate

ßàÙÚÙÔàÛáÕÛÙÕß
to origin

âàÙÚÙÕ ÐÑ ßÑ
ßÚÞÔÚÛØ ÚÐàäÙ
ÙåÕ ÑÒÚãÔØ

It’s actually not too difficult to implement the multiplication. See the JavaScript file,
webgl/simple-rotator.js, if you are curious.

7.2 Lighting and Material

In this section, we turn to the question of lighting and material in WebGL. We will continue
to use the basic OpenGL model that was covered in Section 4.1 and Section 4.2, but now we are

7.2. LIGHTING AND MATERIAL 285

responsible for implementing the lighting equation in our own GLSL shader programs. That
means being more aware of the implementation details. It also means that we can pick and
choose which parts of the lighting equation we will implement for a given application.

The goal of the lighting equation is to compute a color for a point on a surface. The inputs
to the equation include the material properties of the surface and the properties of light sources
that illuminate the surface. The angle at which the light hits the surface plays an important
role. The angle can be computed from the direction to the light source and the normal vector
to the surface. Computation of specular reflection also uses the direction to the viewer and the
direction of the reflected ray. The four vectors that are used in the computation are shown in
this lighting diagram from Subsection 4.1.4:

Light Source

Viewer

Surface

N

L R

V

The vectors L, N, R, and V should be unit vectors. Recall that unit vectors have the property
that the cosine of the angle between two unit vectors is given by the dot product of the two
vectors.

The lighting equation also involves ambient and emission color, which do not depend the
direction vectors shown in the diagram.

You should keep this big picture in mind as we work through some examples that use various
aspects of the lighting model.

7.2.1 Minimal Lighting

Even very simple lighting can make 3D graphics look more realistic. For minimal lighting, I
sometimes use what I call a “viewpoint light,” a white light that shines from the direction of the
viewer into the scene. In the simplest case, a directional light can be used. In eye coordinates,
a directional viewpoint light shines in the direction of the negative z -axis. The light direction
vector (L in the above diagram), which points towards the light source, is (0,0,1).

To keep things minimal, let’s consider diffuse reflection only. In that case, the color of the
light reflected from a surface is the product of the diffuse material color of the surface, the color
of the light, and the cosine of the angle at which the light hits the surface. The product is
computed separately for the red, green, and blue components of the color. We are assuming
that the light is white, so the light color is 1 in the formula. The material color will probably
come from the JavaScript side as a uniform or attribute variable.

The cosine of the angle at which the light hits the surface is given by the dot product
of the normal vector N with the light direction vector L. In eye coordinates, L is (0,0,1).
The dot product, N·L or N·(0,0,1), is therefore simply N.z, the z -component of N. However,
this assumes that N is also given in eye coordinates. The normal vector will ordinarily come
from the JavaScript side and will be expressed in object coordinates. Before it is used in
lighting calculations, it must be transformed to the eye coordinate system. As discussed in
Subsection 7.1.4, to do that we need a normal transformation matrix that is derived from the

286 CHAPTER 7. 3D GRAPHICS WITH WEBGL

modelview matrix. Since the normal vector must be of length one, the GLSL code for computing
N would be something like

vec3 N = normalize(normalMatrix * normal);

where normal is the original normal vector in object coordinates, normalMatrix is the normal
transformation matrix, and normalize is a built-in GLSL function that returns a vector of
length one pointing in the same direction as its parameter.

There is one more complication: The dot product N·L can be negative, which would
mean that the normal vector points away from the light source (into the screen in this case).
Ordinarily, that would mean that the light does not illuminate the surface. In the case of
a viewpoint light, where we know that every visible surface is illuminated, it means that we
are looking at the “back side” of the surface (or that incorrect normals were specified). Let’s
assume that we want to treat the two sides of the surface the same. The correct normal vector
for the back side is the negative of the normal vector for the front side, and the correct dot
product is (−N)·L. We can handle both cases if we simply use abs(N·L). For L = (0,0,1), that
would be abs(N.z). If color is a vec3 giving the diffuse color of the surface, the visible color
can be computed as

vec3 visibleColor = abs(N.z) * color;

If color is instead a vec4 giving an RGBA color, only the RGB components should be multiplied
by the dot product:

vec4 visibleColor = vec4(abs(N.z)*color.rgb, color.a);

The sample program webgl/cube-with-basic-lighting.html implements this minimal lighting
model. The lighting calculations are done in the vertex shader. Part of the scene is drawn
without lighting, and the vertex shader has a uniform bool variable to specify whether lighting
should be applied. Here is the vertex shader source code from that program:

attribute vec3 a coords; // Object coordinates for the vertex.

uniform mat4 modelviewProjection; // Combined transformation matrix.

uniform bool lit; // Should lighting be applied?

uniform vec3 normal; // Normal vector (in object coordinates).

uniform mat3 normalMatrix; // Transformation matrix for normal vectors.

uniform vec4 color; // Basic (diffuse) color.

varying vec4 v color; // Color to be sent to fragment shader.

void main() {

vec4 coords = vec4(a coords,1.0);

gl Position = modelviewProjection * coords;

if (lit) {

vec3 N = normalize(normalMatrix*normal); // Transformed unit normal.

float dotProduct = abs(N.z);

v color = vec4(dotProduct*color.rgb, color.a);

}

else {

v color = color;

}

}

It would be easy to add ambient light to this model, using a uniform variable to specify the
ambient light level. Emission color is also easy.

The directional light used in this example is technically only correct for an orthographic
projection, although it will also generally give acceptable results for a perspective projection.

7.2. LIGHTING AND MATERIAL 287

But the correct viewpoint light for a perspective projection is a point light at (0,0,0)—the
position of the “eye” in eye coordinates. A point light is a little more difficult than a directional
light.

Remember that lighting calculations are done in eye coordinates. The vector L that points
from the surface to the light can be computed as

vec3 L = normalize(lightPosition - eyeCoords.xyz);

where lightPosition is a vec3 that gives the position of the light in eye coordinates, and
eyeCoords is a vec4 giving the position of the surface point in eye coordinates. For a viewpoint
light, the lightPosition is (0,0,0), and L can be computed simply as normalize(−eyeCoords.xyz).
The eye coordinates for the surface point must be computed by applying the modelview matrix
to the object coordinates for that point. This means that the shader program needs to know the
modelview matrix; it’s not sufficient to know the combined modelview and projection matrix.
The vertex shader shown above can modified to use a point light at (0,0,0) as follows:

attribute vec3 a coords; // Object coordinates for the vertex.

uniform mat4 modelview; // Modelview transformation matrix

uniform mat4 projection; // Projection transformation matrix.

uniform bool lit; // Should lighting be applied?

uniform vec3 normal; // Normal vector (in object coordinates).

uniform mat3 normalMatrix; // Transformation matrix for normal vectors.

uniform vec4 color; // Basic (diffuse) color.

varying vec4 v color; // Color to be sent to fragment shader.

void main() {

vec4 coords = vec4(a coords,1.0);

vec4 eyeCoords = modelview * coords;

gl Position = projection * eyeCoords;

if (lit) {

vec3 L = normalize(- eyeCoords.xyz); // Points to light.

vec3 N = normalize(normalMatrix*normal); // Transformed unit normal.

float dotProduct = abs(dot(N,L));

v color = vec4(dotProduct*color.rgb, color.a);

}

else {

v color = color;

}

}

(Note, however, that in some situations, it can be better to move the lighting calculations to
the fragment shader, as we will soon see.)

7.2.2 Specular Reflection and Phong Shading

To add specular lighting to our basic lighting model, we need to work with the vectors R and
V in the lighting diagram. In perfect specular reflection, the viewer sees a specular highlight
only if R is equal to V, which is very unlikely. But in the lighting equation that we are using,
the amount of specular reflection depends on the dot product R·V, which represents the cosine
of the angle between R and V. The formula for the contribution of specular reflection to the
visible color is

(R·V)s * specularMaterialColor * lightIntensity

288 CHAPTER 7. 3D GRAPHICS WITH WEBGL

where s is the specular exponent (the material property called “shininess” in OpenGL). The
formula is only valid if R·V is greater than zero; otherwise, the specular contribution is zero.

The unit vector R can be computed from L and N. (Some trigonometry shows that R is given
by 2*(N·L)*N − L.) GLSL has a built-in function reflect(I,N) that computes the reflection of
a vector I through a unit normal vector N ; however, the value of reflect(L,N) is −R rather
than R. (GLSL assumes a light direction vector that points from the light toward the surface,
while my L vector does the reverse.)

The unit vector V points from the surface towards the position of the viewer. Remember
that we are doing the calculations in eye coordinates. For an orthographic projection, the viewer
is essentially at infinite distance, and V can be taken to be (0,0,1). For a perspective projection,
the viewer is at the point (0,0,0) in eye coordinates, and V is given by normalize(−eyeCoords)
where eyeCoords contains the xyz coordinates of the surface point in the eye coordinate system.
Putting all this together, and assuming that we already have N and L, the GLSL code for
computing the color takes the form:

R = -reflect(L,N);

V = normalize(-eyeCoords.xyz); // (Assumes a perspective projection.)

vec3 color = dot(L,N) * diffuseMaterialColor.rgb * diffuseLightColor;

if (dot(R,V) > 0.0) {

color = color + (pow(dot(R,V),specularExponent) *

specularMaterialColor * specularLightColor);

}

The sample program webgl/basic-specular-lighting.html implements lighting with diffuse and
specular reflection. For this program, which draws curved surfaces, normal vectors are given
as a vertex attribute rather rather than a uniform variable. To add some flexibility to the
lighting, the light position is specified as a uniform variable rather than a constant. Following
the OpenGL convention, lightPosition is a vec4. For a directional light, the w -coordinate is
0, and the eye coordinates of the light are lightPosition.xyz. If the w -coordinate is non-zero,
the light is a point light, and its eye coordinates are lightPosition.xyz/lightPosition.w. (The
division by lightPosition.w is the convention for homogeneous coordinates, but in practice,
lightPosition.w will usually be either zero or one.) The program allows for different diffuse and
specular material colors, but the light is always white, with diffuse intensity 0.8 and specular
intensity 0.4. You should be able to understand all of the code in the vertex shader:

attribute vec3 a coords;

attribute vec3 a normal;

uniform mat4 modelview;

uniform mat4 projection;

uniform mat3 normalMatrix;

uniform vec4 lightPosition;

uniform vec4 diffuseColor;

uniform vec3 specularColor;

uniform float specularExponent;

varying vec4 v color;

void main() {

vec4 coords = vec4(a coords,1.0);

vec4 eyeCoords = modelview * coords;

gl Position = projection * eyeCoords;

vec3 N, L, R, V; // Vectors for lighting equation.

N = normalize(normalMatrix*a normal);

if (lightPosition.w == 0.0) { // Directional light.

7.2. LIGHTING AND MATERIAL 289

L = normalize(lightPosition.xyz);

}

else { // Point light.

L = normalize(lightPosition.xyz/lightPosition.w - eyeCoords.xyz);

}

R = -reflect(L,N);

V = normalize(-eyeCoords.xyz); // (Assumes a perspective projection.)

if (dot(L,N) <= 0.0) {

v color = vec4(0,0,0,1); // The vertex is not illuminated.

}

else {

vec3 color = 0.8 * dot(L,N) * diffuseColor.rgb;

if (dot(R,V) > 0.0) {

color += 0.4 * pow(dot(R,V),specularExponent) * specularColor;

}

v color = vec4(color, diffuseColor.a);

}

}

The fragment shader just assigns the value of v color to gl FragColor.

∗ ∗ ∗

This approach imitates OpenGL 1.1 in that it does lighting calculations in the vertex shader.
This is sometimes called per-vertex lighting . It is similar to Lambert shading in three.js,
except that Lambert shading only uses diffuse reflection. But there are many cases where per-
vertex lighting does not give good results. We saw in Subsection 5.1.4 that it can give very bad
results for spotlights. It also tends to produce bad specular highlights, unless the primitives
are very small.

If a light source is close to a primitive, compared to the size of the primitive, the the angles
that the light makes with the primitive at the vertices can have very little relationship to the
angle of the light at an interior point of the primitive:

Since lighting depends heavily on the angles, per-vertex lighting will not give a good result
in this case. To get better results, we can do per-pixel lighting . That is, we can move the
lighting calculations from the vertex shader into the fragment shader.

To do per-pixel lighting, certain data that is available in the vertex shader must be passed to
the fragment shader in varying variables. This includes, for example, either object coordinates
or eye coordinates for the surface point. The same might apply to properties such as diffuse
color, if they are attributes rather then uniform variables. Of course, uniform variables are
directly accessible to the fragment shader. Light properties will generally be uniforms, and
material properties might well be.

And then, of course, there are the normal vectors, which are so essential for lighting.
Although normal vectors can sometimes be uniform variables, they are usually attributes. Per-
pixel lighting generally uses interpolated normal vectors, passed to the fragment shader in a
varying variable. (Phong shading is just per-pixel lighting using interpolated normals.) An
interpolated normal vector is in general only an approximation for the geometrically correct

290 CHAPTER 7. 3D GRAPHICS WITH WEBGL

normal, but it’s usually good enough to give good results. Another issue is that interpolated
normals are not necessarily unit vectors, even if the normals in the vertex shader are unit vectors.
So, it’s important to normalize the interpolated normal vectors in the fragment shader. The
original normal vectors in the vertex shader should also be normalized, for the interpolation to
work properly.

The sample program webgl/basic-specular-lighting-Phong.html uses per-pixel lighting. I
urge you to read the shader source code in that program. Aside from the fact that lighting
calculations have been moved to the fragment shader, it is identical to the previous sample
program.

The on-line demo c7/per-pixel-vs-per-vertex.html lets you view objects drawn using per-
vertex lighting side-by-side with objects drawn using per-pixel lighting. It uses the same shader
programs as the two sample programs. Here is an example from that demo:

For this cylinder, all of the vertices are along the top and bottom edges, and the light source is
fairly close to the cylinder. In this example, per-pixel lighting misses the specular highlight on
the cylinder entirely. On the other hand, for a torus, which is made up of very small triangles,
the per-vertex lighting in the demo gives a fairly good approximation of the correct specular
highlights.

The sample program webgl/basic-specular-lighting-Phong-webgl2.html is a port of the original
WebGL 1.0 Phong lighting program to WebGL 2.0. It shows what the shader program looks
like in GLSL ES 3.00. The changes are minimal. Attribute variables become “in” variables,
varying variables become “out” variables in the vertex shader and “in” variables in the fragment
shader, and the built-in fragment shader variable gl FragColor is replaced with a custom “out”
variable. The JavaScript side would not have to be changed at all, but as an example, it has
been modified to use vertex array objects to organize the data for the various objects that can
be drawn in the in program.

7.2.3 Adding Complexity

Our shader programs are getting more complex. As we add support for multiple lights,
additional light properties, two-sided lighting, textures, and other features, it will be useful
to use data structures and functions to help manage the complexity. GLSL data structures
were introduced in Subsection 6.3.2, and function definitions in Subsection 6.3.5. Let’s look
briefly at how they can be used to work with light and material.

7.2. LIGHTING AND MATERIAL 291

It makes sense to define a struct to hold the properties of a light. The properties will
usually include, at a minimum, the position and color of the light. Other properties can be
added, depending on the application and the details of the lighting model that are used. For
example, to make it possible to turn lights on and off, a bool variable might be added to say
whether the light is enabled:

struct LightProperties {

bool enabled;

vec4 position;

vec3 color;

};

A light can then be represented as a variable of type LightProperties. It will likely be a uniform
variable so that its value can be specified on the JavaScript side. Often, there will be multiple
lights, represented by an array; for example, to allow for up to four lights:

uniform LightProperties lights[4];

Material properties can also be represented as a struct. Again, the details will vary from
one application to another. For example, to allow for diffuse and specular color:

struct MaterialProperties {

vec3 diffuseColor;

vec3 specularColor;

float specularExponent;

};

With these data types in hand, we can write a function to help with the lighting calculation.
The following function computes the contribution of one light to the color of a point on a surface.
(Some of the parameters could be global variables in the shader program instead.)

vec3 lightingEquation(LightProperties light,

MaterialProperties material,

vec3 eyeCoords, // Eye coordinates for the point.

vec3 N, // Normal vector to the surface.

vec3 V // Direction to viewer.

) {

vec3 L, R; // Light direction and reflected light direction.

if (light.position.w == 0.0) { // directional light

L = normalize(light.position.xyz);

}

else { // point light

L = normalize(light.position.xyz/light.position.w - eyeCoords);

}

if (dot(L,N) <= 0.0) { // light does not illuminate the surface

return vec3(0.0);

}

vec3 reflection = dot(L,N) * light.color * material.diffuseColor;

R = -reflect(L,N);

if (dot(R,V) > 0.0) { // ray is reflected toward the the viewer

float factor = pow(dot(R,V),material.specularExponent);

reflection += factor * material.specularColor * light.color;

}

return reflection;

}

292 CHAPTER 7. 3D GRAPHICS WITH WEBGL

Then, assuming that there are four lights, the full calculation of the lighting equation might
look like this:

vec3 color = vec3(0.0); // Start with black (all color components zero).

for (int i = 0; i < 4; i++) { // Add in the contribution from light i.

if (lights[i].enabled) { // Light can only contribute color if enabled.

color += lightingEquation(lights[i], material,

eyeCoords, normal, viewDirection);

}

}

7.2.4 Two-sided Lighting

The sample program webgl/parametric-function-grapher.html uses GLSL data structures similar
to the ones we have just been looking at. It also introduces a few new features. The program
draws the graph of a parametric surface. The (x,y,z) coordinates of points on the surface are
given by functions of two variables u and v. The definitions of the functions can be input by
the user. There is a viewpoint light, but two extra lights have been added in an attempt to
provide more even illumination. The graph is considered to have two sides, which are colored
yellow and blue. The program can, optionally, show grid lines on the surface. Here’s what the
default surface looks like, with grid lines:

This is an example of two-sided lighting (Subsection 4.2.4). We need two materials, a
front material for drawing front-facing polygons and a back material for drawing back-facing
polygons. Furthermore, when drawing a back face, we have to reverse the direction of the
normal vector, since normal vectors are assumed to point out of the front face.

But when the shader program does lighting calculations, how does it know whether it’s
drawing a front face or a back face? That information comes from outside the shader program:
The fragment shader has a built-in boolean variable named gl FrontFacing whose value is set
to true before the fragment shader is called, if the shader is working on the front face of a
polygon. When doing per-pixel lighting, the fragment shader can check the value of this variable
to decide whether to use the front material or the back material in the lighting equation. The
sample program has two uniform variables to represent the two materials. It has three lights.
The normal vectors and eye coordinates of the point are varying variables. And the normal
transformation matrix is also applied in the fragment shader:

uniform MaterialProperties frontMaterial;

uniform MaterialProperties backMaterial;

uniform LightProperties lights[3];

uniform mat3 normalMatrix;

varying vec3 v normal;

varying vec3 v eyeCoords;

7.2. LIGHTING AND MATERIAL 293

A color for the fragment is computed using these variables and the lightingEquation function
shown above:

vec3 normal = normalize(normalMatrix * v normal);

vec3 viewDirection = normalize(-v eyeCoords);

vec3 color = vec3(0.0);

for (int i = 0; i < 3; i++) {

if (lights[i].enabled) {

if (gl FrontFacing) { // Computing color for a front face.

color += lightingEquation(lights[i], frontMaterial, v eyeCoords,

normal, viewDirection);

}

else { // Computing color for a back face.

color += lightingEquation(lights[i], backMaterial, v eyeCoords,

-normal, viewDirection);

}

}

}

gl FragColor = vec4(color,1.0);

Note that in the second call to lightEquation, the normal vector is given as −normal. The
negative sign reverses the direction of the normal vector for use on a back face.

If you want to use two-sided lighting when doing per-vertex lighting, you have to deal with
the fact that gl FrontFacing is not available in the vertex shader. One option is to compute
both a front color and a back color in the vertex shader and pass both values to the fragment
shader as varying variables. The fragment shader can then decide which color to use, based on
the value of gl FrontFacing.

∗ ∗ ∗

There are a few WebGL settings related to two-sided lighting. Ordinarily, WebGL
determines the front face of a triangle according to the rule that when the front face is viewed,
vertices are listed in counterclockwise order around the triangle. The JavaScript command
gl.frontFace(gl.CW) reverses the rule, so that vertices are listed in clockwise order when the
front face is viewed. The command gl.frontFace(gl.CCW) restores the default rule.

In some cases, you can be sure that no back faces are visible. This will happen when the
objects are closed surfaces seen from the outside, and all the triangles face towards the outside.
In such cases, it is wasted effort to draw back faces, since you can be sure that they will be
hidden by front faces. The JavaScript command gl.enable(gl.CULL FACE) tells WebGL to
discard triangles without drawing them, based on whether they are front-facing or back-facing.
The commands gl.cullFace(gl.BACK) and gl.cullFace(gl.FRONT) determine whether it is back-
facing or front-facing triangles that are discarded when CULL FACE is enabled; the default is
to discard back-facing triangles.

∗ ∗ ∗

The sample program can display a set of grid lines on the surface. As always, drawing two
objects at exactly the same depth can cause a problem with the depth test. As we have already
seen at the end of Subsection 3.4.1 and in Subsection 5.1.3, OpenGL uses polygon offset to
solve the problem. The same solution is available in WebGL. Polygon offset can be turned on
with the commands

gl.enable(gl.POLYGON OFFSET FILL);

gl.polygonOffset(1,1);

294 CHAPTER 7. 3D GRAPHICS WITH WEBGL

and turned off with

gl.disable(gl.POLYGON OFFSET FILL);

In the sample program, polygon offset is turned on while drawing the graph and is turned off
while drawing the grid lines.

7.2.5 Moving Lights

In our examples so far, lights have been fixed with respect to the viewer. But some lights, such
as the headlights on a car, should move along with an object. And some, such as a street light,
should stay in the same position in the world, but change position in the rendered scene as the
point of view changes.

Lighting calculations are done in eye coordinates. When the position of a light is given in
object coordinates or in world coordinates, the position must be transformed to eye coordinates,
by applying the appropriate modelview transformation. The transformation can’t be done
in the shader program, because the modleview matrix in the shader program represents the
transformation for the object that is being rendered, and that is almost never the same as the
transformation for the light. The solution is to store the light position in eye coordinates. That
is, the shader’s uniform variable that represents the position of the light must be set to the
position in eye coordinates.

For a light that is fixed with respect to the viewer, the position of the light is already
expressed in eye coordinates. For example, the position of a point light that is used as a
viewpoint light is (0,0,0), which is the location of the viewer in eye coordinates. For such a
light, the appropriate modelview transformation is the identity.

For a light that is at a fixed position in world coordinates, the appropriate modelview
transformation is the viewing transformation. The viewing transformation must be applied
to the world-coordinate light position to transform it to eye coordinates. In WebGL, the
transformation should be applied on the JavaScript side, and the output of the transformation
should be sent to the uniform variable in the shader program that represents the light position in
eye coordinates. Similarly, for a light that moves around in the world, the combined modeling
and viewing transform should be applied to the light position on the JavaScript side. The
glMatrix library (Subsection 7.1.2) defines the function

vec4.transformMat4(transformedVector, originalVector, matrix);

which can be used to do the transformation. The matrix in the function call will be the
modelview transformation matrix. Recall, by the way, that light position is given as a vec4, using
homogeneous coordinates. (See Subsection 4.2.3.) Multiplication by the modelview matrix will
work for any light, whether directional or point, whose position is represented in this way. Here
is a JavaScript function that can be used to set the position:

/* Set the position of a light, in eye coordinates.

* @param u position loc The uniform variable location for

* the position property of the light.

* @param modelview The modelview matrix that transforms light

* position to eye coordinates.

* @param lightPosition The location of the light, in object

* coordinates (a vec4).

*/

function setLightPosition(u position loc, modelview, lightPosition) {

let transformedPosition = new Float32Array(4);

7.2. LIGHTING AND MATERIAL 295

vec4.transformMat4(transformedPosition, lightPosition, modelview);

gl.uniform4fv(u position loc, transformedPosition);

}

The appropriate modelview matrix is the identity, for a light fixed with respect to the viewer;
just the viewing transformation, for a light that has a fixed position in the world; or a combined
viewing and modeling transformation, for a light that moves around in the world.

Remember that the light position, like other light properties, must be set before rendering
any geometry that is to be illuminated by the light.

7.2.6 Spotlights

We encountered spotlights in three.js in Subsection 5.1.4. In fact, although I didn’t mention it,
spotlights already existed in OpenGL 1.1. Instead of emitting light in all directions, a spotlight
emits only a cone of light. A spotlight is a kind of point light. The vertex of the cone is located
at the position of the light. The cone points in some direction, called the spot direction. The
spot direction is specified as a vector. The size of the cone is specified by a cutoff angle; light
is only emitted from the light position in directions whose angle with the spot direction is less
than the cutoff angle. Furthermore, for angles less than the cutoff angle, the intensity of the
light ray can decrease as the angle between the ray and spot direction increases. The rate at
which the intensity decreases is determined by a non-negative number called the spot exponent.
The intensity of the ray is given by I *cs where I is the basic intensity of the light, c is the
cosine of the angle between the ray and the spot direction, and s is the spot exponent.

This illustration shows three spotlights shining on a surface; the images are taken from the
sample program webgl/spotlights.html :

The cutoff angle for the three spotlights is 30 degrees. In the image on the left, the spot
exponent is zero, which means there is no falloff in intensity with increasing angle from the spot
direction. For the middle image, the spot exponent is 10, and for the image on the right, it is
20.

Suppose that we want to apply the lighting equation to a spotlight. Consider a point P on
a surface. The lighting equation uses a unit vector, L, that points from P towards the light
source. For a spotlight, we need a vector that points from the light source towards P; for
that we can use −L. Consider the angle between −L and the spot direction. If that angle is
greater than the cutoff angle, then P gets no illumination from the spotlight. Otherwise, we
can compute the cosine of the angle between −L and the spot direction as the dot product
−D·L, where D is a unit vector that points in the spot direction.

296 CHAPTER 7. 3D GRAPHICS WITH WEBGL

cutoæ angle

spotDirection

spotlight

P

L

-L

To implement spotlights in GLSL, we can add uniform variables to represent the spot
direction, cutoff angle, and spot exponent. My implementation actually uses the cosine of the
cutoff angle instead of the angle itself, since I can then compare the cutoff value using the
dot product, −D·L, that represents the cosine of the angle between the light ray and the spot
direction. The LightProperties struct becomes:

struct LightProperties {

bool enabled;

vec4 position;

vec3 color;

vec3 spotDirection;

float spotCosineCutoff;

float spotExponent;

};

If position.z is zero, then the light is directional and cannot be a spotlight. For a point light,
if spotCosineCutoff is less than or equal to zero, then the light is a regular point light, not a
spotlight. For a spotlight, we need to compute the factor ce that is multiplied by the basic light
color to give the effective light intensity of the spotlight at a point on a surface. The following
code for the computation is from the fragment shader in the sample program. For a spotlight,
the value of ce is assigned to spotFactor :

float spotFactor = 1.0; // multiplier to account for spotlight

if (light.position.w == 0.0) {

L = normalize(light.position.xyz);

}

else {

L = normalize(light.position.xyz/light.position.w - v eyeCoords);

if (light.spotCosineCutoff > 0.0) { // the light is a spotlight

vec3 D = -normalize(light.spotDirection);

float spotCosine = dot(D,L);

if (spotCosine >= light.spotCosineCutoff) {

spotFactor = pow(spotCosine,light.spotExponent);

}

else { // The point is outside the cone of light from the spotlight.

spotFactor = 0.0; // The light will add no color to the point.

}

}

}

// Light intensity will be multiplied by spotFactor

7.2. LIGHTING AND MATERIAL 297

You should try the sample program, and read the source code. Or try the demo in the on-line
version of this section, which is similar to the sample program, but with an added option to
animate the spotlights.

∗ ∗ ∗

The spotDirection uniform variable gives the direction of the spotlight in eye coordinates.
For a moving spotlight, in addition to transforming the position, we also have to worry about
transforming the direction in which the spotlight is facing. The spot direction is a vector, and
it transforms in the same way as normal vectors. That is, the same normal transformation
matrix that is used to transform normal vectors is also used to transform the spot direction.
Here is a JavaScript function that can be used to apply a modelview transformation to a spot
direction vector and send the output to the shader program:

/* Set the direction vector of a light, in eye coordinates.

* @param modelview the matrix that does object-to-eye coordinate transforms

* @param u direction loc the uniform variable location for the spotDirection

* @param lightDirection the spot direction in object coordinates (a vec3)

*/

function setSpotlightDirection(u direction loc, modelview, lightDirection) {

let normalMatrix = mat3.create();

mat3.normalFromMat4(normalMatrix,modelview);

let transformedDirection = new Float32Array(3);

vec3.transformMat3(transformedDirection, lightDirection, normalMatrix);

gl.uniform3fv(u direction loc, transformedDirection);

}

Of course, the position of the spotlight also has to be transformed, as for any moving light.

7.2.7 Light Attenuation

There is one more general property of light to consider: attenuation. This refers to the fact
that the amount of illumination from a light source should decrease with increasing distance
from the light. Attenuation applies only to point lights, since directional lights are effectively
at infinite distance. The correct behavior, according to physics, is that the illumination is
proportional to one over the square of the distance. However, that doesn’t usually give good
results in computer graphics. In fact, for all of my light sources so far, there has been no

attenuation with distance.

OpenGL 1.1 supports attenuation. The light intensity can be multiplied by
1.0 / (a+b*d+c*d2), where d is the distance to the light source, and a, b, and c are properties
of the light. The numbers a, b, and c are called the “constant attenuation,” “linear attenua-
tion,” and “quadratic attenuation” of the light source. By default, a is one, and b and c are
zero, which means that there is no attenuation.

Of course, there is no need to implement exactly the same model in your own applications.
For example, quadratic attenuation is rarely used. In the next sample program, I use the
formula 1 / (1+a*d) for the attenuation factor. The attenuation constant a is added as another
property of light sources. A value of zero means no attenuation. In the lighting computation,
the contribution of a light source to the lighting equation is multiplied by the attenuation factor
for the light.

298 CHAPTER 7. 3D GRAPHICS WITH WEBGL

7.2.8 Diskworld 2

The sample program webgl/diskworld-2.html is our final, more complex, example of lighting
in WebGL. The basic scene is the same as the three.js example threejs/diskworld-1.html from
Subsection 5.1.5, but I have added several lighting effects.

The scene shows a red “car” traveling around the edge of a disk-shaped “world.” In the new
version, there is a sun that rotates around the world. The sun is turned off at night, when the
sun is below the disk. (Since there are no shadows, if the sun were left on at night, it would
shine up through the disk and illuminate objects from below.) At night, the headlights of the
car turn on. They are implemented as spotlights that travel along with the car; that is, they
are subject to the same modelview transformation that is used on the car. Also at night, a
lamp in the center of the world is turned on. Light attenuation is used for the lamp, so that
its illumination is weak except for objects that are close to the lamp. Finally, there is dim
viewpoint light that is always on, to make sure that nothing is ever in absolute darkness. Here
is a night scene from the program, in which you can see how the headlights illuminate the road
and the trees, and you can probably see that the illumination from the lamp is stronger closer
to the lamp:

But you should run the program to see it in action! And read the source code to see how it’s
done.

∗ ∗ ∗

My diskworld example uses per-pixel lighting, which gives much better results than per-
vertex lighting, especially for spotlights. However, with multiple lights, spotlights, and
attenuation, per-pixel lighting requires a lot of uniform variables in the fragment shader
— possibly more than are supported in some implementations. (See Subsection 6.3.7 for
information about limitations in shader programs.) That’s not really serious for a sample
program in a textbook and not really likely on modern GPUs; it just means that there is
some possibility that the example won’t work in some browsers on some devices. But for
more serious applications, using even more complex lighting, an alternative approach would
be desirable, hopefully better than simply moving the calculation to the vertex shader. One
option is to use a multi-pass algorithm in which the scene is rendered several times, with each
pass doing the lighting calculation for a smaller number of lights. See Subsection 7.5.4 for a
technique that can be used to implement this idea efficiently.

7.3. TEXTURES 299

7.3 Textures

Most of the WebGL API for working with textures was already covered in Section 6.4. In
this section, we look at several examples and techniques for using textures.

7.3.1 Texture Transforms with glMatrix

In Subsection 4.3.4, we saw how to apply a texture transformation in OpenGL. OpenGL
maintains a texture transform matrix that can be manipulated to apply scaling, rotation,
and translation to texture coordinates before they are used to sample a texture. It is easy
to program the same operations in WebGL. We need to compute the texture transform matrix
on the JavaScript side. The transform matrix is then sent to a uniform matrix variable in the
the shader program, where it can be applied to the texture coordinates. Note that as long as the
texture transformation is affine, it can be applied in the vertex shader, even though the texture
is sampled in the fragment shader. That is, doing the transformation in the vertex shader and
interpolating the transformed texture coordinates will give the same result as interpolating the
original texture coordinates and applying the transformation to the interpolated coordinates in
the fragment shader.

Since we are using glMatrix for coordinate transformation in 3D, it makes sense to use it for
texture transforms as well. If we use 2D texture coordinates, we can implement scaling, rotation,
and translation on the JavaScript side using the mat3 class from glMatrix. The functions that
we need are

• mat3.create() — Returns a new 3-by-3 matrix (represented as an array of length 9).
The new matrix is the identity matrix.

• mat3.identity(A) — Sets A to be the identity matrix, where A is an already-existing
mat3.

• mat3.translate(A,B,[dx,dy]) — Multiplies the matrix B by a matrix representing
translation by (dx,dy), and sets A to be the resulting matrix. A and B must already
exist.

• mat3.scale(A,B,[sx,sy]) — Multiplies B by a matrix representing scaling by (sx,sy),
and sets A to be the resulting matrix.

• mat3.rotate(A,B,angle) — Multiplies B by a matrix representing rotation by angle
radians about the origin, and sets A to be the resulting matrix.

For implementing texture transformations, the parameters A and B in these functions will be
the texture transform matrix. For example, to apply a scaling by a factor of 2 to the texture
coordinates, we might use the code:

var textureTransform = mat3.create();

mat3.scale(textureTransform, textureTransform, [2,2]);

gl.uniformMatrix3fv(u textureTransform, false, textureTransform);

The last line assumes that u textureTransform is the location of a uniform variable of type mat3
in the shader program. (And remember that scaling the texture coordinates by a factor of 2
will shrink the texture on the surfaces to which it is applied.)

The sample WebGL program webgl/texture-transform.html uses texture transformations to
animate textures. In the program, texture coordinates are input into the vertex shader as an
attribute named a texCoords of type vec2, and the texture transformation is a uniform variable

300 CHAPTER 7. 3D GRAPHICS WITH WEBGL

named textureTransform of type mat3. The transformed texture coordinates are computed in
the vertex shader with the GLSL commands

vec3 texcoords = textureTransform * vec3(a texCoords,1.0);

v texCoords = texcoords.xy;

Read the source code to see how all this is used in the context of a complete program.

7.3.2 Generated Texture Coordinates

Texture coordinates are typically provided to the shader program as an attribute variable.
However, when texture coordinates are not available, it is possible to generate them in the
shader program. While the results will not usually look as good as using texture coordinates
that are customized for the object that is being rendered, they can be acceptable in some cases.

Generated texture coordinates should usually be computed from the object coordinates
of the object that is being rendered. That is, they are computed from the original vertex
coordinates, before any transformation has been applied. Then, when the object is transformed,
the texture will be transformed along with the object so that it will look like the texture is
attached to the object. The texture coordinates could be almost any function of the object
coordinates. If an affine function is used, as is usually the case, then the texture coordinates
can be computed in the vertex shader. Otherwise, you need to send the object coordinates to
the fragment shader in a varying variable and do the computation there.

The simplest idea for generated texture coordinates is simply to use the x and y coordinates
from the object coordinate system as the texture coordinates. If the vertex coordinates are given
as the value of the attribute variable a coords, that would mean using a coords.xy as texture
coordinates. This has the effect of projecting the texture onto the surface from the direction
of the positive z -axis, perpendicular to the xy-plane. The mapping works OK for a polygon
that is facing, more-or-less, in the direction of positive z, but it doesn’t give good results for
polygons that are edge-on to the xy-plane. Here’s what the mapping looks like on a cube:

The texture projects nicely onto the front face of the cube. It also works OK on the back face
of the cube (not visible in the image), except that it is mirror-reversed. On the other four faces,
which are exactly edge-on to the xy-plane, you just get lines of color that come from pixels
along the border of the texture image. (In this example, one copy of the texture image exactly
fills the front face of the cube. That doesn’t happen automatically; you might need a texture
transform to adapt the texture image to the surface.)

7.3. TEXTURES 301

Of course, we could project in other directions to map the texture to other faces of the
cube. But how to decide which direction to use? Let’s say that we want to project along the
direction of one of the coordinate axes. We want to project, approximately at least, from the
direction that the surface is facing. The normal vector to the surface tells us that direction.
We should project in the direction where the normal vector has its greatest magnitude. For
example, if the normal vector is (0.12, 0.85, 0.51), then we should project from the direction of
the positive y-axis. And a normal vector equal to (−0.4, 0.56, −0.72) would tell us to project
from the direction of the negative z -axis. This resulting “cubical” generated texture coordinates
are perfect for a cube, and it looks pretty good on most objects, except that there can be a
seam where the direction of projection changes. Here, for example, the technique is applied to
a teapot:

When using flat shading, so that all of the normals to a polygon point in the same direction,
the computation can be done in the vertex shader. With smooth shading, normals at different
vertices of a polygon can point in different directions. If you project texture coordinates from
different directions at different vertices and interpolate the results, the result is likely to be a
mess. So, doing the computation in the fragment shader is safer. Suppose that the interpolated
normal vectors and object coordinates are provided to the fragment shader in varying variables
named v normal and v objCoords. Then the following code can be used to generate “cubical”
texture coordinates:

if ((abs(v normal.x) > abs(v normal.y)) &&

(abs(v normal.x) > abs(v normal.z))) {

// project along the x-axis

texcoords = (v normal.x > 0.0) ? v objCoords.yz : v objCoords.zy;

}

else if ((abs(v normal.z) > abs(v normal.x)) &&

(abs(v normal.z) > abs(v normal.y))) {

// project along the z-axis

texcoords = (v normal.z > 0.0) ? v objCoords.xy : v objCoords.yx;

}

else {

// project along the y-axis

texcoords = (v normal.y > 0.0) ? v objCoords.zx : v objCoords.xz;

}

When projecting along the x -axis, for example, the y and z coordinates from v objCoords
are used as texture coordinates. The coordinates are computed as either v objCoords.yz or
v objCoords.zy, depending on whether the projection is from the positive or the negative

302 CHAPTER 7. 3D GRAPHICS WITH WEBGL

direction of x. The order of the two coordinates is chosen so that a texture image will be
projected directly onto the surface, rather than mirror-reversed.

You can experiment with generated textures using the demo c7/generated-texcoords.html
in the on-line version of this section. The demo shows a variety of textures and objects using
cubical generated texture coordinates, as discussed above. You can also try texture coordinates
projected just onto the xy or zx plane, as well as a cylindrical projection that wraps a texture
image once around a cylinder. A final option is to use the x and y coordinates from the eye
coordinate system as texture coordinates. That option fixes the texture on the screen rather
than on the object, so the texture doesn’t rotate with the object. The effect is interesting, but
probably not very useful.

7.3.3 Procedural Textures

Up until now, all of our textures have been image textures. With an image texture, a color
is computed by sampling the image, based on a pair of texture coordinates. The image
essentially defines a function that takes texture coordinates as input and returns a color as
output. However, there are other ways to define such functions besides looking up values in an
image. A procedural texture is defined by a function whose value is computed rather than
looked up. That is, the texture coordinates are used as input to a code segment whose output
is the corresponding color value for the texture.

In WebGL, procedural textures can be defined in the fragment shader. The idea is simple:
Take a vec2 representing a set of texture coordinates. Then, instead of using a sampler2D to
look up a color, use the vec2 as input to some mathematical computation that computes a vec4
representing a color. In theory any computation could be used, as long as the components of
the vec4 are in the range 0.0 to 1.0.

We can even extend the idea to 3D textures. 2D textures use a vec2 as texture coordinates.
For 3D texture coordinates, we use a vec3. Instead of mapping points on a plane to color, a
3D texture maps points in space to colors. It’s possible to have 3D textures that are similar to
image textures. That is, a color value is stored for each point in a 3D grid, and the texture is
sampled by looking up colors in the grid. However, a 3D grid of colors takes up a lot of memory.
On the other hand, 3D procedural textures use no memory resources and use very little more
computational resources than 2D procedural textures.

So, what can be done with procedural textures? In fact, quite a lot. There is a large body
of theory and practice related to procedural textures. We will look at a few of the possibilities.
Here’s a torus, textured using four different procedural textures. The images are from the demo
mentioned at the end of this subsection:

The torus on the left uses a 2D procedural texture representing a checkerboard pattern.
The 2D texture coordinates were provided, as usual, as values of a vertex attribute variable in
the shader program. The checkerboard pattern is regular grid of equal-sized colored squares,
but, as with any 2D texture, the pattern is stretched and distorted when it is mapped to the

7.3. TEXTURES 303

curved surface of the torus. Given texture coordinates in the varying variable v texCoords, the
color value for the checkerboard texture can be computed as follows in the fragment shader:

vec4 color;

float a = floor(v texCoords.x * scale);

float b = floor(v texCoords.y * scale);

if (mod(a+b, 2.0) > 0.5) { // a+b is odd

color = vec3(1.0, 0.5, 0.5, 1.0); // pink

}

else { // a+b is even

color = vec3(0.6, 0.6, 1.0, 1.0); // light blue

}

The scale in the second and third lines represents a texture transformation that is used to adapt
the size of the texture to the object that is being textured. (The texture coordinates for the
torus range from 0 to 1; without the scaling, only one square in the checkerboard pattern would
be mapped to the torus. For the torus in the picture, scale is 8.) The floor function computes
the largest integer less than or equal to its parameter, so a and b are integers. The value of
mod(a+b,2.0) is either 0.0 or 1.0, so the test in the fourth line tests whether a+b is even or
odd. The idea here is that when either a or b increases or decreases by 1, a+b will change from
even to odd or from odd to even; that ensures that neighboring squares in the pattern will be
differently colored.

The second torus in the illustration uses a 3D checkerboard pattern. The 3D pattern is
made up of a grid of cubes that alternate in color in all three directions. For the 3D texture
coordinates on the cube, I use object coordinates. That is, the 3D texture coordinates for a
point are the same as its position in space, in the object coordinate system in which the torus
is defined. The effect is like carving the torus out of a solid block that is colored, inside and
out, with a 3D checkerboard pattern. Note that you don’t see colored squares or rectangles
on the surface of the torus; you see the intersections of that surface with colored cubes. The
intersections have a wide variety of shapes. That might be a disadvantage for this particular
3D texture, but the advantage is that there is no stretching and distortion of the texture. The
code for computing the 3D checkerboard is the same as for the 2D case, but using three object
coordinates instead of two texture coordinates.

Natural-looking textures often have some element of randomness. We can’t use actual
randomness, since then the texture would look different every time it is drawn. However, some
sort of pseudo-randomness can be incorporated into the algorithm that computes a texture.
But we don’t want the colors in the texture to look completely random—there has to be some
sort of pattern in the pattern! Many natural-looking procedural textures are based on a type of
pseudo-randomness called Perlin noise , named after Ken Perlin who invented the algorithm in
1983. The third torus in the above illustration uses a 3D texture based directly on Perlin noise.
The “marble” texture on the fourth torus uses Perlin noise as a component in the computation.
Both textures are 3D, but similar 2D versions are also possible. (I don’t know the algorithm
for Perlin noise. I copied the GLSL code from https://github.com/ashima/webgl-noise. The
code is published under an MIT-style open source license, so that it can be used freely in any
project.)

In the sample program, 3D Perlin noise is computed by a function snoise(v), where v is a
vec3 and the output of the function is a float in the range −1.0 to 1.0. Here is the computation:

float value = snoise(scale*v objCoords);

value = 0.75 + value*0.25; // map to the range 0.5 to 1.0

color = vec3(1.0,value,1.0);

304 CHAPTER 7. 3D GRAPHICS WITH WEBGL

Here, v objCoords is a varying variable containing the 3D object coordinates of the point that
is being textured, and scale is a texture transformation that adapts the size of the texture to
the torus. Since the output of snoise() varies between −1.0 and 1.0, value varies from 0.5 to
1.0, and the color for the texture ranges from pale magenta to white. The color variation that
you see on the third torus is characteristic of Perlin noise. The pattern is somewhat random,
but it has regular, similarly sized features. With the right scaling and coloration, basic Perlin
noise can make a decent cloud texture.

The marble texture on the fourth torus in the illustration is made by adding some noise to
a regular, periodic pattern. The basic technique can produce a wide variety of useful textures.
The starting point is a periodic function of one variable, with values between 0.0 and 1.0. To
get a periodic pattern in 2D or 3D, the input to the function can be computed from the texture
coordinates. Different functions can produce very different effects. The three patterns shown
here use the functions (1.0+sin(t))/2.0, abs(sin(t)) and (t−floor(t)), respectively:

In the second image, taking the absolute value of sin(t) produces narrower, sharper dark bands
than the plain sine function in the first image. This is the function that is used for the marble
texture in the illustration. The sharp discontinuity in the third image can be an interesting
visual effect.

To get the 2D pattern from a function f (t) of one variable, we can use a function of a vec2,
v, defined as f (a*v.x+b*v.y), where a and b are constants. The values of a and b determine
the orientation and spacing of the color bands in the pattern. For a 3D pattern, we would use
f (a*v.x+b*v.y+c*v.z).

To add noise to the pattern, add a Perlin noise function to the input of the function. For a
3D pattern, the function would become

f(a*v.x + b*v.y + c*v.z + d*snoise(e*v))

The new constants d and e determine the size and intensity of the perturbations to the pattern.
As an example, the code that creates the marble texture for the torus is:

vec3 v = v objCoords*scale;

float t = (v.x + 2.0*v.y + 3.0*v.z);

t += 1.5*snoise(v);

float value = abs(sin(t));

color = vec3(sqrt(value));

(The sqrt at the end was added to make the color bands even sharper than they would be
without it.)

The demo c7/procedural-textures.html in the on-line version of this section lets you apply a
variety of 3D textures to different objects. The procedural textures used in the demo are just
a small sample of the possibilities.

7.3. TEXTURES 305

7.3.4 Bumpmaps

So far, the only textures that we have encountered have affected color. Whether they were image
textures, environment maps, or procedural textures, their effect has been to vary the color on
the surfaces to which they were applied. But, more generally, texture can refer to variation
in any property. One example is bumpmapping , where the property that is modified by the
texture is the normal vector to the surface. A normal vector determines how light is reflected
by the surface, which is a major visual clue to the direction that the surface faces. Modifying
the normal vectors has the effect of modifying the apparent orientation of the surface, as least
with respect to the way it reflects light. It can add the appearance of roughness or “bumps” to
the surface. The effect can be visually similar to changing the positions of points on the surface,
but with bumpmapping the change in appearance is achieved without actually changing the
surface geometry. The alternative approach of modifying the actual geometry, which is called
“displacement mapping,” can give better results but requires a lot more computational and
memory resources.

The typical way to do bumpmapping is with a height map. A height map, is a grayscale
image in which the variation in color is used to specify the amount by which points on the
surface are (or appear to be) displaced. A height map is mapped to a surface in the same
way as an image texture, using texture coordinates that are supplied as an attribute variable
or generated computationally. But instead of being used to modify the color of a pixel, the
color value from the height map is used to modify the normal vector that goes into the lighting
equation that computes the color of the pixel. A height map that is used in this way is also
called a bump map. I’m not sure that my implementation of this idea is optimal, but it can
produce pretty good results.

Here are two examples. For each example, a bumpmapped torus is shown next to the height
map that was applied to the torus:

In the first example, the gray dots in the height map produce the appearance of bumps on
the torus. The darker the color from the map, the greater apparent displacement of the point
on the surface. The black centers of the dots map to the tops of the bumps. For the second
example, the dark curves in the height map seem to produce deep grooves in the surface. As is
usual for textures, the height maps have been stretched to cover the torus, which distorts the
shape of the features from the map.

To see how bumpmapping can be implemented, let’s first imagine that we want to apply
it to a one-dimensional “surface.” Consider a normal vector to a point on the surface, and
suppose that a height map texture is applied to the surface. Take a vector, shown in black in
the following illustration, that points in the direction in which the height map grayscale value
is decreasing.

306 CHAPTER 7. 3D GRAPHICS WITH WEBGL

Height Map, with a vector

that points in the direction

height should decrease.

Surface with the

original normal vector
Modifying the normal.

We want the

surface to look

as if it's tilted,

like this.

To achieve the effect,

add a muliple of the

vector from the height

map to the normal.

The new normal is

shown in green.

We want the surface to appear as if it is tilted, as shown in the middle of the illustration. (I’m
assuming here that darker colors in the height map correspond to smaller heights.) Literally
tilting the surface would change the direction of the normal vector. We can get the same change
in the normal vector by adding some multiple of the vector from the height map to the original
normal vector, as shown on the right above. Changing the number that is multiplied by the
height map vector changes the degree of tilting of the surface. Increasing the mulitplier gives a
stronger bump effect. Using a negative multiple will tilt the surface in the opposite direction,
which will transform “bumps” into “dimples,” and vice versa. I will refer to the multiplier as
the bump strength.

Things get a lot more complicated for two-dimensional surfaces in 3D space. A 1D “surface”
can only be tilted left or right. On a 2D surface, there are infinitely many directions to tilt
the surface. Note that the vector that points in the direction of tilt points along the surface,
not perpendicular to the surface. A vector that points along a surface is called a tangent
vector to the surface. To do bump mapping, we need a tangent vector for each point on the
surface. Tangent vectors will have to be provided, along with normal vectors, as part of the
data for the surface. For my version of bumpmapping, the tangent vector that we need should
be coordinated with the texture coordinates for the surface: The tangent vector should point
in the direction in which the s coordinate in the texture coordinates is increasing.

In fact, to properly account for variation in the height map, we need a second tangent
vector. The second tangent vector is perpendicular both to the normal and to the first tangent
vector. It is commonly called the “binormal” vector, and it can be computed from the normal
and the tangent. (The binormal should point in the direction in which the t texture coordinate
is increasing, but whether that can be exactly true will depend on the texture mapping. As
long as it’s not too far off, the result should be OK.)

Now, to modify the normal vector, proceed as follows: Sample the height maps at two
points, separated by a small difference in the s coordinate. Let a be the difference between the
two values; a represents the rate at which the height value is changing in the direction of the
tangent vector (which, remember, points in the s direction along the surface). Then sample
the height map at two points separated by a small difference in the t coordinate, and let b be
the difference between the two values, so that b represents the rate at which the height value
is changing in the direction of the binormal vector. Let D be the vector a*T + b*B, where T
is the tangent vector and B is the binormal. Then add D, or a multiple of D, to the original
normal vector to produce the modified normal that will be used in the lighting equation. (If
you know multivariable calculus, what we are doing here amounts to using approximations for
directional derivatives and the gradient vector of a height function on the surface.)

I have tried to explain the procedure in the following illustration. You need to visualize the

7.3. TEXTURES 307

situation in 3D, noting that the normal, tangent, and binormal vectors are perpendicular to
each other. The white arrows on the left are actually multiples of the binormal and tangent
vectors, with lengths given by the change in color between two pixels.

A pixel in the height map

(light gray) and two

neighboring pixels. The

change in color between

the pixels deçnes the

two vectors shown in

white.

normal

tangent

binormal

The tangent, normal,

and binormal vectors

at the pixel on the

surface that corresponds

to the pixel in the

bumpmap texture.

The small black vectors are

some multiple of the white

vectors from the height map.

They are added to the

normal vector to produce

the new normal vector,

shown in green.

The sample program webgl/bumpmap.html demonstrates bumpmapping. The two
bumpmapped toruses in the above illustration are from that program. When you run the
program, pay attention to the specular highlights! They will help you to see how a bumpmap
texture differs from an image texture. The effect might be more obvious if you change the
“Diffuse Color” from white to some other color. The specular color is always white.

(For this program, I had to add tangent vectors to my objects. I chose three objects—a
cube, a cylinder, and a torus—for which tangent vectors were relatively easy to compute. But,
honestly, it took me a while to get all the tangent vectors pointing in the correct directions.)

The bumpmapping is implemented in the fragment shader in the sample program. The
essential problem is how to modify the normal vector. Let’s examine the GLSL code that does
the work:

vec3 normal = normalize(v normal);

vec3 tangent = normalize(v tangent);

vec3 binormal = cross(normal,tangent);

float bm0, bmUp, bmRight; // Samples from the bumpmap at three texels.

bm0 = texture2D(bumpmap, v texCoords).r;

bmUp = texture2D(bumpmap, v texCoords + vec2(0.0, 1.0/bumpmapSize.y)).r;

bmRight = texture2D(bumpmap, v texCoords + vec2(1.0/bumpmapSize.x, 0.0)).r;

vec3 bumpVector = (bmRight - bm0)*tangent + (bmUp - bm0)*binormal;

normal += bumpmapStrength*bumpVector;

normal = normalize(normalMatrix*normal);

The first three lines compute the normal, tangent, and binormal unit vectors. The normal and
tangent come from varying variables whose values are interpolated from attribute variables,
which were in turn input to the shader program from the JavaScript side. The binormal, which
is perpendicular to both the normal and the tangent, is computed as the cross product of the
normal and tangent (Subsection 3.5.1).

The next four lines get the values of the height map at the pixel that corresponds to the
surface point that is being processed and at two neighboring pixels. bm0 is the height map
value at the current pixel, whose coordinates in the texture are given by the texture coordinates,
v texCoords. The value for bm0 is the red color component from the bumpmap texture; since
the texture is grayscale, all of its color components have the same value. bmUp is the value
from the pixel above the current pixel in the texture; the coordinates are computed by adding

308 CHAPTER 7. 3D GRAPHICS WITH WEBGL

1.0/bumpmapSize.y to the y-coordinate of the current pixel, where bumpmapSize is a uniform
variable that gives the size of the texture image, in pixels. Since texture coordinates in the image
run from 0.0 to 1.0, the difference in the y-coordinates of the two pixels is 1.0/bumpmapSize.y.
Similarly, bmRight is the height map value for the pixel to the right of the current pixel in
the bumpmap texture. I should note that the minification filter for the bumpmap texture was
set to gl.NEAREST, because we need to read the actual value from the texture, not a value
averaged from several pixels, as would be returned by the default minification filter.

The two vectors (bmRight−bm0)*tangent and (bmUp−bm0)*binormal are the two white
vectors in the above illustration. Their sum is bumpVector. A multiple of that sum is added to
the normal vector to give the modified normal vector. The multiplier, bumpmapStrength, is a
uniform float variable.

All of the calculations so far have been done in the object coordinate system. The resulting
normal depends only on the original object coordinates, not on any transformation that has
been applied. The normal vector still has to be transformed into eye coordinates before it can
be used in the lighting equation. That transformation is done in the last line of code shown
above.

7.3.5 Environment Mapping

Subsection 5.3.5 showed how to use environment mapping in three.js to make it look like the
surface of an object reflects an environment. Environment mapping uses a cubemap texture,
and it is really just a way of mapping a cubemap texture to the surface. It doesn’t make the
object reflect other objects in its environment. We can make it look as if the object is reflecting
its environment by adding a skybox—a large cube surrounding the scene, with the cubemap
mapped onto its interior. However, the object will only seem to be reflecting the skybox. And
if there are other objects in the environment, they won’t be part of the reflection.

The sample program webgl/skybox-and-env-map.html implements environment mapping in
WebGL. The program shows a single fully reflective object inside a skybox. No lighting is
used in the scene; the colors for both the skybox and the object are taken directly from the
cubemap texture. The object looks like a perfect mirror. This is not the only way of using
an environment map. For example, a basic object color could be computed using the lighting
equation—perhaps even with an image texture—and the environment map could be blended
with the basic color to give the appearance of a shiny but not fully reflective surface. However,
the point of the sample program is just to show how to use a skybox and environment map in
WebGL. The shader programs that are used to do that are actually quite short.

As for the cubemap texture itself, Subsection 6.4.4 showed how to load a cubemap texture
as six separate images and how to access that texture in GLSL using a variable of type
samplerCube. Remember that a cubemap texture is sampled using a 3D vector that points
from the origin towards the point on the cube where the texture is to be sampled.

It’s easy to render the skybox: Draw a large cube, centered at the origin, enclosing the
scene and the camera position. To color a pixel in the fragment shader, sample the cubemap
texture using a vector that points from the origin through the point on the cube that is being
rendered, so that the color of a point on the cube is the same as the color of the corresponding
point in the cubemap. Note that it is the cube’s object coordinates that are used to sample the
texture, since the texture should be attached to the cube when we rotate the view.

In the shader program for rendering a skybox, the vertex shader just needs to compute
gl Position as usual and pass the object coordinates on to the fragment shader in a varying
variable. Here is the vertex shader source code for the skybox:

7.3. TEXTURES 309

uniform mat4 projection;

uniform mat4 modelview;

attribute vec3 coords;

varying vec3 v objCoords;

void main() {

vec4 eyeCoords = modelview * vec4(coords,1.0);

gl Position = projection * eyeCoords;

v objCoords = coords;

}

And the fragment shader simply uses the object coordinates to get the fragment color by
sampling the cubemap texture:

precision mediump float;

varying vec3 v objCoords;

uniform samplerCube skybox;

void main() {

gl FragColor = textureCube(skybox, v objCoords);

}

Note that the vector that is used to sample a cubemap texture does not have to be a unit
vector; it just has to point in the correct direction.

∗ ∗ ∗

To understand how a cube map texture can be applied to an object as a reflection map, we
have to ask what point from the texture should be visible at a point on the object? If we think
of the texture as an actual environment, then a ray of light would come from the environment,
hit the object, and be reflected towards the viewer. We just have to trace that light ray back
from the viewer to the object and then to the environment. The direction in which the light
ray is reflected is determined, as always, by the normal vector. Consider a 2D version of the
geometry. You can think of this as a cross-section of the 3D geometry:

N

V

R
Viewer

Cubemap Texture

Rendered

Object

The point in the cubemap texture

that is reèected on the object

In this illustration, the dotted box represents the cubemap texture. (You really should think of
it as being at infinite distance.) V is a vector that points from the object towards the viewer.
N is the normal vector to the surface. And R is the reflection of V through N. R points to the
texel in the cubemap texture that is visible to the viewer at the point on the surface; it is the
vector that is needed to sample the cubemap texture. The picture shows the three vectors at
two different points on the surface. In GLSL, R can be computed as −reflect(V, N).

310 CHAPTER 7. 3D GRAPHICS WITH WEBGL

If the same cubemap texture is also applied to a skybox, it will look as if the object is
reflecting the skybox—but only if no transformation has been applied to the skybox cube. The
reason is that transforming the skybox does not automatically transform the cubemap texture.
Since we want to be able to rotate the view, we need to be able to transform the skybox. And
we want the reflected object to look like it is reflecting the skybox in its transformed position,
not in its original position. That viewing transformation can be thought of as a modeling
transformation on the skybox, as well as on other objects in the scene. We have to figure out
how to make it apply to the cubemap texture. Let’s think about what happens in the 2D case
when we rotate the view by −30 degrees. That’s the same as rotating the skybox and object
by 30 degrees. In the illustration, I’ve drawn the viewer at the same position as before, and I
have rotated the scene. The square with the fainter dotted outline is the skybox. The cubemap
texture hasn’t moved:

N

V

R

Viewer

Skybox, rotated by

viewing transformation

The point on the skybox that

should be reéected on

the object

T

Cubemap texture

The point

êëìíîï ðñò ðó
the cubemap

texture ôõ ö

The point

êëìíîï ðñò ðó
the cubemap

texture ôõ ÷

Rendere
d

Object

If we compute R as before and use it to sample the cubemap texture, we get the wrong point
in the texture. The viewer should see the point where R intersects the skybox, not the point
where R intersects the texture. The correct point in the texture is picked out by the vector T.
T is computed by transforming R by the inverse of the viewing transformation. R was rotated
by the viewing transformation; the inverse viewing transformation undoes that transformation,
putting T into the same coordinate system as the cube map. In this case, since R was rotated
by 30 degrees, a rotation of −30 degrees is applied to compute T. (This is just one way to
understand the geometry. If you prefer to think of the cubemap as rotating along with the
skybox, then we need to apply a texture transformation to the texture—which is another way
of saying that we need to transform R before using it to sample the texture.)

In the sample program, the shader program that is used to represent the object is different
from the one used to render the skybox. The vertex shader is very typical. Note that the
modelview transformation can include modeling transforms that are applied to the object in
addition to the viewing transform that is applied to the entire scene. Here is the source code:

uniform mat4 projection;

uniform mat4 modelview;

attribute vec3 coords;

attribute vec3 normal;

varying vec3 v eyeCoords;

7.4. FRAMEBUFFERS 311

varying vec3 v normal;

void main() {

vec4 eyeCoords = modelview * vec4(coords,1.0);

gl Position = projection * eyeCoords;

v eyeCoords = eyeCoords.xyz;

v normal = normalize(normal);

}

The vertex shader passes eye coordinates to the fragment shader in a varying variable. In
eye coordinates, the viewer is at the point (0,0,0), and the vector V that points from the surface
to the viewer is simply −v eyeCoords.

The source code for the fragment shader implements the algorithm discussed above for
sampling the cubemap texture. Since we are doing perfect reflection, the color for the fragment
comes directly from the texture:

precision mediump float;

varying vec3 vCoords;

varying vec3 v normal;

varying vec3 v eyeCoords;

uniform samplerCube skybox;

uniform mat3 normalMatrix;

uniform mat3 inverseViewTransform;

void main() {

vec3 N = normalize(normalMatrix * v normal);

vec3 V = -v eyeCoords;

vec3 R = -reflect(V,N);

vec3 T = inverseViewTransform * R;

gl FragColor = textureCube(skybox, T);

}

The inverseViewTransform is computed on the JavaScript side from the modelview matrix,
after the viewing transform has been applied but before any addition modeling transformation
is applied, using the commands

mat3.fromMat4(inverseViewTransform, modelview);

mat3.invert(inverseViewTransform,inverseViewTransform);

We need a mat3 to transform a vector. The first line discards the translation part of the
modelview matrix, putting the result in inverseViewTransorm. Translation doesn’t affect
vectors, but the translation part is zero in any case since the viewing transformation in this
program is just a rotation. The second line converts inverseViewTransform into its inverse.

7.4 Framebuffers

The term “frame buffer” traditionally refers to the region of memory that holds the
color data for the image displayed on a computer screen. In WebGL, a framebuffer is a data
structure that organizes the memory resources that are needed to render an image. A WebGL
graphics context has a default framebuffer, which is used for the image that appears on the
screen. The default framebuffer is created by the call to canvas.getContext() that creates the
graphics context. Its properties depend on the options that are passed to that function and
cannot be changed after it is created. However, additional framebuffers can be created, with
properties controlled by the WebGL program. They can be used for off-screen rendering, and
they are required for certain advanced rendering algorithms.

312 CHAPTER 7. 3D GRAPHICS WITH WEBGL

A framebuffer can use a color buffer to hold the color data for an image, a depth buffer to
hold a depth value for each pixel, and something called a stencil buffer (which is not covered
in this textbook). The buffers are said to be “attached” to the framebuffer. For a non-default
framebuffer, buffers can be attached and detached by the WebGL program at any time. A
framebuffer doesn’t need a full set of three buffers, but you need a color buffer, a depth buffer,
or both to be able to use the framebuffer for rendering. If the depth test is not enabled when
rendering to the framebuffer, then no depth buffer is needed. And some rendering algorithms,
such as shadow mapping (Subsection 5.3.3) use a framebuffer with a depth buffer but no color
buffer. In WebGL 2.0, it is also possible to attach several color buffers to the same framebuffer,
which can be useful for certain advanced algorithms and computational applications. (Also, see
Subsection 7.5.4.)

The rendering functions gl.drawArrays() and gl.drawElements() affect the current frame-
buffer, which is initially the default framebuffer. The current framebuffer can be changed by
calling

gl.bindFramebuffer(gl.FRAMEBUFFER, frameBufferObject);

The first parameter to this function is always gl.FRAMEBUFFER. The second parameter can
be null to select the default framebuffer for drawing, or it can be a non-default framebuffer
created by the function gl.createFramebuffer(), which will be discussed below.

7.4.1 Framebuffer Operations

Before we get to examples of using non-default framebuffers, we look at some WebGL settings
that affect rendering into whichever framebuffer is current. Examples that we have already
seen include the clear color, which is used to fill the color buffer when gl.clear() is called, and
the enabled state of the depth test.

Another example that affects the use of the depth buffer is the depth mask , a boolean
value that controls whether values are written to the depth buffer during rendering. (The
enabled state of the depth test determines whether values from the depth buffer are used

during rendering; the depth mask determines whether new values are written to the depth
buffer.) Writing to the depth buffer can be turned off with the command

gl.depthMask(false);

and can be turned back on by calling gl.depthMask(true). The default value is true.

One example of using the depth mask is for rendering translucent geometry. When some of
the objects in a scene are translucent, then all of the opaque objects should be rendered first,
followed by the translucent objects. Suppose that you rendered a translucent object, and then
rendered an opaque object that lies behind the translucent object. The depth test would cause
the opaque object to be hidden by the translucent object. But “translucent” means that the
opaque object should be visible through the translucent object. So it’s important to render all
the opaque objects first. And it’s important to turn off writing to the depth buffer, by calling
gl.depthMask(false), while rendering the translucent objects. The reason is that a translucent
object that is drawn behind another translucent object should be visible through the front
object. Note, however, that the depth test must still be enabled while the translucent objects
are being rendered, since a translucent object can be hidden by an opaque object. Also, alpha
blending must be on while rendering the translucent objects.

For fully correct rendering of translucent objects, the translucent primitives should be sorted
into back-to-front order before rendering, as in the painter’s algorithm (Subsection 3.1.4).

7.4. FRAMEBUFFERS 313

However, that can be difficult to implement, and acceptable results can sometimes be
obtained by rendering the translucent primitives in arbitrary order (but still after the opaque
primitives). In fact that was done in the demos c3/rotation-axis.html from Subsection 3.2.2
and c3/transform-equivalence-3d.html from Subsection 3.3.4.

∗ ∗ ∗

It is also possible to control writing to the color buffer, using the color mask . The color
buffer has four “channels” corresponding to the red, green, blue, and alpha components of the
color. Each channel can be controlled separately. You could, for example, allow writing to
the red and alpha color channels, while blocking writing to the green and blue channels. That
would be done with the command

gl.colorMask(true, false, false, true);

The colorMask function takes four parameters, one for each color channel. A true value allows
writing to the channel; a false value blocks writing. When writing is blocked for a channel
during rendering, the value of the corresponding color component is simply ignored.

One use of the color mask is for anaglyph stereo rendering (Subsection 5.3.1). An anaglyph
stereo image contains two images of the scene, one intended for the left eye and one for the
right eye. One image is drawn using only shades of red, while the other uses only combinations
of green and blue. The two images are drawn from slightly different viewpoints, corresponding
to the views from the left and the right eye. So the algorithm for anaglyph stereo has the form

gl.clearColor(0,0,0,1);

gl.clear(gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT);

gl.colorMask(true, false, false, false); // write to red channel only

... // set up view from left eye

... // render the scene

gl.clear(gl.DEPTH BUFFER BIT); // clear only the depth buffer

gl.colorMask(false, true, true, false); // write to green and blue channels

... // set up view from right eye

... // render the scene

One way to set up the views from the left and right eyes is simply to rotate the view by a few
degrees about the y-axis. Note that the depth buffer, but not the color buffer, must be cleared
before drawing the second image, since otherwise the depth test would prevent some parts of
the second image from being written.

∗ ∗ ∗

Finally, I would like to look at blending in more detail. Blending refers to how the fragment
color from the fragment shader is combined with the current color of the fragment in the color
buffer. The default, assuming that the fragment passes the depth test, is to replace the current
color with the fragment color. When blending is enabled, the current color can be replaced
with some combination of the current color and the fragment color. Previously, I have only
discussed turning on alpha blending for transparency with the commands

gl.enable(gl.BLEND);

gl.blendFunc(gl.SRC ALPHA, gl.ONE MINUS SRC ALPHA);

The function gl.blendFunc() determines how the new color is computed from the current color
and the fragment color. With the parameters shown here, the formula for the new color, using
GLSL syntax, is

(src * src.a) + (dest * (1-src.a))

314 CHAPTER 7. 3D GRAPHICS WITH WEBGL

where src is the “source” color (that is, the color that is being written, the fragment color)
and dest is the “destination” color (that is, the color currently in the color buffer, which is
the destination of the rendering operation). And src.a is the alpha component of the source
color. The parameters to gl.blendFunc() determine the coefficients— src.a and (1−src.a)—in
the formula. The default coefficients for the blend function are given by

gl.blendFunc(gl.ONE, gl.ZERO);

which specifies the formula

(src * 1) + (dest * 0)

That is, the new color is equal to the source color; there is no blending.

Note that blending applies to the alpha component as well as the RGB components of the
color, which is probably not what you want. When drawing with a translucent color, it means
that the color that is written to the color buffer will have an alpha component less than 1. When
rendering to a canvas on a web page, this will make the canvas itself translucent, allowing the
background of the canvas to show through. (This assumes that the WebGL context was created
with an alpha channel, which is the default.) To avoid that, you can set the blend function
with the alternative command

gl.blendFuncSeparate(gl.SRC ALPHA, gl.ONE MINUS SRC ALPHA,

gl.ZERO, gl.ONE);

The two extra parameters specify separate coefficients to be used for the alpha component in
the formula, while the first two parameters are used only for the RGB components. That is,
the new color for the color buffer is computed using the formula

vec4((src.rgb*src.a) + (dest.rgb*(1-src.a)), src.a*0 + dest.a*1);

With this formula, the alpha component in the destination (the color buffer) remains the same
as its original value.

The blend function set by gl.blendFunc(gl.ONE,gl.ONE) can sometimes be used in multi-
pass algorithms. In a multi-pass algorithm , a scene is rendered several times, and the results
are combined somehow to produce the final image. (Anaglyph stereo rendering is an example.)
If you simply want to add up the results of the various passes, then you can fill the color buffer
with zeros, enable blending, and set the blend function to (gl.ONE,gl.ONE) during rendering.

As a simple example, the sample program webgl/image-blur.html uses a multi-pass algorithm
to implement blurring. The scene in the example is just a texture image applied to a rectangle,
so the effect is to blur the texture image. The technique involves drawing the scene nine times.
In the fragment shader, the color is divided by nine. Blending is used to add the fragment
colors from the nine passes, so that the final color in the color buffer is the average of the colors
from the nine passes. For eight of the nine passes, the scene is offset slightly from its original
position, so that the color of a pixel in the final image is the average of the colors of that pixel
and the surrounding pixels from the original scene.

7.4.2 Render To Texture

The previous subsection applies to any framebuffer. But we haven’t yet used a non-default
framebuffer. We turn to that topic now.

One use for a non-default framebuffer is to render directly into a texture. That is, the
memory occupied by a texture image can be attached to the framebuffer as its color buffer, so

7.4. FRAMEBUFFERS 315

that rendering operations will send their output to the texture image. This technique, which is
called render-to-texture , is used in the sample program webgl/render-to-texture.html.

Texture memory is normally allocated when an image is loaded into the texture using the
function gl.texImage2D or gl.copyTexImage2D. (See Section 6.4.) However, there is a version
of gl.texImage2D that can be used to allocate memory without loading an image into that
memory. Here is an example, from the sample program:

texture = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, texture);

gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, 512, 512,

0, gl.RGBA, gl.UNSIGNED BYTE, null);

It is the null parameter at the end of the last line that tells gl.texImage2D to allocate new
memory without loading existing image data to fill that memory. Instead, the new memory
is filled with zeros. The first parameter to gl.texImage2D is the texture target. The target
is gl.TEXTURE 2D for normal textures, but other values are used for working with cubemap
textures. The fourth and fifth parameters specify the height and width of the image; they
should be powers of two. The other parameters usually have the values shown here; their
meanings are the same as for the version of gl.texImage2D discussed in Subsection 6.4.3. Note
that the texture object must first be created and bound; gl.texImage2D applies to the texture
that is currently bound to the active texture unit. (In WebGL 2.0, the same thing can also be
accomplished using the gl.texStorage2D() function discussed in Subsection 6.4.6.)

To attach the texture to a framebuffer, you need to create a framebuffer object and make
that object the current framebuffer by binding it. For example,

framebuffer = gl.createFramebuffer();

gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);

Then the function gl.framebufferTexture2D can be used to attach the texture to the framebuffer:

gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR ATTACHMENT0,

gl.TEXTURE 2D, texture, 0);

The first parameter is always gl.FRAMEBUFFER. The second parameter says a color buffer is
being attached. The last character in gl.COLOR ATTACHMENT0 is a zero, which allows the
possibility of having more than one color buffer attached to a framebuffer (although in standard
WebGL 1.0, only one color buffer is allowed). The third parameter is the same texture target
that was used in gl.texImage2D, and the fourth is the texture object. The last parameter is the
mipmap level; it will usually be zero, which means rendering to the texture image itself rather
than to one of its mipmap images.

With this setup, you are ready to bind the framebuffer and draw to the texture. After
drawing the texture, call

gl.bindFramebuffer(gl.FRAMEBUFFER, null);

to start drawing again to the default framebuffer. At that point, the texture is ready for use
in subsequent rendering operations. The texture object can be bound to a texture unit, and a
sampler2D variable can be used in the shader program to read from the texture.

You are very likely to use different shader programs for drawing to the texture and drawing
to the screen. Recall that the function gl.useProgram() is used to specify the shader program.

In the sample program, the texture can be animated. During the animation, a new image
is drawn to the texture for each frame of the animation. The texture image is 2D, so the depth
test is disabled while rendering it. This means that the framebuffer doesn’t need a depth buffer.
In outline form, the rendering function in the sample program has the form

316 CHAPTER 7. 3D GRAPHICS WITH WEBGL

function draw() {

/* Draw the 2D image into a texture attached to a framebuffer. */

gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer);

gl.useProgram(prog texture); // shader program for the texture

gl.clearColor(1,1,1,1);

gl.clear(gl.COLOR BUFFER BIT); // clear the texture to white

gl.enable(gl.BLEND); // Use transparency while drawing 2D image.

gl.disable(gl.DEPTH TEST); // framebuffer doesn’t even have a depth buffer!

gl.viewport(0,0,512,512); // Viewport is not set automatically!

.

. // draw the texture image, which changes in each frame

.

gl.disable(gl.BLEND);

/* Now draw the main scene, which is 3D, using the texture. */

gl.bindFramebuffer(gl.FRAMEBUFFER,null); // Draw to default framebuffer.

gl.useProgram(prog); // shader program for the on-screen image

gl.clearColor(0,0,0,1);

gl.clear(gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT);

gl.enable(gl.DEPTH TEST);

gl.viewport(0,0,canvas.width,canvas.height); // Reset the viewport!

.

. // draw the scene

.

}

Note that the viewport has to be set by hand when drawing to a non-default frame buffer. It
then has to be reset when drawing the on-screen image to match the size of the canvas where
the on-screen image is rendered. I should also note that only one texture object is used in
this program, so it can be bound once and for all during initialization. In this case, it is not
necessary to call gl.bindTexture() in the draw() function.

This example could be implemented without using a framebuffer, as was done for the
example in Subsection 4.3.6. In that example, the texture image was drawn to the default
framebuffer, then copied to the texture object. However, the version in this section is more
efficient because it does not need to copy the image after rendering it.

7.4.3 Renderbuffers

It is often convenient to use memory from a texture object as the color buffer for a framebuffer.
However, sometimes its more appropriate to create separate memory for the buffer, not
associated with any texture. For the depth buffer, that is the typical case. For such cases,
the memory can be created as a renderbuffer . A renderbuffer represents memory that
can be attached to a framebuffer for use as a color buffer, depth buffer, or stencil buffer.
To use one, you need to create the renderbuffer and allocate memory for it. Memory is
allocated using the function gl.renderbufferStorage(). The renderbuffer must be bound by
calling gl.bindRenderbuffer() before allocating the memory. Here is an example that creates a
renderbuffer for use as a depth buffer:

7.4. FRAMEBUFFERS 317

let depthBuffer = gl.createRenderbuffer();

gl.bindRenderbuffer(gl.RENDERBUFFER, depthBuffer);

gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH COMPONENT16, 512, 512);

The first parameter to both gl.bindRenderbuffer and gl.renderbufferStorage must be
gl.RENDERBUFFER. The second parameter to gl.renderbufferStorage specifies how the ren-
derbuffer will be used. The value gl.DEPTH COMPONENT16 is for a depth buffer with 16
bits for each pixel. (Sixteen bits is the only option in WebGL 1.0.) For a color buffer holding
RGBA colors with four eight-bit values per pixel, the second parameter would be gl.RGBA8.
Other values are possible, such as gl.RGB565, which uses 16 bits per pixel with 5 bits for the
red color channel, 6 bits for green, and 5 bits for blue. For a stencil buffer, the value would be
gl.STENCIL INDEX8. The last two parameters to gl.renderbufferStorage are the width and
height of the buffer.

The function gl.framebufferRenderbuffer() is used to attach a renderbufffer to be used as
one of the buffers in a framebuffer. It takes the form

gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH ATTACHMENT,

gl.RENDERBUFFER, renderbuffer);

The framebuffer must be bound by calling gl.bindFramebuffer before this function is called.
The first and third parameters to gl.framebufferRenderbuffer must be as shown. The last
parameter is the renderbuffer. The second paramter specifies how the renderbuffer will be
used. It can be, for example, gl.COLOR ATTACHMENT0, gl.DEPTH ATTACHMENT, or
gl.STENCIL ATTACHMENT.

7.4.4 Dynamic Cubemap Textures

To render a 3D scene to a framebuffer, we need both a color buffer and a depth buffer. An
example can be found in the sample program webgl/cube-camera.html. This example uses
render-to-texture for a cubemap texture. The cubemap texture is then used as an environment
map on a reflective surface. In addition to the environment map, the program uses another
cubemap texture for a skybox. (See Subsection 6.3.5.) Here’s an image from the program:

318 CHAPTER 7. 3D GRAPHICS WITH WEBGL

The environment in this case includes the background skybox, but also includes several colored
cubes that are not part of the skybox texture. The reflective sphere in the center of the image
reflects the cubes as well as the skybox, which means that the environment map texture can’t
be the same as the skybox texture—it has to include the cubes. Furthermore, the scene can
be animated and the cubes can move. The reflection in the sphere has to change as the cubes
move. This means that the environment map texture has to be recreated in each frame. For
that, we can use a framebuffer to render to the cubemap texture.

A cubemap texture consists of six images, one each for the positive and negative direction
of the x, y, and z axes. Each image is associated with a different texture target (similar to
gl.TEXTURE 2D). To render a cubemap, we need to allocate storage for all six sides. Here’s
the code from the sample program:

cubemapTargets = [

// store texture targets in an array for convenience

gl.TEXTURE CUBE MAP POSITIVE X, gl.TEXTURE CUBE MAP NEGATIVE X,

gl.TEXTURE CUBE MAP POSITIVE Y, gl.TEXTURE CUBE MAP NEGATIVE Y,

gl.TEXTURE CUBE MAP POSITIVE Z, gl.TEXTURE CUBE MAP NEGATIVE Z

];

dynamicCubemap = gl.createTexture(); // Create the texture object.

gl.bindTexture(gl.TEXTURE CUBE MAP, dynamicCubemap); // bind it as a cubemap

for (i = 0; i < 6; i++) {

gl.texImage2D(cubemapTargets[i], 0, gl.RGBA, 512, 512,

0, gl.RGBA, gl.UNSIGNED BYTE, null);

}

We also need to create a framebuffer, as well as a renderbuffer for use as a depth buffer, and
we need to attach the depth buffer to the framebuffer. The same framebuffer can be used to
render all six images for the texture, changing the color buffer attachment of the framebuffer
as needed. To attach one of the six cubemap images as the color buffer, we just specify the
corresponding cubemap texture target in the call to gl.framebufferTexture2D(). For example,
the command

gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR ATTACHMENT0,

gl.TEXTURE CUBE MAP NEGATIVE Z, dynamicCubemap, 0);

attaches the negative z image from the texture object dynamicCubemap to be used as the color
buffer in the currently bound framebuffer.

After the six texture images have been rendered, the cubemap texture is ready to be used.
Aside from the fact that six 3D images are rendered instead of one 2D image, this is all very
similar to the render-to-texture example from earlier in this section.

∗ ∗ ∗

The question remains of how to render the six images of the scene that are needed for the
cubemap texture. To make an environment map for a reflective object, we want images of the
environment that surrounds that object. The images can be made with a camera placed at
the center of the object. The basic idea is to point the camera in the six directions of the
positive and negative coordinate axes and snap a picture in each direction, but it’s tricky to
get the details correct. (And note that when we apply the result to a point on the surface, we
will only have an approximation of the correct reflection. For a geometrically correct reflection
at the point, we would need the view from that very point, not the view from the center of
the object, but we can’t realistically make a different environment map for each point on the

7.4. FRAMEBUFFERS 319

surface. The approximation will look OK as long as other objects in the scene are not too close
to the reflective surface.)

A “camera” really means a projection transformation and a viewing transformation. The
projection needs a ninety-degree field of view, to cover one side of the cube, and its aspect ratio
will be 1, since the sides of the cube are squares. We can make the projection matrix with a
glMatrix command such as

mat4.projection(projection, Math.PI/2, 1, 1, 100);

where the last two parameters, the near and far clipping distances, should be chosen to include
all the objects in the scene. If we apply no viewing transformation, the camera will be at the
origin, pointing in the direction of the negative z -axis. If the reflective object is at the origin,
as it is in the sample program, we can use the camera with no viewing transformation to take
the negative-z image for the cubemap texture.

But, because of the details of how the images must be stored for cubemap textures, it turns
out that we need to apply one transformation. Let’s look at the layout of images for a cubemap
texture:

The six sides of the cube are shown in black, as if the sides of the cube have been opened up and
laid out flat. Each side is marked with the corresponding coordinate axis direction. Duplicate
copies of the plus and minus y sides are shown in gray, to show how those sides attach to the
negative z side. The images that we make for the cubemap must fit together in the same way
as the sides in this layout. However, the sides in the layout are viewed from the outside of the
cube, while the camera will be taking a picture from the inside of the cube. To get the correct
view, we need to filp the picture from the camera horizontally. After some experimentation, I
found that I also need to flip it vertically, perhaps because web images are stored upside down
with respect to the OpenGL convention. We can do both flips with a scaling transformation
by (−1,−1,1). Putting this together, the code for making the cubemap’s negative z image is

gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); // Draw to offscreen buffer.

gl.viewport(0,0,512,512); // Match size of the texture images.

/* Set up projection and modelview matrices for the virtual camera

mat4.perspective(projection, Math.PI/2, 1, 1, 100);

mat4.identity(modelview);

mat4.scale(modelview,modelview,[-1,-1,1]);

/* Attach the cubemap negative z image as the color buffer in the framebuffer,

and "take the picture" by rendering the image. */

gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR ATTACHMENT0,

gl.TEXTURE CUBE MAP NEGATIVE Z, dynamicCubemap, 0);

renderSkyboxAndCubes();

320 CHAPTER 7. 3D GRAPHICS WITH WEBGL

The function in the last line renders the scene, except for the central reflective object itself, and
is responsible for sending the projection and modelview matrices to the shader programs.

For the other five images, we need to aim the camera in a different direction before taking
the picture. That can be done by adding an appropriate rotation to the viewing transformation.
For example, for the positive x image, we need to rotate the camera by −90 degrees about the
y-axis. As a viewing transform, we need the command

mat4.rotateY(modelview, modelview, Math.PI/2);

It might be easier to think of this as a modeling transformation that rotates the positive x side
of the cube into view in front of the camera.

In the sample program, the six cubemap images are created in the function createDynam-
icCubemap(). Read the source code of that function for the full details.

This dynamic cubemap program is a nice example, since it makes use of so many of the
concepts and techniques that we have covered. You should run the program and think about
everything that is going on, and how it was all implemented.

7.5 WebGL Extensions

WebGL is designed to run on a wide variety of devices, including mobile devices that
have relatively limited graphical capabilities. Because of this, only a minimal set of features
is required of all WebGL implementations. However, WebGL has a mechanism for activating
additional, optional features. The optional features are defined in WebGL extensions. A
web page that requires a WebGL extension is not guaranteed to work in every implementation
of WebGL. However, in many cases, it is fairly easy to write a page that can work with or
without the extension, though perhaps with some missing feature when the extension is not
available. There are several dozen extensions whose definitions have been standardized. These
standard extensions are documented at https://www.khronos.org/registry/webgl/extensions/.

Standard OpenGL also has an extension mechanism. Historically, many features from
extensions in one version of OpenGL have become required features in later versions. The
same is true for WebGL extensions: Some of the WebGL 1.0 extensions have been incorporated
as required features in WebGL 2.0.

This section covers the WebGL extension mechanism, and it discusses a few of the standard
extensions.

7.5.1 Anisotropic Filtering

We start with a simple extension that can improve the appearance of textures in some scenes.
The standard filtering methods for sampling an image texture give poor results when the texture
is viewed at an oblique angle. In that case, a pixel on the surface corresponds to a trapezoidal
region in the texture, and the standard minification and magnification filter rules such as
gl.LINEAR don’t handle that case very well. (Filtering was covered in Subsection 4.3.2.) A
better result can be obtained, at the cost of additional computation, using something called
anisotropic filtering , which samples the texture taking the trapezoidal shape into account.
Many GPUs can do anisotropic filtering. It is not a required feature in WebGL implementations,
but it is commonly available as an extension. The anisotropic filtering extension can be used
with both WebGL 1.0 and WebGL 2.0, in the same way.

The sample program webgl/anisotropic-filtering.html shows how to use the anisotropic
filtering extension. It shows a large plane textured with a brick image that can be viewed

7.5. WEBGL EXTENSIONS 321

from a sharp, oblique angle. If the extension is available, then the user can turn anisotropic
filtering on and off. If it is not available, the program will still draw the scene, but only using
standard filtering. Here are two images from the program. Anisotropic filtering is used in the
image on the right. On the left, without anisotropic filtering, the texture is blurred even at
moderate distanced from the viewer:

Each WebGL extension has a name. The function gl.getExtension(name) is used to activate
an extension, where name is a string containing the name of the extension. The return value
of the function is null if the extension is not available, and you should always check the return
value before attempting to use the extension. If the return value is not null, then it is a
JavaScript object. The object might contain, for example, constants that are meant to be
passed to WebGL functions in order to make use of the capabilities of the extension. It can
also contain completely new functions.

The name of the anisotropic filtering extension is “EXT texture filter anisotropic.” To test
for the availability of the extension and to activate it, a program can use a statement such as

anisotropyExtension = gl.getExtension("EXT texture filter anisotropic");

If anisotropyExtension is null, then the extension is not available. If it is not null, then the
object has a property named TEXTURE MAX ANISOTROPY EXT that can be used as a
parameter to gl.texParameteri to set the level, or amount, of anisotropic filtering that will be
applied to the texture. For example, after creating and binding a texture, a program might say

gl.texParameteri(gl.TEXTURE 2D,

anisotropyExtension.TEXTURE MAX ANISOTROPY EXT, 16);

The third parameter is the anisotropic filtering level. Setting the level to 1 will turn off
anisotropic filtering. Higher values give better results. There is an implementation-dependent
maximum level, but asking for a level greater than the maximum is not an error—you will
simply get the maximum level. To find out the maximum, you can use

max = gl.getParameter(anisotropyExtension.MAX TEXTURE MAX ANISOTROPY EXT);

It is recommended to use gl.LINEAR MIPMAP LINEAR as the minification filter and
gl.LINEAR as the magnification filter when using anisotropic filtering. A texture would
typically be configured using code similar to the following:

322 CHAPTER 7. 3D GRAPHICS WITH WEBGL

gl.bindTexture(gl.TEXTURE 2D);

gl.generateMipmap(gl.TEXTURE 2D); // Need mipmaps for the minification filter!

gl.texParameteri(gl.TEXTURE 2D,gl.TEXTURE MIN FILTER,gl.LINEAR MIPMAP LINEAR);

gl.texParameteri(gl.TEXTURE 2D,gl.TEXTURE MAG FILTER,gl.LINEAR);

if (anisotropyExtension != null) {

// turn on anisotropic filtering only if it is available.

max = gl.getParameter(anisotropyExtension.MAX TEXTURE MAX ANISOTROPY EXT);

gl.texParameteri(gl.TEXTURE 2D,

anisotropyExtension.TEXTURE MAX ANISOTROPY EXT, max);

}

If the extension is not available, the texture might not look as good as it might have, but it
will still work (and only a very observant user is likely to notice).

7.5.2 Floating-Point Colors

As a second example, we consider a pair of extensions that are named “OES texture float”
and “WEBGL color buffer float”. The first of these makes it possible to use textures in
which color component values are floating-point numbers, instead of eight-bit integers. The
second makes it possible to render to such a texture by using it as the color buffer in a
framebuffer. (These extensions are only for WebGL 1.0, but there is a similar WebGL 2.0
extension, EXT color buffer float.)

Why would someone want to do this? Eight-bit integers are fine for representing colors
visually, but they don’t have enough precision for doing accurate calculations. For applications
that do significant numerical processing with color components, floating-point values are
essential.

As an example, consider finding the average color value of an image, which requires adding
up the color values from a large number of pixels. This is something that can be speeded up by
using the parallel processing power of a GPU. My technique for doing so uses two framebuffers,
with two textures serving as color buffers. I assume that the image width and height are powers
of two. Start by drawing the image to the first texture. Think of the image as divided in half,
horizontally and vertically, giving four equal-sizes rectangles. As a first step, compute a half-size
image that is the average of those four rectangles. That is, the color of a pixel in the half-size
image is the average of the colors of four pixels in the original. The averaged image can be
computed by drawing a half-size rectangle to the second framebuffer, using multiple samples
from the image in the first texture. Here is a fragment shader that does the work:

#ifdef GL FRAGMENT PRECISION HIGH

precision highp float;

#else

precision mediump float;

#endif

varying vec2 v coords; // Texture coordinates, same as object coords.

uniform sampler2D texture; // A texture containing the original image.

uniform float offset; // Size of square in texture coordinate space.

void main() {

vec4 a = texture2D(texture, v coords);

vec4 b = texture2D(texture, v coords + vec2(offset,0));

vec4 c = texture2D(texture, v coords + vec2(0,offset));

vec4 d = texture2D(texture, v coords + vec2(offset,offset));

gl FragColor = (a + b + c + d)/4.0; // Color is average of four samples.

}

7.5. WEBGL EXTENSIONS 323

In this first pass, the square with vertices at (0,0) and (0.5,0.5) is rendered, and offset is 0.5.
The drawing is done in a coordinate system in which the square with vertices (0,0) and (1,1)
covers the entire drawing area. In that coordinate system, the square with vertices at (0,0) and
(0.5,0.5) covers the lower left quarter of the drawing area. The first sample in the fragment
shader comes from that quarter of the texture image, and the other three samples come from
corresponding points in the other three quarters of the the image.

In a second pass, the roles of the two framebuffers are swapped, and a square with vertices
at (0,0) and (0.25,0.25) is drawn, using the same fragment shader with offset equal to 0.25.
Since the framebuffers were swapped, the second pass is sampling the half-sized image that
was produced in the first pass. The result is a quarter-sized image that is the average of four
rectangles that cover the half-sized image—and therefore of 16 rectangles that cover the original
image. This can be repeated, with smaller and smaller squares, until the resulting image is small
enough that its colors can be efficiently read back into the CPU and averaged there. The result
is a color value that is the average of all the pixels from the original image. We expect that,
because a lot of the work is done in parallel by the GPU, we can get the answer much faster
using this technique than if we had simply done all the computations on the CPU.

The point here is that for an accurate result, we want the color components to be represented
as floating point values in the GPU, not as eight-bit integers.

∗ ∗ ∗

I use this technique in the sample program webgl/image-evolver.html. In that program, the
problem is to find the average difference in color between two images. I start by drawing the
two images to two textures. I then render a difference image, in which the color of a pixel is
the absolute value of the difference between the colors of the same pixel in the two textures.
This is done with another special-purpose shader program. I then apply the above averaging
process to the difference image.

The actual point of the sample program is to try to “evolve” an approximation to a given
image, using a “genetic algorithm.” (It was inspired by two students from my Fall, 2015 class,
Felix Taschbach and Pieter Schaap, who worked on a similar program for their final project,
though they didn’t use the GPU.) In the program, the average difference between the original
image and an approximation is used as a measure of how good the approximation is. I used
a very simple grayscale image as the goal, with approximations made from small squares.
You don’t need to know anything about the genetic algorithm, especially since the program
has no practical purpose. However, the source code is heavily commented if you want to try to
understand it. Here is a screenshot from one particularly successful run of the program, showing
the original image and the best approximation produced after running the genetic algorithm
for 7500 generations:

324 CHAPTER 7. 3D GRAPHICS WITH WEBGL

But what interests us here is how the program uses the WebGL floating-point color
extensions. The program attempts to activate the extensions during initialization using the
following code:

let EXTcbf = gl.getExtension("WEBGL color buffer float");

let EXTtf = gl.getExtension("OES texture float");

if (!EXTcbf || !EXTtf) {

throw new Error("This program requires the WebGL extension" +

"WEBGL color buffer float, which is not available in this browser.");

}

The program requires the extensions, so an exception is thrown if they can’t be activated.
The extension objects, EXTcbf and EXTtf, dont’t have any properties that are needed in this
program; however, it is still necessary to call gl.getExension to activate the extensions.

The program creates two floating-point textures that are attached to framebuffers for use
as color buffers. (See Subsection 7.4.2.) Here is the code that creates one of those textures:

tex1 = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, tex1);

gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, 256, 256, 0, gl.RGBA, gl.FLOAT, null);

The parameter gl.FLOAT in the last line specifies that the data type for the color components in
the texture is float. That data type would be an error if the extensions had not been activated.

When the GPU does the averaging computation with these textures, it is doing floating-
point calculations. The program computes a series of smaller and smaller averaged images,
stopping with a 4-by-4 pixel image. It then reads the 16 pixel colors back from the texture
using the following code:

let data = new Float32Array(4*4*4); // 16 pixels, 4 numbers per pixels

gl.readPixels(0,0,4,4,gl.RGBA,gl.FLOAT,data)

The call to gl.readPixels reads the color data for the 16 pixels into the array, data. Again, the
gl.FLOAT parameter specifies the data type, and that parameter value is legal in gl.readPixels
only because the extensions have been activated.

7.5. WEBGL EXTENSIONS 325

7.5.3 Instanced Drawing in WebGL 1.0

Subsection 6.1.7 and Subsection 6.1.8 discussed two features of WebGL 2.0, Vertex Array
Objects and instanced drawing. Although these features are not a standard part of WebGL 1.0,
both are available as optional WebGL 1.0 extensions. VAOs are enabled by the extension
“OES vertex array object”, while instanced drawing is enabled by “ANGLE instanced arrays”.
As an example, we look briefly at instanced drawing in WebGL 1.0.

The sample WebGL 1.0 program webgl/instancing-test-webgl1.html uses the instanced
drawing extension. It is a copy of the sample WebGL 2.0 program from Subsection 6.1.8,
modified to use version 1.0, but with exactly the same functionality. To use instanced drawing
in WebGL 1.0, the appropriate extension has to be enabled:

instancedDrawExt = gl.getExtension("ANGLE instanced arrays");

if (!instancedDrawExt) {

throw new Error("WebGL 1.0 Instanced Arrays extension is required.");

}

The extension object, instancedDrawExt, contains functions that are equivalent to the We-
bGL 2.0 functions for instanced drawing: gl.vertexAttribDivisor(). gl.drawArraysInstanced(),
and gl.drawElementsInstanced(). However, the functions are properties of the extension object,
not of the graphics context gl, and their names have the word “ANGLE” appended. So, the
command

gl.drawArraysInstanced(gl.TRIANGLE FAN, 0, 64, DISK COUNT);

from the original WebGL 2.0 program is replaced by

instancedDrawExt.drawArraysInstancedANGLE(gl.TRIANGLE FAN, 0, 64, DISK COUNT);

in the WebGL 1.0 program. And

gl.vertexAttribDivisor(a color loc,1);

becomes

instancedDrawExt.vertexAttribDivisorANGLE(a color loc,1);

Note that, in general, a WebGL 1.0 program that does not use any extensions will work as
a WebGL 2.0 program without any modifications. However, if the WebGL 1.0 program uses
extensions that are no longer available or no longer needed in WebGL 2.0, some work will be
required to convert the program to WebGL 2.0.

7.5.4 Deferred Shading

I will discuss one more WebGL 1.0 extension, one that is useful for an important rendering
technique called deferred shading . I don’t have a sample program for deferred rendering,
and I will only discuss it in general terms.

Deferred shading is used as an optimization when rendering complex scenes, and it is often
used to speed up rendering in video games. It is most closely associated with lighting, since it
can be used to render scenes with large numbers of light sources, but it can also be useful for
other effects.

Recall that the number of lights that can be represented in OpenGL or in a WebGL shader
is limited. But scenes with many lights can be rendered using a multi-pass algorithm: Each
pass computes the contribution of one light, or a small number of lights, and the results of the
passes are added together to give the complete scene. The problem is that, if the rendering in

326 CHAPTER 7. 3D GRAPHICS WITH WEBGL

each pass is done in the normal way, then there are a lot of things that have to be recomputed,
in exactly the same way, in each pass. For example, assuming that per-pixel lighting is used,
that includes computing material properties and a unit normal vector for each pixel in the
image. Deferred shading aims to avoid the duplicated effort.

In deferred shading, a first pass is used to compute material properties, normal vectors, and
whatever other data is needed, for each pixel in the image. All of that data is saved, to be used
in additional passes that will compute lighting and possibly other effects. For a given pixel,
only the data for the object that is actually visible at the pixel is saved, since data for hidden
surfaces is not needed to render the scene. The first pass uses the geometry and attributes
of objects in the scene. Everything that the later passes need to know about geometry and
attributes is in the saved data.

The saved data can be stored in texture objects. (Floating point textures are ideal for this,
since the data will be used in further calculations.) In this case, the values in the textures don’t
necessarily represent images. For example, the RGB color components in one texture might
represent the x, y, and z coordinates of a normal vector. And if a depth value is needed in later
passes, it might be stored in the alpha color component of the same texture. Another texture
might hold a diffuse color, while a third holds a specular color in its RGB components and a
shininess value in its alpha component. Shader programs are free to interpret data in a texture
however they like.

∗ ∗ ∗

A WebGL shader can write data to a texture, using a framebuffer. But standard WebGL 1.0
can only write to one framebuffer at a time. Now, it would be possible to use a separate pass for
each texture that we need to compute, but that would involve a lot of redundant calculations,
which is what we are trying to avoid. What we need is a WebGL extension that makes it
possible for a shader to write to several framebuffers simultaneously. The extension that we
need is named “WEBGL draw buffers”. When that extension is activated, it becomes possible
to attach several textures (or renderbuffers) to a framebuffer, and it becomes possible for a
shader to write data to all of the attached shaders simultaneously. The extension is relatively
complicated to use. It must be activated, as usual, with a statement of the form

EXTdb = gl.getExtension("WEBGL draw buffers");

Assuming that the extension is available, the maximum number of color buffers that can be used
in a shader is given by EXTdb.MAX DRAW BUFFERS WEBGL, which will be at least four.
With the extension in place, you can attach multiple textures as color buffers for a framebuffer,
using code of the form

gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);

gl.framebufferTexture2D(gl.FRAMEBUFFER,

EXTdb.COLOR ATTACHMENT0 WEBGL, gl.TEXTURE 2D, texture1, 0);

gl.framebufferTexture2D(gl.FRAMEBUFFER,

EXTdb.COLOR ATTACHMENT1 WEBGL, gl.TEXTURE 2D, texture2, 0);

and so on, using constants such as EXTdb.COLOR ATTACHMENT1 WEBGL from the
extension object to specify the attachment points.

Usually in a fragment shader, the color that is output to the color buffer is specified by
assigning a value to the special variable gl FragColor. That changes when multiple color buffers
are used. In that case, instead of gl FragColor, the fragment shader has a special variable
gl FragData which is an array of vec4, one for each possible color buffer. Colors are output to
the color buffers by assigning values to gl FragData[0], gl FragData[1], Because this is a

7.5. WEBGL EXTENSIONS 327

change in the legal syntax of the shader, the extension must also be activated in the fragment
shader source code by adding the line

#extension GL EXT draw buffers : require

to the beginning of the code. Suppose, for example, that we want to store a normal vector, a
diffuse color, a specular color, and object coordinates in the color buffers. Let’s say that these
values are input to the fragment shader as varying variables or uniform variables, except for
the diffuse color, which is sampled from a texture. Then the fragment shader might take the
form

#extension GL EXT draw buffers : require

precision highp float;

varying vec3 v normal, v objectCoords;

varying vec2 v texCoords;

uniform vec3 u specular;

uniform float u shininess;

uniform sampler2D texture;

void main() {

gl FragData[0] = vec4(normalize(v normal), 0);

gl FragData[1] = vec4(v object coords, 1);

gl FragData[2] = texture2D(texture, v texCoords);

gl fragData[3] = vec4(u specular, u shininess);

}

The final requirement for using the extension is to specify the correspondence between the
indices that are used in gl FragData and the color buffers that have been attached to the frame-
buffer. It seems like the correspondence should be automatic, but it’s not. You have to specify
it using the JavaScript function, EXTdb.drawBuffersWEBGL from the extension object. This
function takes an array as parameter, and the values in the array are chosen from the constants
EXTdb.COLOR ATTACHMENT0 WEBGL, EXTdb.COLOR ATTACHMENT1 WEBGL,
These are the same constants that are used to specify the color buffer attachment points in a
framebuffer. For example, if for some reason you wanted a fragment shader to output to the
color buffers that are attached at attachment points 2 and 3, you would call

EXTdb.drawBuffersWEBGL([

EXTdb.COLOR ATTACHMENT2 WEBGL,

EXTdb.COLOR ATTACHMENT3 WEBGL

]);

After all that setup, you are ready to do the first pass for deferred shading. For the
subsequent passes, you would use a different shader, with a single color buffer. For those
passes, you want to run the fragment shader once for each pixel in the image. The fragment
shader will use the pixel data that was saved in the first pass, together with other information
such as light properties, to compute the output color for the pixel. You can trigger a call to
the fragment shader for each pixel simply by drawing a single rectangle that covers the image.

The theory behind deferred shading is not all that complicated, but there are a lot of details
to get right in the implementation. Deferred shading is just one of many tricks that are used
by video game programmers to improve the rendering speed for their games.

7.5.5 Multiple Draw Buffers in WebGL 2.0

The ability to write to multiple draw buffers is a standard part of WebGL 2.0. The sample
program webgl/multiple-draw-buffers-webgl2.html is a simple demonstration. This program

328 CHAPTER 7. 3D GRAPHICS WITH WEBGL

takes a sample image and breaks it up into three separate images that show the red, green, and
blue color components from the original image. It does that by attaching three textures to a
framebuffer, and writing each color component to one of the textures. The image from each
texture is then copied to the screen as a grayscale image.

The program has to create and allocate storage for three texture objects, and bind them to
a frame buffer as color buffers. Here is the code that does this:

framebuffer = gl.createFramebuffer();

gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer);

texture0 = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, texture0);

gl.texStorage2D(gl.TEXTURE 2D, 1, gl.R8, 320, 399);

gl.framebufferTexture2D(gl.FRAMEBUFFER,

gl.COLOR ATTACHMENT0, gl.TEXTURE 2D, texture0, 0);

texture1 = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, texture1);

gl.texStorage2D(gl.TEXTURE 2D, 1, gl.R8, 320, 399);

gl.framebufferTexture2D(gl.FRAMEBUFFER,

gl.COLOR ATTACHMENT1, gl.TEXTURE 2D, texture1, 0);

texture2 = gl.createTexture();

gl.bindTexture(gl.TEXTURE 2D, texture2);

gl.texStorage2D(gl.TEXTURE 2D, 1, gl.R8, 320, 399);

gl.framebufferTexture2D(gl.FRAMEBUFFER,

gl.COLOR ATTACHMENT2, gl.TEXTURE 2D, texture2, 0);

The textures are created with format gl.R8, which stores one eight-bit unsigned integer per
pixel; that is sufficient for a grayscale image. (For this format, an 8-bit integer is considered to
be scaled to represent a color value in the range 0.0 to 1.0.)

The function gl.drawBuffers() must be called to enable writing to multiple draw buffers and
to specify the output destinations. The destinations are specified as an array of attachment
points on the framebuffer:

gl.drawBuffers([

gl.COLOR ATTACHMENT0, gl.COLOR ATTACHMENT1, gl.COLOR ATTACHMENT2

]);

The shader programs for this example are written in GLSL ES 3.00, which uses out variables
in the fragment shader to send output to draw buffers. When there is a single out variable, it
automatically sends output to the first draw buffer (draw buffer number zero). When there is
more than one out variable, the destination number must be specified for every out variable
using a layout qualifier. The location specified for an out variable in the fragment shader is an
index into the array of attachment points that was passed to gl.drawBuffers(). As an example,
here is the fragment shader from the sample program:

#version 300 es

precision mediump float;

uniform sampler2D u picture; // texture containing original image

in vec2 v coords;

layout(location = 0) out float red; // write to draw buffer 0

layout(location = 1) out float green; // write to draw buffer 1

layout(location = 2) out float blue; // write to draw buffer 2

void main() {

vec4 color = texture(u picture, v coords);

red = color.r;

7.5. WEBGL EXTENSIONS 329

green = color.g;

blue = color.b;

}

This fragment shader sends the separate RGB color components from the original image to the
three textures that are attached to the framebuffer.

This is a fairly simple and not-very-useful example of using multiple draw buffers, but it
does illustrate all the steps that are required to do so.

330 CHAPTER 7. 3D GRAPHICS WITH WEBGL

Chapter 8

Beyond Basic 3D Graphics

The first seven chapters of this textbook have covered basic real-time computer graphics,
that is, graphics systems in which an image can be generated in a fraction of a second. The
typical case is a video game, where new frames can be rendered as many as sixty times per
second. Very complex and realistic-looking scenes can be rendered in real time, using techniques
covered in this book and the immense processing power of modern GPUs, plus some tricks and
advanced algorithms. Modern high-end GPUs have begun adding some direct hardware support
for ray tracing and global illumination, but real-time graphics still can’t match the realism of
the very highest quality computer graphics, such as what can be found in movies. In fact,
the CGI (computer generated imagery) in today’s movies is sometimes indistinguishable from
reality. Getting graphics of that quality can require hours of computing time to render a single
frame.

This chapter is a very brief look at some techniques that can be used for very high quality
graphics. The discussion will be in general terms. I won’t be giving sample code or detailed
discussions of the mathematics behind the techniques, but I hope to provide at least a basic
conceptual understanding.

The first thing that you should understand, though, is that most of what you have leaned
so far still applies. Scenes are still composed using geometric primitives, transformations,
materials, textures, and light sources (although perhaps using more advanced material
properties and lighting than we have encountered so far). The graphic designers working on
CGI for a movie can see real time previews of their work that are rendered using techniques
that we have covered. The final scene that you see in the movie is just rendered using different,
much more computation-intensive techniques.

8.1 Ray Tracing

Ray tracing is probably the best known technique for higher quality graphics. The idea
behind it is not complicated: To find out what you see when you look in a given direction,
consider a ray of light that arrives at your location from that direction, and follow that light
ray backwards to see where it came from. Or, as it is usually phrased, cast a ray from your
location in a given direction, and see what it hits. That’s what you see when you look in
that direction. The operation of determining what is hit by a ray is called ray casting . It is
fundamental to ray tracing and to other advanced graphics techniques.

331

332 CHAPTER 8. BEYOND BASIC 3D GRAPHICS

8.1.1 Ray Casting

We have already seen ray casting used by objects of type THREE.RayCaster in the three.js API
(Subsection 5.3.2). A Raycaster takes an initial point and a direction, given as a vector. The
point and vector determine a ray, that is, a half-infinite line that extends from a starting point,
in some direction, to infinity. The Raycaster can find all the intersections of the ray with a given
set of objects in a three.js scene, sorted by order of distance from the rays’s starting point. In
this chapter, we are interested in the first intersection, the one that is closest to the starting
point.

To apply ray casting to rendering, let’s say that we have a scene consisting of objects in
three-dimensional space, using point lights and directional lights for illumination. We want to
render an image of the scene from a given point of view. It’s convenient to imagine the image
as a kind of rectangular window through which the scene is being viewed. Given a point in the
image, we need to know how to color that point. To compute a color for the point, we begin by
casting a ray from the position of the viewer through the point and into the scene. We want to
find the first intersection of that ray with an object in the scene:

Viewer Image

A

B

D

Light 1

Light 2

In this illustration, the scene contains several red spheres and two point lights. A ray is cast
from the viewpoint (A) through a point (B) in the image. The ray intersects two of the spheres,
but we are only interested in the intersection point (C) that is closest to the viewpoint. That’s
the point that is visible at B in the image.

We need to compute the color that the viewer will see at point B. For that, just as in
OpenGL, we need a normal vector at point C, and we need the material properties of the
surface at C. That data has to be computable from the scene description. The visible color
also depends on the light that is illuminating the surface. Consider a light source, and let L
be the vector that points from C in the direction of the light. If the angle between L and the
normal vector is greater than 90 degrees, then the light source lies behind the surface and so
does not add any illumination. Otherwise, we can use ray casting again: Cast a ray from C in
the direction L. If that ray hits an object before it gets to the light, then that object will block
light from that source from reaching C. That’s the case for Light 2 in the illustration: The ray
from C in the direction of Light 2 intersects an object at point E before it gets to the light. On
the other hand, the point C is illuminated by Light 1. A ray from a point on a surface in the
direction of a light source is called a shadow ray , because it can be used to determine whether
the surface point lies in the shadow of another object.

With all this information, we can color point B in the image using the same lighting equation
that is used in OpenGL (Subsection 4.1.4). Ray casting solves the hidden surface problem with

8.1. RAY TRACING 333

no need for a depth buffer. And, as a bonus, we get shadows, which are hard to do in OpenGL!
(If the ray from the viewpoint through B doesn’t hit any objects in the scene, then B would

be assigned a background color or a “sky” color that varies with different directions. Or maybe
the entire scene is surrounded by a skybox, and a ray that doesn’t hit any other object will hit
the skybox.)

Ray casting is conceptually simple, but implementation details can be tricky. Spheres are
actually fairly easy. There is a formula for finding the intersections of a line with a sphere, and
a normal vector at a point on a sphere has the same direction as the line from the center of the
sphere to that point. Assuming that the sphere has a uniform material, we have all the data
we need.

However, surfaces are often given as triangular meshes, with properties specified only at
the vertices of the triangles. Suppose that the intersection point found by our ray caster lies
in one of those triangles. We will have to compute the properties of that intersection point by
interpolating the property values that were specified at the vertices of the triangle.

The interpolation algorithm typically uses something called barycentric coordinates on
the triangle: If A, B, and C are the vertices of a triangle, and P is a point in the triangle, then
P can be written uniquely in the form a*A + b*B + c*C, where a, b, and c are numbers in the
range zero to one, and a + b + c = 1. The coefficients a, b, and c are called the barycentric
coordinates of the point P in the triangle. If some quantity has values V(A), V(B), and V(C)
at the vertices of the triangle, then we can use the barycentric coordinates of P to get an
interpolated value at P:

V(P) = a*V(A) + b*V(B) + c*V(C)

The quantity might be, for example, diffuse color, texture coordinates, or a normal vector.
(Of course, I’m still leaving out a lot of the math here—how to test whether a line intersects a
triangle and how to find barycentric coordinates of the point of intersection. There are formulas,
but conceptually, they wouldn’t add much to the discussion.)

8.1.2 Recursive Ray Tracing

Basic ray casting can be used to compute OpenGL-style rendering and, with the addition of
shadow rays, to implement shadows as well. More features can be implemented by casting a
few more rays. The improved algorithm is called ray tracing .

Consider specular reflection. In OpenGL, specular reflection can make an object look shiny
in the sense that specular highlights can be seen where the object reflects light from a light
source towards the viewer. But in reality, an object that has a mirror-like surface doesn’t just
reflect light sources; it also reflects other objects. If we are trying to compute a color for a point,
A, on a mirror-like surface, we need to consider the contribution to that color from mirror-like
reflection of other objects. To do that, we can cast a “reflected ray” from A. The direction of
the reflected ray is determined by the normal vector to the surface at A and by the direction
from A to the viewer. This illustration shows a 2D version. Think of it as a cross-section of
the situation in 3D:

334 CHAPTER 8. BEYOND BASIC 3D GRAPHICS

Viewer

Image

A

B

C

D

Here, the reflected ray from point A hits the purple square at point B, and the viewer will see
a reflection of point B at A. (Remember that in ray tracing, we follow the path of light rays
backwards from the viewer, to find out where they came from.)

To find out what the reflection of B looks like, we need to know the color of the the ray that
arrives at A from B. But finding a color for B is the same sort of problem as finding a color for
A, and we should solve it in the same way: by applying the ray-tracing algorithm to B ! That
is, we use the material properties of the surface at B, we cast shadow rays from B towards light
sources to determine how B is illuminated, and—if the purple square has a mirror-like surface—
we cast a reflected ray from B to find out what it reflects. In the illustration, the reflected ray
from B hits a pentagon at point C, so the square reflects an image of the pentagon, and the
disk reflects an image of the square, including its reflection of the pentagon. Ray-tracing can
handle multiple mirror-like reflections between objects in a scene!

Because applying the ray-tracing algorithm at one point can involve applying the same
algorithm at additional points, ray tracing is a recursive algorithm. To distinguish this from
simple ray casting, ray tracing is often referred to as “recursive ray tracing.”

Ray tracing can be extended in a similar way to handle transparency or, more properly,
translucency. When computing a color for a point on a translucent object, we need to take into
account light that arrives at that point through the object. To do that, we can cast yet another
ray from that point, this time into the object. When a light ray passes from one medium, such
as air, into another medium, such as glass, the path of the light ray can bend. This bending is
called refraction, and the ray that is cast through a translucent object is called the “refracted
ray.” The above illustration shows the refracted ray from point A passing through the object
and emerging from the object at D. To find a color for that ray, we would need to find out
what, if anything, it hits, and we would need to apply ray tracing recursively at the point of
intersection.

(The degree of bending of a light ray that passes from one medium to another depends on
a property of the two media called the “index of refraction.” More exactly, it depends on the
ratio between the two indices of refraction. In practice, the index of refraction outside objects
is often taken to be equal to one, so that the bending depends only on the index of refraction
of an object. The index of refraction is another material property for translucent objects. It is
often abbreviated IOR.)

∗ ∗ ∗

We should look at the computations in a little more detail. The goal is to compute a color
for a point on an image. We cast a ray from the viewpoint through the image and into the

8.1. RAY TRACING 335

scene, and determine the first intersection point of the ray with an object. The color of that
point is computed by adding up the contributions from different sources.

First, there is diffuse, specular, and possibly ambient reflection of light from various light
sources. These contributions are based on the diffuse, specular, and ambient colors of the
object, on the normal vector to the object, and on the properties of the light sources. Note that
some color properties of the object, usually the ambient and diffuse colors, might come from a
texture. The specular contribution can produce specular highlights, which are essentially the
reflections of light sources. Shadow rays are used to determine which directional and point
lights illuminate the object; aside from that, this part of the calculation is similar to OpenGL.

Next, if the surface has mirror-like reflection, then a reflected ray is cast and ray tracing
is applied recursively to find a color for that ray. The contribution from that ray is combined
with other contributions to the color of the surface, depending on the strength of the mirror
reflection. For a perfect mirror, the reflected ray contributes 100% of the color, but in general
the contribution is less. Mirror reflectivity is a new material property. It is responsible for
reflections of one object on the surface of another, while specular color is responsible for specular
highlights.

Finally, if the object is translucent, then a refracted ray is cast, and ray tracing is used to
find its color. The contribution of that ray to the color of the object depends on the degree of
transparency of the object, since some of the light can be absorbed rather than transmitted.
The degree of transparency can depend on the wavelength of the light—as it does, for example,
in colored glass.

And, of course, all of these calculations need to be done three times, for the red, the green,
and the blue components of the color.

The ray tracing algorithm is recursive, and, as every programmer knows, recursion needs
a base case. That is, there has to come a time when, instead of calling itself, the algorithm
simply returns a value. A base case occurs whenever a casted ray does not intersect any
objects. Another kind of base case can occur when it is determined that casting more rays
cannot contribute any significant amount to the color of the image. For example, whenever a
ray is reflected, some of that ray is absorbed rather than reflected, depending on the color of
the object from which it is reflected. After reflecting many times, a ray would have very little
color left to contribute to the final result. A ray can also lose energy because of attenuation of
light with distance, and a ray-tracing algorithm might take that into account. In addition, a ray
tracing algorithm should always be run with a maximum recursion depth, to put an absolute
limit on the number of times the algorithm will call itself.

8.1.3 Limitations of Ray Tracing

Although ray tracing can produce very realistic images, there are some things that it can’t do.
For example, while ray tracing works well for point lights and directional lights, it can’t handle
area lights. An area light is one that has area. That is, it is an object that emits light from
its entire surface area rather than from a single point. Of course, real lights are area lights.
A fluorescent light emits light from the surface of a cylinder. A brightly lit window can be
considered to be a kind of area light. Even a light bulb does not really radiate light from a
single point. Ray tracing uses shadow rays to tell whether a light source illuminates an object.
But a shadow ray is cast in only one direction, and can only hit one point on an area light. To
implement area lights exactly, a different shadow ray would be needed for each point on the
surface of the light.

336 CHAPTER 8. BEYOND BASIC 3D GRAPHICS

A ray tracer can handle area lights in an approximate way, by replacing the area light with
a grid of point lights. It can then cast a shadow ray towards each point in the grid. Using more
point lights in the grid will give a better approximation. Of course, casting all those shadow
rays can add significantly to the computation time.

Another problem with lighting in ray tracing is that it doesn’t take into account illumination
by reflected light. For example, light from a light source should reflect off a mirror, and the
reflected light should illuminate other objects. Ray tracing uses shadow rays to tell whether a
light source illuminates an object. But that won’t work for reflected light, since the algorithm
doesn’t know where to aim the shadow ray—reflected light could come from any direction.

This is not just a problem with mirrors. Any reflected light, even from diffuse reflection,
should illuminate nearby objects. For example, light that is reflected diffusely from a green
object should add a green tint to nearby objects. This effect is called “color bleeding.” In
reality, light can be reflected and re-reflected many times, contributing a bit of color to each
object that it hits. As with area lights, approximate methods can be added to ray tracing to
simulate this effect. For example, “photon mapping” adds a pre-processing phase to ray tracing
which simulates the emission of a large number of light rays, or “photons,” from light sources,
and tracks their paths through the scene to see how they add color to the objects that they hit.
The information from this “photon map” is then used during the ray tracing phase to produce
more realistic colors.

OpenGL uses ambient light as an approximation for light that has been reflected and re-
reflected many times. Ambient light is assumed to illuminate every object equally. However,
that is a poor approximation. A better approximation uses ambient occlusion , the idea that
ambient light heading towards a surface can be blocked, or “occluded,” by nearby objects.
Like ambient light, ambient occlusion is not physically realistic, but in practice, it can make
lighting look more realistic and objects look more three-dimensional. One technique for
estimating ambient occlusion uses ray casting. We assume that the ambient light comes from
the background of the scene. To estimate ambient occlusion at a point, cast a number of
rays from that point in random directions, and count how many of those rays are blocked by
geometry in the scene and how many reach the sky. The more rays that are blocked, the greater
the degree of ambient occlusion at that point.

Algorithms that attempt to take into account all of the interactions of light with objects in
a scene are said to use global illumination . Approximate methods such as those mentioned
above can be added on to ray tracing to increase its realism, at the cost of significantly increased
complexity and a potentially large amount of extra computing. We begin to see why very
realistic images can take so long to compute! In the next section we will look at a method that
attempts to handle global illumination exactly.

8.2 Path Tracing

We have seen how ray tracing can be extended to approximate a variety of effects that are
not handled by the basic algorithm. We look next at an algorithm that accounts for all those
effects and more in a fairly straightforward and unified way: path tracing . Like ray tracing,
path tracing computes colors for points in an image by tracing the paths of light rays backwards
from the viewer through points on the image and into the scene. But in path tracing, the idea
is to account for all possible paths that the light could have followed. Of course, that is not
literally possible, but following a large number of paths can give a good approximation—one
that gets better as the number of paths is increased (“Forward path tracing,” where paths of

8.2. PATH TRACING 337

light rays emitted from light sources are traced forward in time, is also sometimes used.)

8.2.1 BSDF’s

In order to model a wide variety of physical phenomena, path tracing uses a generalization of the
idea of material property. In OpenGL, a material is a combination of ambient, diffuse, specular,
and emission colors, plus shininess. These properties, except for emission color, model how the
surface interacts with light. Material properties can vary from point to point on a surface;
that’s an example of a texture.

OpenGL material is only a rough approximation of reality. In path tracing, a more general
notion is used that is capable of more accurately representing the properties of almost any real
physical surface or volume. The replacement for materials is call a BSDF , or Bidirectional
Scattering Distribution Function.

Think about how light that arrives at some point can be affected by the physical properties
of whatever substance exists at that point. Some of the light might be absorbed. Some might
pass through the point without being affected at all. And some might be “scattered,” that is,
sent off in another direction. In fact, we consider passing through the point as a special case
of scattering. A BSDF describes how light is scattered from each point on a surface or in a
volume.

Think of a single ray, or photon, of light that arrives at some point. What happens to it can
depend on the direction from which it arrives. In general, assuming that it is not absorbed, the
light is more likely to be scattered in some directions than in others. (As in specular reflection,
for example.) The BSDF at the point gives the probability that the ray will leave the point
heading in a given direction. It is a “bidirectional” function because the answer is a function of
two directions, the direction from which the light arrives and the outgoing direction that you
are asking about. (It is a “distribution function” in the sense of the mathematical theory of
continuous probability distributions, but you don’t need to understand that to get the general
idea. For us, it’s enough to understand that the function says how light coming in from a
given direction is distributed among possible outgoing directions.) Note that a BSDF is also a
function of the point that you are talking about, and it is generally a function of the wavelength
of the light as well.

Any point in space can be assigned a BSDF. For empty space, the BSDF is trivial: It simply
says that light arriving at a point has a 100% probability of continuing in the same direction.
But light passing through fog or dusty air or dirty water has some probability of being absorbed
and some probability of being scattered to a random direction. Similar remarks apply to light
passing through the interior of a translucent solid object.

Traditionally, though, computer graphics has been mostly concerned with what happens
to light at the surface of an object. Light can be absorbed or reflected or, if the object is
translucent, transmitted through the surface. The function that describes the reflection of light
from a surface is sometimes called a BRDF (Bidirectional Reflectance Distribution Function),
and the formula for transmission of light is a BTDF (Bidirectional Transmission Distribution
function). The BSDF for a surface is a combination of the two.

Let’s consider OpenGL materials in terms of BSDFs. In basic OpenGL, light can only be
reflected or absorbed. For diffuse reflection, light has an equal probability of being reflected
in every direction that makes an angle of less than 90 degrees with the normal vector to the
surface, and there is no dependence on the direction from which the light arrives. For specular
reflection, the incoming light direction matters. In OpenGL, the possible outgoing directions
for specularly reflected light form a cone, where the angle between the axis of the cone and the

338 CHAPTER 8. BEYOND BASIC 3D GRAPHICS

normal vector is equal to the angle between the normal vector and the incoming light direction.
The axis of the cone is the most likely direction for outgoing light, and the probability falls
off as the angle between the outgoing direction and the direction of the axis increases. The
rate of falloff is specified by the shininess property of the material. The BRFD for the surface
combines the diffuse and specular reflection. (The ambient material property doesn’t fit well
into the BSDF framework, since physically there is no such thing as an “ambient light” that is
somehow different from regular light.)

Ray tracing adds two new possibilities to the interaction of light with a surface: perfect,
mirror-like reflection, where the outgoing light makes exactly the same angle with the normal
vector as the incoming light, and transmission of light into a translucent object, where the
outgoing angle is determined by the indices of refraction outside and inside the object.

But BSDFs can provide even more realistic models of the interaction of light with surfaces.
For example, the distinction between mirror-like reflection of an object and specular reflection
of a light source is artificial. A perfect mirror should reflect both light sources and objects in a
mirror-like way. For a shiny but rough surface, all specular reflection would send the light in a
cone of directions, giving fuzzy images of objects and lights alike. A BSFD should handle both
cases, and it shouldn’t distinguish between light from light sources and light reflected off other
objects.

BSDFs can also correctly handle a phenomenon called subsurface scattering , which can
be an important visual effect for materials that are just a bit translucent, such as milk, jade, and
skin. In sub-surface scattering, light that hits a surface can be transmitted into the object, be
scattered a few times internally inside the object, and then emerge from the surface at another
point. How the light behaves inside the object is determined by the BSDF of the material in
the interior of the object. The BSDF in this case would be similar to the one for fog, except
that the probability of scattering would be larger.

The point is that just about any physically realistic material can be modeled by a correctly
chosen BSDF.

8.2.2 The Path Tracing Algorithm

Path tracing is based on a formula known as the “rendering equation.” The formula says that
the amount of light energy leaving a given point in a given direction is equal to the amount of
light energy emitted by the point in that direction plus the amount of light energy arriving at
the point from other sources that is then scattered in that direction.

Here, emitted light means light that is created, as by a light source. In the rendering
equation, any object can be an emitter of light. In OpenGL terms, it’s as if an object with
an emission color actually emits light that can illuminate other objects. An area light is just
an extended object that emits light from every point, and it is common to illuminate scenes
with large light-emitting objects. (In fact, in a typical path tracing setup, point lights and
directional lights have to be assigned some area to make them work correctly in the algorithm,
or some forward path tracing has to be used.)

As for scattered light, the BSDF at a point determines how light arriving at that point is
scattered. Light can, in general, arrive from any direction and can originate from any other
point in the scene. The rendering equation holds at every point. It relates the light arriving
at and departing from each point to the light arriving at and departing from every other point.
It describes, in other words, an immensely complicated system, one for which you are unlikely
to be able to find an exact solution. A rendering algorithm can be thought of as an attempt to
find a good approximate solution to the rendering equation.

8.2. PATH TRACING 339

Path tracing is a probabilistic rendering algorithm. It looks at possible paths that might
have been followed by light arriving at the position of the viewer. Each possible path has a
certain probability. Path tracing generates a random sample of possible paths, choosing paths
in the sample according to their probabilities. It uses those paths to create an image that
approximates a solution to the rendering equation. It can be shown that as the size of the
random sample increases, the image that is generated will approach the true solution. To get
a good quality image, the algorithm will have to trace thousands of paths for each pixel in the
image, but the result can be an almost shocking level of realism.

Let’s think about how it should work. First, consider the case where light is only emitted
and reflected by surfaces. As with ray tracing, we start at the position of the viewer and cast a
ray in the direction of a point on the image, into the scene. (See Subsection 8.1.1.) We find the
first intersection of that ray with an object in the scene. Our goal to trace one possible path
that the ray could have followed from its point of origin until it arrives at the viewer, and we
want the probability that we select a given path to be the probability that the light actually
followed that path. This means that each time the light is scattered from a surface, we should
choose the direction of the next segment of the path based on the BSDF for the surface. That
is, the direction is chosen at random, using the probability distribution that is encoded in the
BSDF. We construct the next segment of the path by casting a ray in the selected direction.

We continue to trace the path, backwards in time, possibly through multiple reflections,
until it encounters an object that emits light. That object serves as the original source of the
light. The color that the path contributes to the image is determined by the color and intensity
of the emitter, by the colors of surfaces that the light hits along the way, and by the angles
at which the light hits each surface. If the path escapes from the scene before it hits a light
emitting object, then it does not contribute any color to the image. (It might be desirable to
have a light-emitting background, like a sky, that emits light over a large area.) Note that it is
possible for an object to be both an emitter and a reflector of light. In that case, a path can
continue even after it gets to a light source.

Of course, we have to trace many such paths. The color for a pixel in the image is computed
as an average of the colors obtained for all the paths that pass through that pixel.

The algorithm can be extended to handle the case where light can be scattered at arbitrary
points in space, and not just at surfaces. For light traveling in a medium in 3D space, the
question is, how far will the light travel before it is scattered? The BSDF for the medium will
determine a probability distribution on possible travel distances between scatterings. When
light enters a medium, that probability distribution is used to select a random distance that
the light will travel before it is scattered (unless it hits a surface or enters a new medium before
it has traveled that distance). When it scatters from a point in the medium, a new direction
and length are chosen at random for the next segment of the path, according to the BSDF of
the medium. For a light fog, the average distance between scatterings would be quite large; for
a dense medium like milk, it would be quite short.

∗ ∗ ∗

A great deal of computation is required to trace enough light paths to get a high-quality
image. Although path tracing was invented in the 1980s, it is only recently that it has become
practical for general use, and it can still take many hours to get high quality rendering. In fact,
you can do path tracing on your desktop computer using the 3D modeling program Blender,
which is discussed in Appendix B. Blender has a rendering engine called Cycles that uses path
tracing. See the appendix for more information about Blender.

340 CHAPTER 8. BEYOND BASIC 3D GRAPHICS

Appendix A

Programming Languages

This appendix contains brief introductions to three programming languages that are
used in the textbook: Java, C, and JavaScript. You should be very familiar with at least one
of the three languages before reading this textbook. The three languages have something in
common, so that knowing one will make it easier to learn the others. You should also be at
least somewhat familiar with classes, objects, and object-oriented programming.

The appendix is meant to help you get started with the languages that you don’t already
know. Only some basic information about each language is given—but hopefully enough to
let you understand examples in the book and to write some programs that use the graphics
techniques that are covered. You should at least be able to work with the sample programs
that accompany this textbook.

Java is obligatory only for Section 2.5. For the material on OpenGL 1.1 in Chapter 3 and
Chapter 4, either Java or C can be used, but you will need to be at least somewhat familiar with
C to follow the discussion. The shader programming language that is used with WebGL is based
on C, so some knowledge of C will also be useful there. (However, for writing WebGL shaders,
you will not need to know one of the most confusing aspects of C, namely the details of how
it uses pointers). JavaScript is essential for WebGL programming (Chapter 6 and Chapter 7),
and for programming with three.js (Chapter 5). It is also used for HTML canvas graphics in
Section 2.6.

A.1 The Java Programming Language

Java is taught as a first programming language in many college and high school computer
science programs. It is a large and complex language, with features that make it suitable for
large and complex programming projects. Those features can make it seem a little verbose and
overly strict, but they also make it possible for programming environments to provide excellent
support for writing and debugging programs. If you are going to write Java code, you should
consider using a full-featured programming environment such as Eclipse (https://eclipse.org/).
Subsection 3.6.2 explains how to set up Eclipse for programming with JOGL, the Java API for
OpenGL.

This book comes with several “starter” programs for writing graphical Java programs,
such as java2d/EventsStarter.java for Java Graphics2D and jogl/JoglStarter.java for JOGL.
Although this section doesn’t tell you enough to let you write Java programs from scratch,
it might have enough information to let you “fill in the blanks” in the starter programs and
modify other sample programs that come with the book. If you want to learn Java in more

341

342 APPENDIX A. PROGRAMMING LANGUAGES

detail, you can consider my free on-line Java textbook, http://math.hws.edu/javanotes.
Java has had several 2D graphics APIs: AWT, Swing, and JavaFX. Swing is built on top

of the AWT, while JavaFX is a completely new API. JavaFX is not used in this textbook, but
you will see references here both to Swing and to the AWT.

A.1.1 Basic Language Structure

Java is object-oriented. A Java program is made up of classes, which can contain variable
definitions and method definitions. (“Method” is the object-oriented term for function or
subroutine.) A class is defined in its own file, whose name must match the name of the class:
If the class is named “MyClass”, then the name of the file must be MyClass.java. Classes can
also occur as nested classes within other classes; a nested class, of course, doesn’t get its own
file. The basic syntax for defining a class is

public class MyClass {

.

. // Variable, method, and nested class definitions.

.

}

There are variations on this syntax. For example, to define a class as a subclass of an existing
class, you need to say that the new class “extends” an the existing class:

public class MyClass extends ExistingClass { ...

A class in Java can only extend one class. However, in addition to or instead of extending a
class, a new class can also implement one or more “interfaces.” An interface in Java specifies
some methods that must be defined in every class that implements the interface. With all of
these options, a class definition might look something like this:

public class MyGUI extends JPanel implements KeyListener, MouseListener { ...

In fact, a class exactly like this one might be used in a GUI program.
A class can contain a main() method, and one of the classes that make up a program must

contain such a method. The main() method is where program execution begins. It has one
parameter, of type String[], representing an array of command-line arguments. There is a
confusing distinction in Java between static and non-static variables and methods, which we
can mostly ignore here. The main() method is static. Often, in a graphical program, main is
the only thing that is static, so the distinction will not be very important for us. In a GUI
program, the main method usually just creates a window and makes it visible on the screen;
after that, the window takes care of itself.

A non-static method definition in a class actually defines a method for each object that is
created from that class. Inside the method definition, the special variable this can be used to
refer to the object of which the method is a part. You might be familiar with the same special
variable in JavaScript. However, unlike in JavaScript, the use of this is optional in Java, so
that a variable that is part of the same object might be referred to either as x or this.x, and a
method could be called from within the same class as doSomething() or this.doSomething().

Variables, methods and nested classes can be marked as private, public, or protected. Private
things can only be used in the class where they are defined. Public things can be accessed from
anywhere. Protected things can be accessed in the same class and in subclasses of that class.

The programs in this book use a main class that defines the window where the graphical
display will be seen. That class also contains the main() routine. (This is not particularly

A.1. THE JAVA PROGRAMMING LANGUAGE 343

good style, but it works well for small programs.) In some cases, the program depends on other
classes that I have written; the files for those classes should be in the same folder as the file
that defines the main class. The programs can then be compiled on the command line, working
in that folder, with the command

javac *.java

To run the program whose main class is MyClass, use

java MyClass

However, programs that use JOGL require some extra options in these commands. What you
need to know is explained in Subsection 3.6.2. (The Eclipse IDE has its own simple commands
for running a program.)

There are many standard classes that are available for use in programs. A few of the
standard classes, such as Math and System, are automatically available to any program. Others
have to be “imported” into a source code file before they can be used in that file. A class can
be part of a package, which is a collection of classes. For example, class Graphics2D is defined
in the package java.awt. This class can be imported into a source code file by adding the line

import java.awt.Graphics2D;

to the beginning of the file, before the definition of the class. Alternatively, all of the classes in
package java.awt can be imported with

import java.awt.*;

It is possible to put your own classes into packages, but that adds some complications when
compiling and using them. My sample programs in this book are not defined in named packages.
Officially, they are said to be in the “default package.” Recent versions of Java also have
“modules,” which are collections of packages. Again, using modules complicates things, and
they are not used in this textbook.

∗ ∗ ∗

Java is a strongly typed language. Every variable has a type, and it can only hold values
of that type. Every variable must be declared, and the declaration specifies the type of the
variable. The declaration can include an initial value. For example,

String name; // Declares name as a variable whose value must be a String.

int x = 17; // x is a variable whose value must an int, with initial value 17.

Graphics2D g; // g is a variable whose value is an object of type Graphics2D.

Java has eight “primitive” types, whose values are not objects: int, long, short, byte,
double, float, char, and boolean. The first four are integer types with different numbers of
bits. The real number types are double and float. A constant such as 3.7 is of type double. To
get a constant of type float, you need to add an ’F’: 3.7F. (This comes up when programming
in JOGL, where some methods require parameters of type float.) Constant char values are
enclosed in single quotes; for example, ’A’ and ’%’. Double quotes are used for strings, which
are not primitive values in Java.

In addition to the eight primitive types, any class defines a type. If the type of a variable is
a class, then the possible values of the variable are objects belonging to that class. An interface
also defines a type, whose possible values are objects that implement the interface. An object,
unlike a primitive value, contains variables and methods. For example, Point is a class. An
object of type Point contains int variables x and y. A String is an object, and it contains several
methods for working with the string, including one named length() that returns its length and

344 APPENDIX A. PROGRAMMING LANGUAGES

another named charAt(i) that returns the i -th character in the string. Variables and methods
in an object are always accessed using the “.” period operator: If pt is a variable of type Point,
referring to an object of type Point, then pt.x and pt.y are names for the instance variables in
that object. If str is a variable of type String, then str.length() and str.charAt(i) are methods
in the String object to which str refers.

A method definition specifies the type of value that is returned by the method and a type
for each of its parameters. It is usually marked as being public or private. Here is an example:

public int countChars(String str, char ch) {

int count = 0;

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == ch)

count++;

}

return count;

}

Here, countChars is the name of the method. It takes two parameters of type String and char,
and it returns a value of type int. For a method that does not return a value, the return type
(int in the above example) is specified as void.

A method in Java can be used throughout the class where it is defined, even if the definition
comes after the point where it is used. (This is in contrast to C, where functions must be
declared before they are used, but similar to JavaScript.) The same is true for global variables,
which are declared outside any method. All programming code, such as assignment statements
and control structures, must be inside method definitions.

∗ ∗ ∗

Java has the same set of basic control structures as C and JavaScript: if statements, while
and do..while loops, for loops, and switch statements all take essentially the same form in the
three languages. Assignment statements are also the same.

Similarly, the three languages have pretty much the same set of operators, including the
basic arithmetic operators (+, −, * and /), the increment (++) and decrement (--) operators,
the logical operators (||, &&, and !), the ternary operator (?:), and the bitwise operators (such
as & and |). A peculiarity of Java arithmetic, as in C, is that the division operator, /, when
applied to integer operands produces an integer result. So, 18/5 is 3 and 1/10 is 0.

The + operator can be used to concatenate strings, so that “Hello” + “World” has the
value “HelloWorld”. If just one of the operands of + is a string, then the other operand is
automatically converted into a string.

Java’s standard functions are defined in classes. For example, the mathematical functions
include Math.sin(x), Math.cos(x), Math.sqrt(x), and Math.pow(x,y) for raising x to the
power y. Math.random() returns a random number in the range 0.0 to 1.0, including 0.0
but not including 1.0. The method System.out.println(str) outputs a string to the command
line. In graphical programs, System.out.println is useful mainly for debugging. To output more
than one item, use string concatenation:

System.out.println("The values are x = " + x + " and y = " + y);

There is also a formatted output method, System.out.printf, which is similar to C’s printf
function.

A.1. THE JAVA PROGRAMMING LANGUAGE 345

A.1.2 Objects and Data Structures

In addition to the primitive types, Java has “object types” that represent values that are
objects. A variable of object type doesn’t hold an object; it can only hold a pointer to an
object. (Sometimes it’s said that Java doen’t use pointers, but it’s more correct to say that it
forces you to use them.) The name of a class or of an interface is an object type. Objects are
created from classes using the new operator. For example,

Point pt; // Declare a variable of type Point.

pt = new Point(100, 200); // Create an object of type Point.

Here, the class is Point, which also acts as a type that can be used to create variables. A
variable of type Point can refer to an object belonging to the class Point or to any subclass of
that class. The expression new Point(100,200) in the assignment statement calls a special kind
of routine in the Point class that is known as a constructor . The purpose of a constructor is
to initialize an object. In this case, the parameters to the constructor, 100 and 200, become
the values of the variables pt.x and pt.y in the new object. The effect of the above code is that
the value of pt is a pointer to the newly created object. We say that pt “refers” to that object.

Instead of referring to an object, pt could have the special value null. When the value of
a variable is null, the variable does not refer to any object. If the value of pt is null, then the
variables pt.x and pt.y don’t exist, and an attempt to use them is an error. The error is called
a NullPointerException.

Strings, by the way, are special objects. They are not not created with the new operator.
Instead, a string is created as a literal value, enclosed in double quotes. For example

String greeting = "Hello World!";

Arrays are also special objects. Any type in Java defines an array type. An array type is
an object type. From the type int, for example, we get the array type int[]. From String and
Point, we get the types String[] and Point[]. The value of a variable of type int[] is an array
of ints (or the value can be null). The value of a variable of type Point[] is an array of Points.
Arrays can be created with a version of the new operator:

int[] intList; // Declare a variable that can refer to any array of ints.

intList = new int[100]; // Create an array that can hold 100 ints.

An array has a fixed length that is set at the time it is created and cannot be changed. If
intList refers to an array, then the length of that array is given by the read-only variable
intList.length. The elements of the array are intList [0], intList [1], and so on. An attempt to
use intList [i] where i is outside the range from 0 to intList.length − 1 generates an error of
type ArrayIndexOutOfBoundsException.

The initial value for array elements is “binary zero”; that is, 0 for numeric values, false for
boolean, and null for objects.

An array can be created and initialized to hold arbitrary values at the time it is created
using the syntax

intList = new int[] {2, 3, 5, 7, 11, 13, 15, 17, 19};

This version of the new operator creates an array of ints of length nine that initially holds the
nine specified values. If the initialization of an array is done as part of a variable declaration,
then only the list of values, enclosed between { and }, is required:

String[] commands = { "New", "Open", "Close", "Save", "Save As" };

346 APPENDIX A. PROGRAMMING LANGUAGES

∗ ∗ ∗

Java comes with several standard classes that define common data structures, including
linked lists, stacks, queues, trees, and hash tables, which are defined by classes in the package
java.util. The classes define “generic” or “parameterized” types that will work for a variety
of element types. For example, an object of type LinkedList<String> is a list of items of type
String. Unfortunately, it is not possible to use these classes with the primitive types;. There
is no “linked list of int”. (However, you can have LinkedList<Integer>, where an object of type
Integer is a “wrapper” for a primitive int value.)

Perhaps the most commonly used of the generic data structures is the ArrayList. Like an
array, an ArrayList contains a numbered sequence of items. However, an ArrayList can grow and
shrink. For example, to create an ArrayList that can hold objects of type Point:

ArrayList<Point> pointList;

pointList = new ArrayList<Point>();

This creates an initially empty list. The method pointList.add(pt) can be used to add a Point

to the end of the list, increasing its length by one. The value of pointList.size() is the number of
items currently in the list. The method pointList.get(i) returns the i -th element of the list, and
pointList.set(i,pt) replaces the i -th element with pt. Similarly, pointList.remove(i) removes the
i -th element, decreasing the length of the list by one. For all of these methods, an error occurs
if i is not in the range from 0 to pointList.size() −1.

It is also possible to build linked data structures directly, remembering that the value of a
variable whose type is given by a class is either null or is a pointer to an object. For example,
a linked list of integer values can be created using objects defined by the simple class

class ListNode {

int item; // One of the integers in the list

ListNode next; // Pointer to next node in list, or null for end-of-list.

}

A more useful data structure for this course is a scene graph, like the ones discussed
in Subsection 2.4.2 and implemented in the sample program java2d/SceneGraphAPI2D.java.
In that API, a node in a scene graph is represented by an object belonging to the class
SceneGraphNode or to a subclass of that class. For example, a CompoundObject represents
a graphical object made up of subobjects. It needs to store pointers to all of its subobjects.
They can conveniently be stored in an ArrayList. Then drawing a CompoundObject just means
drawing its subobjects. The class can be defined as follows:

class CompoundObject extends SceneGraphNode {

ArrayList<SceneGraphNode> subobjects = new ArrayList<SceneGraphNode>();

CompoundObject add(SceneGraphNode node) {

subobjects.add(node);

return this;

}

void doDraw(Graphics2D g) {

for (SceneGraphNode node : subobjects)

node.draw(g);

}

}

(The for loop in this class is one that is specific to Java. It iterates automatically through all
of the objects in the list.)

A.1. THE JAVA PROGRAMMING LANGUAGE 347

A.1.3 Windows and Events

Java comes with a set of standard classes for working with windows and events. I will mention
some of the most common. I will try to tell you enough to understand and work with the
sample programs in this book. Writing programs from scratch will require more in-depth
knowledge. All of the classes that I discuss are part of the Swing GUI API, and are contained
in the packages java.awt, javax.swing, and java.awt.event. Many of my programs begin with
the following import directives to make the classes that they contain available:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

A window can be represented by an object of class JFrame. A JFrame can hold a menu
bar and a large content area known as its “content pane.” The content pane often belongs to a
subclass of JPanel. A JPanel can be used in two ways: as a drawing surface or as a container
for other components such as buttons, text input boxes, and nested panels.

When a panel is to be used as a drawing surface, it is defined by a subclass that includes a
paintComponent() method. The paintComponent method is called when the panel first appears
on the screen and when it needs to be redrawn. Its task is to completely redraw the panel. It
has a parameter of type Graphics, which is the graphics context that is used to do the drawing.
It takes the form

public void paintComponent(Graphics g) { ...

The paintComponent method is discussed further in Section 2.5. In general, all drawing should
be done in this method, and paintComponent should only be called by the system. When
redrawing is necessary, a call to paintComponent can be triggered by calling the panel’s repaint()
method. (For OpenGL programming in Chapter 3 and Chapter 4, I use a GLJPanel, which is
a subclass of JPanel. In that case, the drawing is done in a display() method, instead of in
paintComponent, but you can still call repaint() to trigger a redraw. See Subsection 3.6.2.)

When a panel is to be used as a container for other components, those components will
usually be created and added to the panel in a constructor, a special routine that is called to
initialize an object when the object is created by the new operator. A constructor routine can
be recognized by the fact that it has the same name as the class that contains it, and it has no
return type.

The sizes and positions of the components in a panel will generally be set by a “layout
manager,” which is an object that implements some policy for laying out the components in a
container. For example, a BorderLayout is a layout manager that puts one large component in
the center of the panel, with space for up to four additional components on the north, south,
east, and west edges of the panel. And a GridLayout lays out components in rows and columns,
with all components having the same size. In addition to nested panels, possible component
types include typical interface components such as JButton, JCheckBox, and JRadioButton. You
will see examples of all of these things in the sample programs.

∗ ∗ ∗

A GUI program must be able to respond to events, including low-level events such as those
generated when the user manipulates a mouse or keyboard, and high level events such as those
generated when the user selects an item from a menu or clicks on a button. To respond to
events, a program defines event-handling methods, which will be called when the event occurs.
In Java, an object that includes event-handling methods is said to “listen” for those events.

348 APPENDIX A. PROGRAMMING LANGUAGES

For example, the basic mouse-event handlers are specified by an interface named MouseListener.
An object that implements this interface can respond to mouse events. It must define methods
such as mousePressed(), which will be called when the user presses a button on the mouse.
MouseListener defines five methods in all. A class that implements the interface would take the
form

class MouseHandler implements MouseListerner {

public void mousePressed(MouseEvent evt) {

.

. // respond when the user presses a mouse button

.

}

public void mouseClicked(MouseEvent evt) { }

public void mouseReleased(MouseEvent evt) { }

public void mouseEntered(MouseEvent evt) { }

public void mouseExited(MouseEvent evt) { }

}

The MouseEvent parameter in each of these methods is an object that will contain information
about the event. For example, evt.getX () and evt.getY () can be called in the event-handler
method to find the x and y coordinates of the mouse.

An event is usually associated with some component, called the “target” of the event. For
example, a mouse press event is associated with the component that contained the mouse when
the user pressed the mouse button. A button click event is associated with the button that was
clicked. To receive events from a component, a program must register an event-listening object
with that component. For example, if you want to respond to mouse clicks on a JPanel named
panel, you need to create a MouseListener object and register it with the panel:

MouseHandler handler = new MouseHandler(); // create the listener

panel.addMouseListener(handler); // register it with the panel

In many cases, I create a class, often a nested class, to define an event listener that I need.
However, any class, can implement an interface, and sometimes I let my main class implement
the listener interface:

public class MyPanel extends JPanel implements MouseListener { ...

Inside such a class, the panel and the listener are the same object, and the special variable this
refers to that object. So, to register the panel to listen for mouse events on itself, I would say

this.addMouseListener(this);

This statement can be shortened to simply addMouseListener(this).
Other event types work similarly to mouse event types. You need an object that implements

a listener interface for events of that type, and you need to register that object as a listener
with the component that will be the target of the events.

The MouseMotionListener interface defines methods that handle events that are generated
when the user moves or drags the mouse. It is separate from the MouseListener interface for
the sake of efficiency. Responding to a mouse-drag action usually requires an object that acts
both as a mouse listener and a mouse motion listener.

The KeyListener interface is used for handling keyboard events. An event is generated when
the user presses a key and when the user releases a key on the keyboard. Another kind of event
is generated when the user types a character. Typing a character such as upper case ’A’ would
generate several key-pressed and key-released events as well as a character-typed event.

A.2. THE C PROGRAMMING LANGUAGE 349

The ActionListener interface is used to respond to a variety of user actions. An ActionEvent

is generated, for example, when the user clicks a button, selects a command from a menu, or
changes the setting of a checkbox. It is also used in one context where the event doesn’t come
from the user: A Timer is an object that can generate a sequence of ActionEvents at regularly
spaced intervals. An ActionListener can respond to those events to implement an animation.
See the sample program java2d/AnimationStarter.java to see how its done.

Finally, I will note that JOGL uses an event listener of type GLEventListener for working
with OpenGL. Its use is explained in Subsection 3.6.2.

A.2 The C Programming Language

C is the oldest programming language that we will encounter in this book. Its basic syntax
has been adopted by many other languages, including Java, JavaScript and the OpenGL shader
language. C is not object-oriented. It was the basis for the object-oriented language C++, but
C is almost as different from C++ as it is from Java. While a large part of C will be familiar to
any reader of this book, to really master C, you need to know something about its less familiar
parts.

My own experience with C is mostly limited to using it on Linux, where I can use the
gcc command to compile C programs. If you want to use gcc on Windows, you might consider
installing the Linux Subsystem for Windows (https://docs.microsoft.com/en-us/windows/wsl/)
or Cygwin (https://cygwin.com/). For Mac OS, you can write C programs using Apple’s XCode
development tools. Using Cygwin or XCode tools for OpenGL programming is briefly covered
in Subsection 3.6.1.

A.2.1 Language Basics

A C program consists of a collection of functions and global variables, which can be spread
across multiple files. (All subroutines in C are referred to as “functions,” whether or not they
return a value.) Exactly one of those functions must be a main() routine, whose definition
generally takes the form

int main(int argc, char **argv) {

// main program code

}

Execution of the program begins in the main() function. As in Java, the parameters to main()
contain information about command line arguments from the command that was used to execute
the program. (The “**” has to do with C’s implementation of pointers and arrays, which I will
discuss later.) The parameters can be omitted from the definition of main if the program has no
need for them. The return value of main() is sent to the operating system to indicate whether
or not the program succeeded; a value of 0 indicates success, and any other value indicates that
an error occurred.

C makes a distinction between “defining” a variable or function and “declaring” it.
A variable or function can have only one definition, but it can be declared any number of
times. A variable or function should be declared before it is used, but does not have to be
defined before it is used. Any definition is also a declaration. A C compiler will not look
ahead to search for a declaration. (More precisely, if it encounters an undeclared variable, it
will assume that it is of type int, and if it encounters an undeclared function, it will try to
deduce a declaration. However, this is almost never what you want.)

350 APPENDIX A. PROGRAMMING LANGUAGES

A function definition takes a form similar to a method definition in Java. The return type
for the function must be specified, and a return type of void is used for a function that does
not return a value. The type of each parameter must be specified. For example,

int square(int x) {

return x * x;

}

Since a definition is also a declaration, this also declares square(). To declare a function without
defining it, leave out the body of the function. This is called a “prototype” for the function:

int square(int x);

For variables, a typical variable declaration, such as “int x;”, is also a definition of the variable.
To get a variable declaration that is not a definition, add the word “extern”. For example:
“extern int x;”. You probably won’t need to know this.

One reason for the distinction between declaration and definition is that, although C
programs can consist of several files, each file is compiled independently. That is, when C
is compiling a file, it looks only at that file. This is true even if several files are compiled with
a single command. If file A wants to use a function or variable that is defined in file B, then
file A must include a declaration of that function or variable. This type of cross-file reference
is usually handled using “header files” and the #include directive. An include directive in a
file tells the compiler to include a copy of the text from the included file in the code that it
compiles. A header file typically has a name that ends with ”.h” and contains only declarations.
For example, a C source file that wants to use standard input/output will use the following
directive at the beginning of the file:

#include <stdio.h>

The stdio.h header file is one of several standard header files that should be installed with any C
compiler. Other standard headers include math.h for common mathematical functions, string.h
for string manipulation functions, and stdlib.h for some miscellaneous functions including
memory management functions.

The compiler will also look in the current directory for header files. In an include directive,
the name of such a header file should be enclosed in quotation marks instead of angle brackets.
For example,

#include "my-header.h"

If you write a .c file that contains functions meant for use in other files, you will usually
write a matching .h file containing declarations of those functions.

After all the files that make up a program have been compiled, they still have to be “linked”
together into a complete program. The gcc compiler does the linking automatically by default.
Even if all of the files have compiled successfully, there can still be link errors. A link error occurs
if no definition is found for a variable or function that has been declared, or if two definitions
for the same thing are found in different files. For functions defined in standard libraries, you
might need to link the program with the appropriate libraries using the “-l” option on the gcc
compiler. For example, a program that uses functions from the math.h header file must be
linked with the library named “m”, like this:

gcc my-program.c my-utils.c -lm

It can be difficult to know what libraries need to be linked. Most of my sample C programs,
such as glut/first-triangle.c, have a comment that tells how to compile and link the program.

A.2. THE C PROGRAMMING LANGUAGE 351

One more note about compiling with gcc. By default, the name of the compiled program
will be a.out. The “-o” option on the gcc command is used to specify a different name for the
compiled program. For example,

gcc -o my-program my-program.c my-utils.c -lm

Here, the name of the compiled program will be my-program. The name of the compiled
program can be used like any other command. In Linux or MacOS, you can run the program
on the command line using a command such as

./my-program

The “./” in front of the name is needed to run a command from the current directory. You
could also use a full path name to the command.

∗ ∗ ∗

C has most of the same basic types as Java: char, short, int, long, float, double. There is
no boolean type, but but integers can be used as booleans, with 0 representing false and any
non-zero value representing true. There is no “byte” data type, but char is essentially an 8-bit
integer type that can be used in place of byte. There are no guarantees about the number of
bits used for the other numerical data types, but usually int means 32-bit integers and long

means 64-bit. The integer types, including char, can be marked “signed” or “unsigned”, where
the unsigned types have only positive values. For example, signed char has values in the range
−128 to 127, while unsigned char has values in the range 0 to 255. Except for char the default
for the integer types is signed. (For char, the default is not specified in the standard.) Since
C is very profligate about converting one numeric type to another, we don’t have to worry too
much about this. (I should note that to avoid the ambiguities of C data types, OpenGL defines
its own set of data types such as GLfloat and GLint, and to be completely correct, you can use
them in your OpenGL programs in place of C’s usual type names.)

Operators and expressions are similar in C, Java, and JavaScript. As in Java, integer division
in C produces an integer result, so that 17/3 is 5. C does not use “+” as a string concatenation
operator; in fact, C has no such operator for strings. String concatenation can be done using a
function, strcat, from the string.h header file. We will see that some operators can be also used
with pointers in C, in ways that have no analog in Java or JavaScript.

The header file stdio.h declares C’s standard input/output functions. I mention it here
mostly for the function printf (), which outputs text to the command line and is useful for
writing debugging messages. It is essentially the same function as System.out.printf in Java.
For example:

printf("The square root of %d is %f\n", x, sqrt(x));

The function sqrt(x), by the way, is defined in the header file, math.h, along with other
mathematical functions such as sin(x), cos(x), and abs(x). (In C, abs(x) is always an int.
For a floating-point absolute value, use fabs(x).)

Control structures in C are similar to those in Java and JavaScript, with a few exceptions.
The switch statement in C works only with integer or character values. There is no try..catch
statement. Depending on your C compiler, you might not be able to declare variables in for
loops, as in for (int i =. . . . The original version of C had only one type of comment, starting
with /* and ending with */. Modern C also allows single line comments starting with //, so
your compiler should accept comments of either form.

352 APPENDIX A. PROGRAMMING LANGUAGES

A.2.2 Pointers and Arrays

For programmers who have experience with Java or JavaScript, one of the hardest things to
get used to in C is its use of explicit pointers. For our purposes, you mostly need to know a
little about how the unary operators “*” and “&” are used with pointers. But if you want to
use dynamic data structures in C, you need to know quite a bit more.

In C, there is a data type int* that represents “pointer to int.” A value of type int* is a
memory address, and the memory location at that address is assumed to hold a value of type
int. If ptr is a variable of type int*, then *ptr represents the integer stored at the address to
which ptr points. *ptr works like a variable of type int : You can use it in an expression to fetch
the value of the integer from memory, and you can assign a value to it to change the value in
memory (for example, “*ptr = 17;”).

Conversely, if num is a variable of type int, then &num represents a pointer that points to
num. That is, the value of &num is the address in memory where num is stored. Note that
&num is an expression of type int*, and *&num is another name for num. The expression
&num can be read as “pointer to num” or “address of num.”

Of course, the operators & and * work with any types, not just with int. There is also a
data type named void* that represents untyped pointers. A value of type void* is a pointer
that can point anywhere in memory, regardless of what is stored at that location.

Pointer types are often used for function parameters. If a pointer to a memory location
is passed to a function as a parameter, then the function can change the value stored in that
memory location. For example, consider

void swap (int *a, int *b) {

int temp = *a;

*a = *b;

*b = temp;

}

The parameters a and b are of type int*, so any actual values passed into the function must be
of type pointer-to-int. Suppose that x and y are variables of type int:

int x,y;

Then &x and &y are pointers to int, so they can be passed as parameters to swap:

swap(&x, &y);

Inside the function, a is a pointer to x, which makes *a another name for x. Similarly, *b is
another name for y. So, for example, the statement *a = *b; copies the value of y into x. The
net result is to swap, or interchange, the values stored in x and in y. In Java or JavaScript, it
is impossible to write a similar method that swaps the values of two integer variables.

Note, by the way, that in the declaration int *a, the * is associated with a rather than with
int. The intent of the declaration is to say that *a represents an int, which makes a a pointer
to int. It is legal, but misleading, to write the declaration as int* a. It is misleading because

int* a, b;

declares a to be a pointer to int and b to be an int. To declare two pointers, you have to say

int *a, *b;

∗ ∗ ∗

Arrays and pointers are very closely related in C. However, it is possible to use arrays
without worrying about pointers. For example, to create an array of 5 ints, you can say

A.2. THE C PROGRAMMING LANGUAGE 353

int A[5];

(Note that the “[5]” is associated with the variable name, A, rather than with the type name,
“int”.) With this declaration, you can use the array elements A[0] through A[4] as integer
variables. Arrays in C are not automatically initialized. The contents of a new array are
unknown. You can provide initial values for an array when you declare it. For example, the
statement

int B[] = { 2, 3, 5, 7, 9, 11, 13, 17, 19 };

creates an array of length 9 containing the numbers listed between { and }. If you provide
initial values for the array, you do not have to specify the array size; it is taken from the list
of values. An array does not remember its length, and there is no protection against trying to
access array elements that actually lie outside of the array.

The address operator, &, can be applied to array elements. For example, if B is the array
from the above declaration, then &B [3] is the address of the location in memory where B [3] is
stored. The values of B [3] and B [4] could be swapped by calling

swap(&B[3], &B[4]);

An array variable is considered to be a pointer to the array. That is, the value of an array
variable B is the address of the array in memory. This means that B and &B [0] are the same.
Furthermore, a pointer variable can be used as if it is an array. For example, if p is of type
int*, then p[3] is the third integer in memory after the integer to which p points. And if we
define

int *p = &B[3];

then p[0] is the same as B [3], p[1] is the same as B [4], and so on.
An expression of the form p+n, where p is a pointer and n is an integer represents a pointer.

Its value is a pointer that points to the n-th item after p in memory. The type of “item” that
is referred to here is the type to which p points. For example, if p is a pointer-to-int, then p+3
points to the third integer after the integer to which p refers. And the value of * (p+3) is that
integer. Note that the same integer can be referred to as p[3]. In fact, p[n] can be considered
to be nothing more than shorthand for * (p+n). (Although it probably takes us farther into C
than you want to go, I’ll also mention that the operators ++ and -- can be applied to pointer
variables. The effect is to advance the pointer one item forwards or backwards in memory.)

∗ ∗ ∗

A string in C is essentially an array of char but is usually thought of as being of type char*,
that is, pointer to char. By convention, a string always ends with a null character (ASCII
code 0) to mark the end of the string. This is necessary because arrays do not have a defined
length. The null character is inserted automatically for string literals. You can initialize a
variable of type char* with a string literal:

char *greet = "Hello World";

The characters in the string are then given by greet [0], greet [1], . . . , greet [10]. The value of
greet [11] is zero, to mark the end of the string.

String manipulation is done using functions that are defined in the standard header file
string.h. For example, to test whether two strings are equal, you can use strcmp(s1,s2). And
for copying strings, there is a function strcpy(s1,s2). Working with strings in C can be quite
tricky, because strings are represented as pointers or arrays, and C does no error checking for
null pointers, bad pointers, or array indices out of bounds.

354 APPENDIX A. PROGRAMMING LANGUAGES

By the way, I can now explain the parameters to the main() routine, int argc and
char **argv. The parameter argv of type char** is an array of strings (one * to mean array
and one * to mean string). This array holds the command that was used to run the program,
with argv [0] holding the name of the program and the rest of the array holding any command
line arguments. The value of the first parameter, argc, is the length of the array.

A.2.3 Data Structures

C does not have classes or objects. However, it does have a way to represent complex data
types: a struct. A struct is similar to a class that contains only variables, with no methods. It
is a way of grouping several variables into a unit. For example,

struct color {

float r;

float g;

float b;

};

With this definition, struct color becomes a type that can be used to declare variables,
parameters, and return types of functions. For example,

struct color bg;

With this declaration, bg is a struct made up of three float variables that can be referred to
as bg.r, bg.g, and bg.g. To avoid having the word “struct” as part of the type name, a struct
datatype can be declared using typedef :

typedef struct {

float r;

float g;

float b;

} color;

This defines color, rather than struct color, to be the name of the type, so that a variable can
be declared as

color bg;

It is sometimes useful to work with pointers to structs. For example, we can make a pointer to
the struct bg :

color *ptr = &bg;

When this definition, *ptr is another name for bg. The variables in the struct can be referred
to as (*ptr).r, (*ptr).g, and (*ptr).b. The parentheses are necessary because the operator “.”
has a higher precedence than “*”. But the variables can also be referred to as ptr->r, ptr->g,
and ptr->b. When a pointer-to-struct is used to access the variables in a struct, the operator
-> is used instead of the period (.) operator.

∗ ∗ ∗

To implement dynamic data structures in C, you need to be able to allocate memory
dynamically. In Java and JavaScript, that can be done using the new operator, but C does not
use new. Instead, it has a function, malloc(n), which is declared in the standard header file
stdlib.h. The parameter to malloc is an integer that specifies the number of bytes of memory
to be allocated. The return value is a pointer of type void* that points to the newly allocated
block of memory. (A void* pointer can be assigned to any pointer variable.) Furthermore,

A.2. THE C PROGRAMMING LANGUAGE 355

since C does not have “garbage collection,” you are responsible for freeing any memory that
you allocate using malloc. That can be done using free(ptr), where ptr is a pointer to the block
of memory that is being freed. Rather than discuss dynamic data structures in detail, I present
a short program to show how they can be used. The program uses a linked list to represent a
stack of integers:

#include <stdio.h> // for the printf function

#include <stdlib.h> // for the malloc and free functions

typedef struct node listnode; // Predeclare the listnode type, so it

// can be used for the type of next.

struct node {

int item; // An item in the list.

listnode *next; // Pointer to next item in list.

};

listnode *list = 0; // Pointer to head of list, initially null.

void push(int item) { // Add item to head of list

listnode *newnode; // Pointer to a new node to hold the item.

newnode = malloc(sizeof(listnode)); // Allocate memory for the node.

// (sizeof(listnode) is the number of bytes for a value of type listnode)

newnode->item = item;

newnode->next = list;

list = newnode; // Makes list point to the new node.

}

int pop() { // Remove and return first item from list

int item = list->item; // The item to be returned.

listnode *oldnode = list; // Save pointer to node that will be deleted.

list = list->next; // Advance list pointer to next item.

free(oldnode); // Free the memory used by deleted node.

return item;

}

int main() {

int i;

for (i = 1; i < 1000000; i *= 2) {

// Push powers of two onto the list.

push(i);

}

while (list) {

// Pop and print list items (in reverse order).

printf("%d\n", pop());

}

}

A more complex data structure, such as a scene graph can contain several different kinds
of nodes. For such structures, you need even more advanced techniques. One approach is to
design a struct that includes the following: data common to all nodes in the data structure;
an integer code number to say which of the several possible kinds of node it is; and a void*
pointer to link to the extra data needed by nodes of that type. Using a void* pointer means
it can point to any kind of data structure, and the code number will tell how to interpret the
data that it points to. A better alternative to using a void* pointer is to learn about “union”,

356 APPENDIX A. PROGRAMMING LANGUAGES

something similar to a struct but more useful for representing multiple data types. But perhaps
the real solution, if you want to work with complex data structures, is to use C++ instead of C.

A.3 The JavaScript Programming Language

JavaScript is a programming language that was created for use on Web pages. More
recently, a version known as node has made it possible to use JavaScript for server-side programs,
and even for general programming. JavaScript was first developed by Netscape (the predecessor
of the Firefox web browser) at about the same time that Java was introduced, and the name
JavaScript was chosen to ride the tide of Java’s increasing popularity. In spite of the similar
names, the two languages are quite different. Actually, there is no standardized language named
JavaScript. The standardized language is officially called ECMAScript, but the name is not
widely used in practice, and versions of JavaScript in actual web browsers don’t necessarily
implement the standard exactly.

Traditionally, it has been difficult for programmers to deal with the differences among
JavaScript implementations in different web browsers. But almost all modern browsers now
implement the features discussed in this section, which are specified by ECMAScript 6, also
known as ES6 . A notable exception is Internet Explorer, the predecessor of Microsoft’s Edge
browser, which really should no longer be used.

This page is a short overview of JavaScript. If you really want to learn JavaScript in detail,
you might consider the book JavaScript: The Definitive Guide, seventh edition, by David
Flanagan.

A.3.1 The Core Language

JavaScript is most closely associated with web pages, but it is a general purpose language that
is used in other places too. There is a core language that has nothing to do with web pages in
particular, and we begin by looking at that core.

JavaScript has a looser syntax than either Java or C. One example is the use of semicolons,
which are not required at the end of a statement, unless another statement follows on the same
line. Like many cases of loose syntax rules, this can lead to some unexpected bugs. If a line is
a legal statement, it is considered to be a complete statement, and the next line is the start of
a new statement—even if you meant the next line to be a continuation of the same statement.
I have been burned by this fact with code of the form

return

"very long string";

The “return” on the first line is a legal statement, so the value on the next line is not considered
to be part of that statement. The result was a function that returned without returning a value.
This also depends on the fact that JavaScript will accept any expression, such as the string on
the second line, as a statement, even if evaluating the expression doesn’t have any effect.

Variables in JavaScript are not typed. That is, when you declare a variable, you don’t
declare what type it is, and the variable can refer to data of any type. Variables are usually
declared using the keyword let, and they can optionally be initialized when they are declared:

let x, y;

let name = "David";

A variable whose value will not be changed after it is initialized can be declared using const

instead of var:

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 357

const name = "David";

Before ES6, variables could only be declared with the keyword var (as in “var x,y;”). It is still
possible to declare variables using var, but let and const are now preferred. (One peculiarity
of using var is that it is OK in JavaScript to use it to declare the same variable more than
once; a declaration just says that the variable exists.)

JavaScript also allows you to use variables without declaring them. However, doing so is not
a good idea. You can prevent the use of undeclared variables, as well as certain other unsafe
practices, by including the following statement at the beginning of your program:

"use strict";

Although variables don’t have types, values do. A value can be a number, a string, a
boolean, an object, a function, or a couple more exotic things. A variable that has never been
assigned a value has the special value undefined. (The fact that a function can be used as a data
value might be a surprise to you; more on that later.) You can determine the type of a value,
using the typeof operator: The expression typeof x returns a string that tells the type of the
value of x. The string can be “undefined”, “number”, “string”, “boolean”, “object”, “function”,
“bigint”, or “symbol”. (Bigints and symbols are not discussed in this section.) Note that typeof
returns “object” for objects of any type, including arrays. Also, typeof null is “object”.

In JavaScript, “string” is considered to be a primitive data type rather than an object type.
When two strings are compared using the == or != operator, the contents of the strings are
compared. There is no char type. To represent a char, use a string of length 1. Strings can be
concatenated with the + operator, like in Java.

String literals can be enclosed either in double quotes or in single quotes. Starting in ES6,
there is also a kind of string literal known as a “template string.” A template string is enclosed in
single backquote characters. When a template string includes a JavaScript expression between
${ and }, the value of that expression is inserted into the string. For example, if x is 5 and y
is 12, then the statement

result = ‘The product of ${x} and ${y} is ${x*y}‘;

assigns the string “The product of 5 and 12 is 60” to result. Furthermore, a template string can
include line feeds, so they provide an easy way to make long, multiline strings. (The backquote,
or backtick, key might be in the top left corner of your keyboard.)

There is not a strict distinction between integers and real numbers. Both are of type
“number”. In JavaScript, unlike Java and C, division of integers produces a real number, so
that 1/2 in JavaScript is 0.5, not 0 as it would be in Java.

Although there is a boolean type, with literal values true and false, you can actually use
any type of value in a boolean context. So, you will often see tests in JavaScript such as

if (x) { ... }

The value of x as a boolean is considered to be false if x is the number zero or is the empty
string or is null or is undefined. Effectively, any type of value can be converted implicitly to
boolean

In fact, JavaScript does many implicit conversions that you might not expect. For example,
when comparing a number to string using the == operator, JavaScript will try to convert the
string into a number. So, the value of 17 == “17” is true. The value of ”” == 0 is also true,
since in this case JavaScript converts both operands to boolean. Since this behavior is not
always what you want, JavaScript has operators === and !== that are similar to == and !=

358 APPENDIX A. PROGRAMMING LANGUAGES

except that they never do type conversion on their operands. So, for example, 17 === “17”
is false. In general, === and !== are the preferred operators for equality tests.

JavaScript will also try to convert a string to a number if you multiply, divide, or subtract
a string and a number—but not if you add them, since in that case it interprets the + operator
as string concatenation, and it converts the number into to a string.

JavaScript does not have type-casting as it exists in Java. However, you can use Number,
String, and Boolean as conversion functions. For example,

x = Number(y);

will attempt to convert y to a number. You can apply this, for example, when y is a string.
If the conversion fails, the value of x will be NaN, a special number value indicating “Not a
Number.” The Number function converts the empty string to zero.

Mathematical functions in JavaScript are defined in a Math object, which is similar to the
Math class in Java. For example, there are functions Math.sin(x), Math.cos(x), Math.abs(x),
and Math.sqrt(x). Math.PI is the mathematical constant π. Math.random() is a function that
returns a random number in the range 0.0 to 1.0, including 0.0 but excluding 1.0.

∗ ∗ ∗

JavaScript control structures are similar to those in Java or C, including if, while, for,
do..while, and switch. JavaScript has a try..catch statement for handling exceptions that
is similar to Java’s, but since variables are untyped, there is only one catch block, and
it does not declare a type for the exception. (That is, you say, “catch (e)” rather than
“catch(Exception e)”.) For an example, see the init() function in the sample program
canvas2d/GraphicsStarter.html. An error can be generated using the throw statement. Any
type of value can be thrown. You might, for example, throw a string that represents an error
message:

throw "Sorry, that value is illegal.";

However, it is preferable to throw an object belonging to the class Error or one of its subclasses:

throw new Error("Sorry, that value is illegal.");

Functions in JavaScript can be defined using the function keyword. Since variables are
untyped, no return type is declared and parameters do not have declared types. Here is a
typical function definition:

function square(x) {

return x * x;

}

A function can return any type of value, or it can return nothing (like a void method in Java).
In fact, the same function might sometimes return a value and sometimes not, although that
would not be good style. JavaScript does not require the number of parameters in a function
call to match the number of parameters in the definition of the function. If you provide too
few parameters in the function call, then the extra parameters in the function definition get
the value undefined. You can check for this in the function by testing if typeof the parameter is
“undefined”. There can be a good reason for doing this: It makes it possible to have optional
parameters. For example, consider

function multiple(str, count) {

if (typeof count === "undefined") {

count = 2;

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 359

}

let copies = "";

for (let i = 0; i < count; i++) {

copies += str;

}

return copies;

}

If no value is provided for count, as in the function call multiple(“boo”), then count will be set
to 2. Note by the way that declaring a variable in a function using let or const makes it local
to the function, or more generally to the block in which it is declared. (Declaring it using var

makes it local to the function but not to the block where it is declared.)

It is also possible to provide a default value for a parameter, which will be used if the
function call does not include a value for that parameter or if the value that is provided is
undefined. For example, the above function could also be written as

function multiple(str, count = 2) { // default value of count is 2

let copies = "";

for (let i = 0; i < count; i++) {

copies += str;

}

return copies;

}

You can also provide extra values in a function call, using something called a “rest
parameter”: The last parameter in the parameter list can be preceded by three dots, as in
“function f(x, y, ...z)”. Any extra parameters are gathered into an array, which becomes the
value of the rest parameter inside the function. For example, this makes it possible to write a
sum function that takes any number of input values:

function sum(...rest) {

let total = 0;

for (let i = 0; i < rest.length; i++) {

total += rest[i];

}

return total;

}

With this definition, you can call sum(2,2), sum(1,2,3,4,5), and even sum(). The value of the
last function call is zero.

(An older technique for dealing with a variable number of parameters is to use the special
variable arguments. In a function definition, arguments is an array-like object that contains the
values of all of the parameters that were passed to the function.)

It is possible to define a function inside another function. The nested function is then local
to the function in which it is nested, and can only be used inside that function. This lets you
define a “helper function” inside the function that uses it, instead of adding the helper function
to the global namespace.

∗ ∗ ∗

Functions in JavaScript are “first class objects.” This means that functions are treated as
regular data values, and you can do the sort of things with them that you do with data: assign
them to variables, store them in arrays, pass them as parameters to functions, return them
from functions. In fact, it is very common to do all of these things!

360 APPENDIX A. PROGRAMMING LANGUAGES

When you define a function using a definition like the ones in the examples shown above, it’s
almost the same as assigning a function to a variable. For example, given the above definition
of the function sum, you can assign sum to a variable or pass it as a parameter, and you would
be assigning or passing the function. And if the value of a variable is a function, you can use
the variable just as you would use the function name, to call the function. That is, if you do

let f = sum;

then you can call f (1,2,3), and it will be the same as calling sum(1,2,3). (One difference
between defining a function and assigning a variable is that a function defined by a function
definition can be used anywhere in the program, even before the function definition. Before it
starts executing the program, the computer reads the entire program to find all the function
definitions that it contains. Assignment statements, on the other hand, are executed when the
computer gets to them while executing the program.)

JavaScript even has something like “function literals.” That is, there is a way of writing a
function data value just at the point where you need it, without giving it a name or defining it
with a standard function definition. Such functions are called “anonymous functions.” There
are two syntaxes for anonymous functions. The older syntax looks like a function definition
without a name. Here, for example, an anonymous function is created and passed as the first
parameter to a function named setTimeout :

setTimeout(function () {

alert("Time’s Up!");

}, 5000);

To do the same thing without anonymous functions would require defining a standard named
function that is only going to be used once:

function alertFunc() {

alert("Time’s Up!");

}

setTimeout(alertFunc, 5000);

The second syntax for anonymous functions, new in ES6, is the “arrow function,” which
takes the form 〈<parameter list> => <definition>〉. For example,

() => { alert("Times Up!"); }

or

(x,y) => { return x+y; }

If there is exactly one parameter, the parentheses in the parameter list can be omitted. If
there is only one statement, the braces around the definition can be omitted. And if the single
statement is a return statement, then the word “return” can also be omitted. Thus, we have
arrow functions such as “x => x*x”. An arrow function, like any function, can be assigned
to a variable, passed as a parameter, or even returned as the return value of a function. For
example,

setTimeout(() => alert("Times up!"), 5000);

In C, functions can be assigned to variables and passed as parameters to functions. However,
there are no anonymous functions in C. Something similar to arrow functions has been added
to Java in the form of “lambda expressions.”

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 361

A.3.2 Arrays and Objects

An array in JavaScript is an object, which includes several methods for working with the array.
The elements in an array can be of any type; in fact, different elements in the same array can
have different types. An array value can be created as a list of values enclosed between square
brackets, [and]. For example:

let A = [1, 2, 3, 4, 5];

let B = ["foo", "bar"];

let C = [];

The last line in this example creates an empty array, which initially has length zero. An array
can also be created using a constructor that specifies the initial size of the array:

let D = new Array(100); // space for 100 elements

Initially, the elements of D all have the value undefined.

The length of an array is not fixed. (This makes JavaScript arrays more similar to Java
ArrayLists than they are to Java or C arrays.) If A is an array, its current length is A.length.
The push method can be used to add a new element to the end of an array, increasing its length
by one: A.push(6). The pop method removes and returns the last item: A.pop(). In fact, it is
legal to assign a value to an array element that does not yet exist:

let E = [1, 2, 3]; // E has length 3

E[100] = 17; // E now has length 101.

In this example, when a value is assigned to E [100], the length of the array is increased to make
it large enough to hold the new element.

Modern JavaScript has an alternative version of the for loop that is particularly useful with
arrays. It takes the form for (let v of A) . . . , where A is an array and v is the loop control
variable. In the body of the loop, the loop control variable takes on the value of each element
of A in turn. Thus, to add up all the values in an array of numbers, you could say:

let total = 0;

for (let num of A) {

total = total + num; // num is one of the items in the array A.

}

Because of their flexibility, standard JavaScript arrays are not very efficient for working
with arrays of numbers. Modern web browsers define typed arrays for numerical applications.
For example, an array of type Int32Array can only hold values that are 32-bit integers. Typed
arrays are used extensively in WebGL; they are covered in this book when they are needed.

∗ ∗ ∗

JavaScript has objects and classes, although its classes are not exactly equivalent to those
in Java or C++. For one thing, it is possible to have objects without classes. An object is
essentially just a collection of key/value pairs, where a key is a name, like an instance variable
or method name in Java, which has an associated value. The term “instance variable” is not
usually used in JavaScript; the preferred term is “property.”

The value of a property of an object can be an ordinary data value or a function (which
is just another type of data value in JavaScript). It is possible to create an object as a list of
key/value pairs, enclosed by { and }. For example,

362 APPENDIX A. PROGRAMMING LANGUAGES

let pt = { x: 17, y: 42 };

let ajaxData = {

url: "http://some.place.org/ajax.php",

data: 42,

onSuccess: function () { alert("It worked!"); },

onFailure: function (error) { alert("Sorry, it failed: " + error); }

};

With these definitions, pt is an object. It has properties pt.x, with value 17, and pt.y,
with value 42. And ajaxData is another object with properties including ajaxData.url and
ajaxData.onSuccess. The value of ajaxData.onSuccess is a function, created here as an
anonymous function. A function that is part of an object is often referred to as a “method” of
that object, so ajaxData contains two methods, onSuccess and onFailure.

Objects are open in the sense that you can add a new property to an existing object at any
time just by assigning a value. For example, given the object pt defined above, you can say

pt.z = 84;

This adds z as a new property of the object, with initial value 84.

Objects can also be created using constructors. A constructor is a function that is called
using the new operator to create an object. For example,

let now = new Date();

This calls the constructor Date(), which is a standard part of JavaScript. Date is a class, and
“new Date()” creates an object of type Date. When called with no parameters, new Date()
constructs an object that represents the current date and time.

New classes can be created using the class keyword. A class definition contains a list of
function definitions, which are declared without the “function” keyword. A class definition
should include a special function named “constructor” that serves as the constructor for the
class. This constructor function is actually called when the new operator is used with the
name of the class. In the function definition, properties of the object are referred to using the
special variable this, and properties are added to the object by assigning values to them in the
constructor.

class Point2D {

constructor(x = 0,y = 0) {

// Construct an object of type Point2D with properties x and y.

// (The parameters x and y to the constructor have default value 0.)

if (typeof x !== "number" || typeof y !== "number")

throw new TypeError("The coordinates of a point must be numbers.");

this.x = x;

this.y = y;

}

move(dx,dy) {

// Defines a move() method as a property of any Point2D object.

this.x = this.x + dx;

this.y = this.y + dy;

}

}

With this definition, it is possible to create objects of type Point2D. Any such object will have
properties named x and y, and a method named move(). For example:

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 363

let p = new Point2D(); // p.x and p.y are 0.

let q = new Point2D(17,42); // q.x is 17, q.y is 42.

q.move(10,20); // q.x is now 27, and q.y is now 62.

q.z = 1; // We can still add new properties to q.

A new class can extend an existing class, and then becomes a “subclass” of that class.
However, this option is not covered here, except for the following simple example:

class Point3D extends Point2D {

constructor(x = 0, y = 0, z = 0) {

if (typeof z !== "number")

throw new TypeError("The coordinates of a point must be numbers.");

super(x,y); // Call the Point2D constructor; creates this.x and this.y.

this.z = z; // Add the property z to the object.

}

move(dx,dy,dz) { // Override the definition of the move() method

super.move(dx,dy); // Call move() from the superclass.

if (typeof dz !== "undefined") {

// Allows move() to still be called with just two parameters.

this.z = this.z + dz;

}

}

}

For a more extensive example of classes and subclasses, see canvas2d/HierarchicalModel2D.html.

∗ ∗ ∗

The class keyword was new in ES6, but JavaScript already had classes. However, in earlier
versions of JavaScript, a class was simply defined by a constructor function, and a constructor
function could be any function called with the “new” operator. Since this kind of class is still
used, it is worthwhile to look at how it works.

A constructor function is written like an ordinary function; by convention, the name of a
constructor function begins with an upper case letter. A constructor function defines a class
whose name is the name of the function. For example, let’s see how to use a constructor function
instead of the class keyword to define the class Point2D:

function Point2D(x,y) {

if (typeof x === "number") {

this.x = x;

}

else {

this.x = 0;

}

if (typeof y === "number") {

this.y = y;

}

else {

this.y = 0;

}

this.move = function(dx,dy) {

this.x = this.x + dx;

this.y = this.y + dy;

}

}

364 APPENDIX A. PROGRAMMING LANGUAGES

When called with the new operator, as in “new Point2D(17,42)”, this function creates an object
that has properties x, y, and move. These properties are created by assigning values to this.x,
this.y, and this.move in the constructor function. The object that is created is essentially the
same as an object created using the Point2D class defined above. (One note: the move method
could not be defined here using an arrow function, since the special variable “this” is not
appropriately defined in the body of an arrow function.)

The definition of the move method in this example is not done in the best way possible.
The problem is that every object of type Point2D gets its own copy of move. That is, the code
that defines move is duplicated for each object that is created. The solution is to use something
called the “prototype” of the function Point2D.

This might take us farther into the details of JavaScript than we really need to go, but
here is how it works: Every object has a prototype, which is another object. Properties of
the prototype are considered to be properties of the object, unless the object is given its own
property of the same name. When several objects have the same prototype, those objects share
the properties of the prototype. Now, when an object is created by a constructor function, the
prototype of the constructor becomes the prototype of the new object that it creates. This
means that properties that are added to the prototype of a constructor function are shared by
all the objects that are created by that function. Thus, instead of assigning a value to this.move
in the constructor function, we can do the following outside the definition of function Point2D :

Point2D.prototype.move = function(dx,dy) {

this.x = this.x + dx;

this.y = this.y + dy;

}

The properties of the prototype are shared by all objects of type Point2D. In this case, there is
a single copy of move in the prototype, which is used by all such objects. The result is then a
Point2D class that is essentially the same as the class defined using the class keyword.

A.3.3 JavaScript on Web Pages

There are three ways to include JavaScript code on web pages (that is, in HTML files). First,
you can include it inside <script> elements, which have the form

<script>

// ... JavaScript code goes here ...

</script>

You will sometimes see a type attribute in the first line, as in

<script type="text/javascript">

The attribute specifies the programming language used for the script. However, the value
“text/javascript” is the default and the type attribute is not required for JavaScript scripts.
(You might also see a <script> with type=“module”, indicating a modular JavaScript program.
Modules are used in the three.js library, but are not mentioned elsewhere in this textbook.
Modules were a new feature in ES6. They make it possible to break up a large program into
components and control the sharing of variables between components. Modules are not used
in the programs for this textbook, but they are used in the three.js 3D graphics library. They
are covered briefly in the chapter on three.js.)

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 365

The second way to use JavaScript code is to put it in a separate file, usually with a name
ending with “.js”, and import that file into the web page. A JavaScript file can be imported
using a variation of the <script> tag that has the form

<script src="filename.js"></script>

where “filename.js” should be replaced by the URL, relative or absolute, of the JavaScript file.
The closing tag, </script>, is required here to mark the end of the script, even though it is not
permitted to have any code inside the script element. (If you do, it will be ignored.) Importing
JavaScript code from a file in this way has the same effect as typing the code from the file
directly into the web page.

Script elements of either type are often included in the <head> section of an HTML file, but
they actually occur at any point in the file. You can use any number of script elements on the
same page. A script can include statements such as function calls and assignment statements,
as well as variable and function declarations.

The third way to use JavaScript on a web page is in event handlers that can occur inside
HTML elements. For example, consider

<h1 onclick="doClick()">My Web Page</h1>

Here, the onclick attribute defines an event handler that will be executed when the user clicks
on the text of the <h1> element. The value of an event handler attribute such as onclick can be
any JavaScript code. It can include multiple statements, separated by semicolons, and can even
extend over several lines. Here, the code is “doClick()”, so that clicking the <h1> element will
cause the JavaScript function doClick() to be called. I should note that this is an old-fashioned
way to attach an event handler to an element, and it should not be considered best style. There
are alternatives that I will mention later. Nevertheless, I sometimes do things the old-fashioned
way.

It is important to understand that all the JavaScript code in <script> elements, including
code in imported files, is read and executed as the page is being loaded. Usually, most of the
code in such scripts consists of variable initializations and the definitions of functions that are
meant to be called after the page has loaded, in response to events. Furthermore, all the scripts
on a page are part of the same program. For example, you can define a variable or function in
one script, even in an imported file, and then use it in another script.

∗ ∗ ∗

JavaScript for web pages has several standard functions that allow you to interact with the
user using dialog boxes. The simplest of these is alert(message), which will display message
to the user in a popup dialog box, with an “OK” button that the user can click to dismiss the
message.

The function prompt(question) will display question in a dialog box, along with an input
field where the user can enter a response. The prompt function returns the user’s response as
its return value. This type of dialog box comes with an “OK” button and with a “Cancel”
button. If the user hits “Cancel”, the return value from prompt is null. If the user hits “OK”,
the return value is the content of the input field (which might be the empty string).

The function confirm(question) displays question in a dialog box along with “OK” and
“Cancel” buttons. The return value is true or false, depending on whether the user hits “OK”
or “Cancel”.

Here, for example, is a simple guessing game that uses these functions for user interaction:

alert("I will pick a number between 1 and 100.\n"

366 APPENDIX A. PROGRAMMING LANGUAGES

+ "Try to guess it!");

do {

let number = Math.floor(1 + 100*Math.random());

let guesses = 1;

let guess = Number(prompt("What’s your guess?"));

while (guess !== number) {

if (isNaN(guess) || guess < 1 || guess > 100) {

guess = Number(prompt("Please enter an integer\n" +

"in the range 1 to 100"));

}

else if (guess < number) {

guess = Number(prompt("Too low. Try again!"));

guesses++;

}

else {

guess = Number(prompt("Too high. Try again!"));

guesses++;

}

}

alert("You got it in " + guesses + " guesses.");

} while (confirm("Play again?"));

(This program uses Number() to convert the user’s response to a number. If the response
cannot be parsed as a number, then the value will be the not-a-number value NaN. The function
isNaN (guess) is used to check whether the value of guess is this special not-a-number value. It’s
not possible to do that by saying “if (guess === NaN)” since the expression NaN === NaN
evaluates to false! The same, by the way, is true of the not-a-number value in Java.)

∗ ∗ ∗

You can try out JavaScript code in the JavaScript consoles that are available in many web
browsers. In the Chrome browser, for example, you can access a console in the menu under
“More Tools” / “Developer Tools”, then click the “Console” tab in the developer tools. This
will show the web console at the bottom of the Chrome window, with a JavaScript input
prompt. The console can also be detached into a separate window. When you type a line of
JavaScript and press return, it is executed, and its value is output in the console. The code
is evaluated in the context of the current web page, so you can even enter commands that
affect that page. The Web console also shows JavaScript errors that occur when code on the
current web page is executed, and JavaScript code can write a message to the console by calling
console.log(message). All this makes the console very useful for debugging. (Browser tools also
include a sophisticated JavaScript program debugger.)

Other browsers have similar developer tools. For the JavaScript console in Firefox, look
for “Web Developer Tools” under “Web Developer” in the menu. In the Safari browser, use
“Show JavaScript Console” in the “Develop” menu (but note that the Develop menu has to
be enabled in the Safari Preferences, under the “Advanced” tab). In the Edge browser, access
“Developer Tools” by hitting the F12 key.

When an error occurs on a web page, you don’t get any notification, except for some output
in the console. So, if your script doesn’t seem to be working, the first thing you should do is
open the console and look for an error message. When you are doing JavaScript development,
you might want to keep the console always open.

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 367

A.3.4 Interacting with the Page

JavaScript code on a web page can manipulate the content and the style of that page. It can do
this because of the DOM (Document Object Model). When a web page is loaded, everything
on the page is encoded into a data structure, defined by the DOM, which can be accessed from
JavaScript as a collection of objects. There are several ways to get references to these objects,
but I will discuss only one: document.getElementById. Any element on a web page can have
an id attribute. For example:

or

<h1 id="mainhead">My Page</h1>

An id should be unique on the page, so that an element is uniquely identified by its id. Any
element is represented by a DOM object. If an element has an id, you can obtain a reference
to the corresponding DOM object by passing the id to the function document.getElementById.
For example:

let image = document.getElementById("pic");

let heading = document.getElementById("mainhead");

Once you have a DOM object, you can use it to manipulate the element that it represents.
For example, the content of the element is given by the innerHTML property of the object.
The value is a string containing text or HTML code. In our example, the value of
heading.innerHTML is the string “My Page”. Furthermore, you can assign a value to this
property, and doing so will change the content of the element. For example:

heading.innerHTML = "Best Page Ever!";

This does not just change the value of the property in the object; it actually changes the text
that is displayed on the web page! This will seem odd (and maybe even a little creepy) to
programmers who are new to JavaScript: It’s an assignment statement that has a side effect.
But that’s the way the DOM works. A change to the DOM data structure that represents a
web page will actually modify the page and change its display in the web browser.

Some attributes of elements become properties of the objects that represent them. This is
true for the src attribute of an image element, so that in our example, we could say

image.src = "anotherpicture.jpg";

This will change the source of the image element. Again, this is a “live” assignment: When the
assignment statement is executed, the image on the web page changes.

For readers who know CSS, note that the DOM object for an element has a property
named style that is itself an object, representing the CSS style of the object. The style object
has properties such as color, backgroundColor, and fontSize representing CSS properties. By
assigning values to these properties, you can change the appearance of the element on the page.
For example,

heading.style.color = "red";

heading.style.fontSize = "150%";

These commands will make the text in the <h1> element red and 50% larger than usual. The
value of a style property must be a string that would be a legal value for the corresponding
CSS style.

368 APPENDIX A. PROGRAMMING LANGUAGES

Most interesting along these lines, perhaps, are properties of input elements, since they
make it possible to program interaction with the user. Suppose that in the HTML source of a
web page, we have

<input type="text" id="textin">

<select id="sel">

<option value="1">Option 1</option>

<option value="2">Option 2</option>

<option value="3">Option 3</option>

</select>

<input type="checkbox" id="cbox">

and in JavaScript, we have

let textin = document.getElementById("textin");

let sel = document.getElmenntById("sel");

let checkbox = document.getElementById("cbox");

Then the value of the property checkbox.checked is a boolean that can be tested to determine
whether the checkbox is checked or not, and the value true or false can be assigned to
checkbox.checked to check or uncheck the box programmatically. The value of checkbox.disabled
is a boolean that tells whether the checkbox is disabled. (The user can’t change the value of a
disabled checkbox.) Again, you can both test and set this value. The properties sel.disabled and
textin.disabled do the same thing for the <select> menu and the text input box. The properties
textin.value and sel.value represent the current values of those elements. The value of a text
input is the text that is currently in the box. The value of a <select> element is the value of
the currently selected option. As an example, here is complete source code for a web page that
implements a guessing game using a text input box and buttons:

<!DOCTYPE html>

<html>

<head>

<title>Guessing Game</title>

<script>

"use strict";

let number = Math.floor(1 + 100*Math.random());

let guessCount = 0;

let guessMessage = "Your guesses so far: ";

function guess() {

let userNumber = Number(document.getElementById("guess").value);

document.getElementById("guess").value = "";

if (isNaN(userNumber) || userNumber < 1 || userNumber > 100) {

document.getElementById("question").innerHTML =

"Bad input!
Try again with an integer in the range 1 to 100.";

}

else if (userNumber === number) {

guessCount++;

document.getElementById("question").innerHTML =

"You got it in " + guessCount + " guesses. " +

userNumber + " is correct.
" +

"I have picked another number. Make a guess!";

number = Math.floor(1 + 100*Math.random());

guessCount = 0;

A.3. THE JAVASCRIPT PROGRAMMING LANGUAGE 369

guessMessage = "Your guesses so far: ";

document.getElementById("message").innerHTML = "";

}

else if (userNumber < number) {

guessCount++;

document.getElementById("question").innerHTML =

userNumber + " is too low.
Try again.";

guessMessage += " " + userNumber;

document.getElementById("message").innerHTML = guessMessage;

}

else {

guessCount++;

document.getElementById("question").innerHTML =

userNumber + " is too high.
Try again.";

guessMessage += " " + userNumber;

document.getElementById("message").innerHTML = guessMessage;

}

}

</script>

</head>

<body>

<p id="question">I will pick a number between 1 and 100.

Try to guess it. What is your first guess?</p>

<p><input type="text" id="guess">

<button onclick="guess()">Make Guess</button></p>

<p id="message"></p>

</body>

</html>

∗ ∗ ∗

Here’s one problem with some of my discussion. Suppose that a script uses the function
document.getElementById to get the DOM object for some HTML element. If that script is
executed before the page has finished loading, the element that it is trying to access might
not yet exist. And remember that scripts are executed as the page is loading. Of course, one
solution is to call document.getElementById only in functions that are executed in response to
events that can only occur after the page has loaded; that’s what I did in the previous example.
But sometimes, you want to assign a DOM object to a global variable. Where should you do
that? One possibility is to put the script at the end of the page. That will probably work.
Another, more common technique is to put the assignment into a function and arrange for that
function to run after the page has finished loading. When the browser has finished loading
the page and building its DOM representation, it fires a load event. You can arrange for some
JavaScript code to be called in response to that event. A common way of doing this is to add
an onload event-handler to the <body> tag:

<body onload="init()">

This will call a function named init() when the page has loaded. That function should include
any initialization code that your program needs.

You can define similar event-handlers in other elements. For example, for <input> and
<select> elements, you can supply an onchange event-handler that will be executed when the
user changes the value associated with the element. This allows you to respond when the user
checks or unchecks a checkbox or selects a new option from a select menu.

370 APPENDIX A. PROGRAMMING LANGUAGES

It’s possible to include an event handler for an element in the HTML tag that creates the
element, as I did with the body onload event. But that’s not the preferred way to set up event
handling. For one thing, the mixing of JavaScript code and HTML code is often considered to
be bad style. Alternatively, there are two other ways to install event handlers using the DOM.
Suppose that checkbox is a DOM object representing a check box element, probably obtained by
calling document.getElementById. That object has a property named onchange that represents
an event-handler for the checkbox’s onchange event. You can set up event handling by assigning
a function to that property. If checkBoxChanged is the function that you want to call when the
user checks or unchecks the box, you can use the JavaScript command:

checkbox.onchange = checkBoxChanged;

You could also use an anonymous function:

checkbox.onchange = function() { alert("Checkbox changed"); };

Note that the value of checkbox.onchange is a function, not a string of JavaScript code.
The other way to set up event handling in JavaScript is with the addEventListener function.

This technique is more flexible because it allows you to set up more than one event handler for
the same event. This function is a method in any DOM element object. Using it, our checkbox
example becomes

checkbox.addEventListener("change", checkBoxChanged, false);

The first parameter to addEventListener is a string that gives the name of the event. The
name is the same as the name of the event attribute in HTML, with “on” stripped off the
front: onchange becomes “change”. The second parameter is the function that will be called
when the event occurs. It can be given as the name of a function or as an anonymous function.
The third parameter is harder to explain and will, for our purposes, always be false. You can
remove an event listener from an element by calling element.removeEventListener with the
same parameters that were used in the call to element.addEventListener. The load event is
associated with a predefined object named window, so instead of attaching an event-handler for
that event in the <body> tag, you could say

window.onload = init;

or

window.addEventListener("load", init, false);

Similarly, there is an onmousedown event that is defined for any element. A handler
for this event can be attached to a DOM element, elem, either by assigning a function to
elem.onmousedown or by calling elem.addEventListener(“mousedown”,handler,false). Other
common events include onmouseup, onmousemove, onclick, and onkeydown. An onkeydown
event handler responds when the user presses a key on the keyboard. The handler is often
attached to the document object:

document.onkeydown = doKeyPressed;

An event-handler function can take a parameter that contains information about the event.
For example, in an event-handler for mouse events, using evt as the name of the parameter,
evt.clientX and evt.clientY give the location of the mouse in the browser window. In a handler
for the onkeydown event, evt.keyCode is a numeric code for the key that was pressed.

Event handling is a complicated subject, and I have given only a short introduction here.
As a first step in learning more about events in JavaScript, you might look at the HTML source
code for the sample web page canvas2d/EventsStarter.html.

Appendix B

Blender: A 3D Modeling Program

Blender is a free and open-source graphics program with a large community of users. It
can be used to create and animate 3D scenes interactively. It is a very complex and sophisticated
program, with advanced modeling and rendering tools, that can be used to produce professional
graphics and animation. This appendix looks at just a small subset of its features.

Blender can be downloaded from blender.org. The site includes a great deal of information
about what it can do (blender.org/features) and how to use it (blender.org/support).

I have included some work with Blender as part of my computer graphics courses since 2001,
as a supplement to the graphics programming that is the main topic of the course. While we use
only a small part of Blender’s capabilities, I believe that it is useful for students to have some
experience with interactive 3D modeling. It helps them develop their ability to visualize in three
dimensions, and it lets them see the role that fundamental concepts such as transformations,
lighting and material, and textures play in real applications. Most people are intimidated, at
first, by Blender’s complex interface, but it’s actually not difficult to learn how to use it for
some basic tasks that are relevant to this textbook. Many of my students have enjoyed using
it and have gone on to learn enough about it to use it in a final project.

Blender went through some significant changes between versions 2.79 and 2.8. This appendix
is based on Blender 2.93, which is the current version as of July, 2021. However, most of the
appendix should apply to any version between 2.8 and 2.93.

B.1 Blender Basics

Blender has a unique interface, which is consistent across Windows, MacOS, and Linux.
It works best with a fairly large display and a three-button mouse. The scroll wheel on most
mice works as the third mouse button. A numeric keypad is also useful. Recent versions of
Blender have made almost all of its functionality usable with just a left mouse button and basic
keyboard, but knowing the shortcuts can still make it easier to work efficiently.

This section discusses how some fundamental aspects of 3D graphics work in Blender,
including geometric objects, transformations, light, material, and textures. See Section 1.2
for a basic introduction to these concepts, if you have not already read the relevant chapters of
the book.

When Blender starts for the first time, you have a chance to select some customizations.
I will assume that you are using the defaults, which include using the left mouse button for
selecting things.

371

372 APPENDIX B. BLENDER

B.1.1 The 3D View

The Blender window is divided into non-overlapping sections, which are called “areas.” Each
area contains an “editor.” Any area can be changed to show any editor, using the menu shown
at the top left of the area in the illustration below. You can drag a corner of an area vertically
or horizontally to split an area in two, or to join two neighboring areas into one. (Or right-click
the dividing line between two areas and select a “Split” or “Join” command from the popup
menu.)

Areas are in turn divided into “regions.” If you have not customized the layout, the central
area of the window is a large “3D View” editor that shows a view of the 3D world that you
are working in. At startup, it contains a simple default scene. Here’s what it looks like, much
reduced from its typical size, with annotations on some of its contents:

Drag in this area
to rotate thø ùúøû
üýþ ÿú((�ø�ÿý��e-
drag anywherøe�
Click X, Y, or Z for
view along axis.

Camera.

 Selected object.

 Point light.

 3D Cursor

Drag from here
to zoom view.

Drag from here
to translate view.

Click for view
from camera
(Numpad-0)

Click to toggle
orthogonal /
perspective view

Manipulators:

for drag,

 rotate,

 zoom,

 combined.

Select tool:
Click or drag
to select
objects.

Cursor tool:
Click to move
3D cursor.

Add menu for adding object to the scene.Select editor type.

What you see in the 3D view is not what you will see when you make a rendered image of the
scene, and the image won’t be made from the same point of view. The only thing in the above
3D View that would be visible in the rendered scene is the cube. The camera represents the
point of view from which a rendered image will be made. The point light provides illumination
for the scene. The other things in the 3D View are there to help you edit the scene or to help
you to understand what you are seeing

You can show and hide various parts of the 3D view. For example, pressing the “t” key will
toggle the visibility of the toolbar on the left. And the “n” key will toggle a control panel that
appears on the right (not shown in the illustration). That panel, for example, lets you enter
the position, scale, and rotation of the selected object numerically.

Important Note: In Blender, key presses are sent to the editor that contains the mouse
cursor, except when typing into a text input box. This means that the mouse cursor must be
in the 3D View for key presses to be sent to that editor. When pressing a key doesn’t seem to
do what you expect, check the position of the mouse cursor!

You can change the view of the world that you see in the 3D View by clicking or dragging
on the controls along the right edge of the 3D View, as shown in the above illustration. But
there are also other ways to control the view. Rolling your mouse’s scroll wheel while the
mouse is over the 3D view will zoom the view in or out. Dragging with the middle mouse

B.1. BLENDER BASICS 373

button (which usually means pressing and holding down the scroll wheel while dragging) will
rotate the view. Shift-dragging with the middle mouse button will translate the view. And the
number keys on a keyboard’s numpad will affect the view: 1, 3, 7, and 9 select views along the
coordinate axes; 2, 4, 6, and 8 rotate the view; 0 selects the view from the camera; and 5 toggles
between perspective and orthographic projections. Also, Numpad-Period will zoom in on the
selected object or objects. (If using the Numpad, make sure that NumLock is enabled on your
keyboard.)

Two other keyboard tricks: If you get lost in the 3D view, just hit the “Home” key, which
will bring all objects into view. And if you want to clear away visual clutter so that you can
just work on one or a few objects, select the object or objects that you want to work on, and
hit the “/” key; the view will zoom in on the selection, and other objects will be hidden. Hit
the “/” key again to return to the usual view.

∗ ∗ ∗

The toolbar at the left edge of the 3D View determines how the left mouse button is used.
The default tool is the Select Tool: Click an object to select it, or click and drag to draw a box
and select all the objects that intersect the box. Hold down the shift key while selecting to add
to the current selection.

Note that the area on the top right of the Blender window contains a scene graph view
of the current scene (called an “Outliner” editor in Blender). You can also select objects by
clicking on their names in the scene graph view. This can be convenient when the object that
you want to select is hidden in the 3D View.

When using the second tool, the Cursor Tool, you can click to set the position of the 3D
cursor. You can also set its position by shift-right-clicking with any tool. The 3D cursor is
discussed later in this section.

The next four tools can also be used for selecting objects, but they add “manipulators” to
the selected object or group of objects. Manipulators can be used to transform an object. Here
is what the manipulators for translating, rotating, and scaling an object look like on a cube:

For example, using the translation manipulator, you can drag one of the arrowheads to translate
the object in the direction of one of the coordinate axes, or you can drag the white circle to
translate the object in the plane of the 3D View. As with most Blender interface elements, you
can hover your mouse over any part of a manipulator to see what it does.

But if you are comfortable with keyboard shortcuts, there are other ways to transform
objects, without changing the tool that you are using. Select the object or objects you want to
transform, then apply the transformation as follows:

• Press the “G” key. (G stands for “grab”.) Move the mouse without holding down any

mouse button. You can move the object in the plane of the screen only. Click with the

374 APPENDIX B. BLENDER

left mouse button to finish. Click with the right mouse button to abort. (Hitting return
will also finish; hitting escape will also abort.) After hitting the “G” key, you can hit “X”,
“Y”, or “Z” to constrain motion to one axis. Note in particular that you cannot simply
click-and-drag an object to move it!

• Press the “S” key. Without holding down any mouse key, move the mouse towards or
away from the object to change its size. The size changes in all three dimensions. End the
operation in the same way as for the “G” key. After hitting “S”, you can hit “X”, “Y”, or
“Z” to scale the object in the direction of one axis only, or hit Shift-X, -Y, or -Z to scale
in the two directions perpendicular to the axis.

• Press the “R” key. Without holding down any mouse key, move the mouse to rotate the
object around a line perpendicular to the screen. Click with the left mouse button to
finish. End the operation in the same way as for the “G” key. If you hit “R” a second

time, you can freely rotate the object. Or, after hitting “R”, you can hit “X”, “Y”,
or “Z” to rotate the object about the specified axis.

You can get yourself real confused if you don’t remember to press the left or right mouse
button to complete a transformation operation. You can’t do anything else until the operation
is completed.

Whether rotating, scaling, or translating, you can hold the Control key down to limit the
changes, such as to integral amounts while translating or to multiples of ten degrees while
rotating. Also, you can use the arrow keys to make small adjustments.

All these operations can be applied to the camera, just as they are applied to any other
object. You can move and rotate the camera to get the view of the world that you want to
see when you render an image. You can even apply transformations to the camera while in the
camera view (Numpad 0), as long as the camera is the selected object. This can be a good way
to get the exact view that you want for the rendered image.

B.1.2 Adding Objects to the Scene

Changing the view does not modify the contents of the world. To do that, you need editing
operations such as adding objects to the world. This is where the 3D cursor comes in. The
3D cursor is labeled in the above image of the 3D View editor. A newly added object is always
added to the world at the position of the 3D cursor. (You might prefer to just leave the 3D
cursor at the origin and move objects into position after you add them.)

You must position the 3D cursor before adding the object. The 3D cursor is positioned
by clicking on the 3D View window with the left mouse button. The 3D cursor exists in three-
dimensional space. You can’t tell where it is by looking at the world from just one point of view.
Typically, you would check the position of the 3D cursor from several viewpoints by rotating
the view or by using the Numpad 1, 3, and 7 keys to switch between views.

Another way to position the 3D cursor is with the “Snap” menu, which you can call up
by pressing SHIFT-S while the mouse cursor is in the 3D Vew window. (Remember that the
mouse must be in the 3D View for keystrokes to be sent to that editor.) This is one of Blender’s
strange circular menus that pops up at the position of the mouse cursor—just move the cursor
towards one of the options to select it, and press the left mouse button. You can also find
a more normal Snap menu as a submenu in the popup menu that you get by right-clicking
the 3D View. The Snap menu contains commands for positioning the cursor as well as for
positioning objects. For example, use “Cursor To World Origin” to move the 3D cursor to the
point (0,0,0).

B.1. BLENDER BASICS 375

Once you have the 3D cursor in position, use the “Add” menu to add an object to the
world. You can pop up the Add menu at the mouse position by hitting Shift-A, or you can
find it in the header at the top the 3D View. The Add menu has submenus for adding several
types of objects. I suggest that you stick with mesh objects at first. (A mesh is a surface made
up of polygons or a curve made up of line segments.) Various mesh objects are available in
the “Mesh” submenu of the Add menu. For example, A UVSphere is a sphere divided into
segments by lines of latitude and longitude. An ICOSphere is divided into triangles. A Plane
is actually just a rectangle. (When you first start Blender, the object in the default scene is a
mesh Cube.)

When adding certain types of objects, there are some options you can change. When you
add the object, a panel containing these options appears in the lower left region of the 3D
View. You might just see the name of the panel; click it to show the entire panel. The following
image shows the panel for a Mesh UVSphere. You can change the number of Segments and
Rings, which are the number of subdivisions around the equator of the sphere and the number
from the north pole to the south pole. This is the only chance that you will get to set those
properties.

Note that you can set the position and rotation of the newly added object by typing in values.
The numerical input widgets in this panel are examples of Blender’s funny input buttons. Here’s
how to use such buttons: You can click the button, type in a value, and press return. You can
click the arrows at the ends of the button to increase/decrease the value. Or you can drag the
mouse left-to-right or right-to-left on the button to change the value.

Note the “Generate UVs” checkbox. “UV” here refers to texture coordinates for the object.
You will need them if you want to apply a texture to the object. (“UV” in this sense has
nothing to do with the “UV” in the name “UVSphere,” which refers to the u and v parameters
used as inputs for a parametric surface.)

To delete the selected object or objects, just hit the “X” key or the Delete key. With the
“X” key, you will be asked to confirm the deletion. (Remember that the mouse cursor must be
in the 3D window for it to get keyboard commands. (This is the last time I will say this!))

As you modify the world, you can undo most operations by pressing Control-Z. That includes
adding, deleting, and editing objects. Control-Shift-Z is the Redo operation.

376 APPENDIX B. BLENDER

B.1.3 Edit Mode

Ordinary transformations (and many other operations) are applied to an object as a whole.
Sometimes, however, you want to work on the vertices, edges, or faces of an object. For that,
you use “edit mode.”

To enter Edit Mode for the selected object, press TAB. When in Edit Mode, press TAB to
exit Edit Mode. In Edit Mode, you can select individual vertices and groups of vertices. You
can select a face by selecting all the vertices of that face. You can select an edge by selecting
both vertices of that edge. You can scale, rotate, and translate selected elements in the usual
way, with the S, R, and G keys, or using a manipulator. You can delete things with the X key.
Right-clicking will pop up a large menu of actions that you can take on the selected elements.

In Edit Mode, selected vertices and faces are orange. The picture on the left below shows a
cube in edit mode with all vertices selected. In the second picture, only the vertices of the top
face are selected. In can be easier to work in Edit Mode using a “wireframe” view instead of the
default “solid” view. Hit the “Z” key to bring up a circular menu of possible views, and select
“wireframe”; the default view is “Solid.” The third picture shows the cube as a wireframe.

Selection of vertices in Edit mode works in the same way as the seletion of objects in the
usual “Object” mode. You can also hit the “A” key to select all vertices. ALT-A (or Option-A
on a Mac) will deselect all vertices. When you first enter Edit Mode for a mesh object, all
of its vertices are selected. It can be easier to select sets of vertices in wireframe mode. You
might have to change the point of view several times while selecting the vertices and performing
operations on them.

There are a lot of things you can’t do in Edit Mode, so don’t forget that you have to press
the TAB key to get out of that mode!

By the way, the “Z” key can be used outside of Edit Mode to select how objects are rendered
in the 3D View. And “A” and “ALT-A” can be used outside of Edit Mode for selecting sets of
objects.

B.1.4 Light, Material, and Texture

We have seen that the “Z” key can be used to select how objects are rendered in the 3D View.
There is also a set of four small buttons in the header that can be used to select the view style.
In the default “Solid” view and the “Wireframe” view, lighting and material don’t affect what
you see. The “Material Preview” view, will show objects’ materials, but not all lighting effects.
The “Rendered” view applies lighting as well.

There is already one point light in the default scene (plus a background that adds something
like ambient light). You can select and transform a light just like any other object. An easy

B.1. BLENDER BASICS 377

way to be sure of lighting all visible objects is to place a light at the position of the camera. You
can add additional lights, using the “Light” submenu in the “Add” menu. You will probably
need to add several lights to light your scene well.

There are several kinds of light in the “light” submenu. A ”Point” light gives off light in
all directions. The light in the initial scene is a point light. A “Sun” is a directional light that
shines in parallel rays from some direction, indicated by a line drawn from the light position in
the 3D view. A “Spot” is a spotlight that gives off a cone of light. You need to aim a sun or
spotlight at the objects you want to illuminate. You will see a yellow dot that you can drag to
change the direction, or you can apply a rotation to the sun or spot in the usual way.

∗ ∗ ∗

The default color of an object is gray. To change this, you have to add a “material” to the
object and set the properties of that material. (The cube in the start-up world has a material;
new objects that you add don’t.) To work on materials, use the Properties Editor, which you
can find in the lower right area of the window. The Properties Editor allows you to set all kinds
of properties of objects. Along the left edge, there is a a column of buttons that select which
group of properties you want to work on. The buttons that appear depend on what kind of
object is currently selected, although some are always present. Here are the buttons that are
shown when the selected object is a mesh:

R����� 	roperties. Select which

render��
� �se, and settings for

the rendering process.

W��o� 	r���
���� �se to

set global properties

��io����� abient light.

O���i
 	roperties, with

����i
 ���e, transform

and other properties.

M������ 	roperties. ���
�

add modi�ers to an ����i
�

M�
����o 	roperties, c��rently

��o�i
��� ���
� s��� ��d

���

�� ����i
'� ��
erial

O�
�
 	r���
���� �se to set

�� ��t� and format

and other properties of

rendered image.

C���
�aints 	r���
���� �se to

add constraints to an ����i
�

	��
�io� 	r���
���� �se to

add particle systems.

	�P��i� 	r���
���� ��ed for

con���ring physics-based

animation.

In this picture, the Materials button has been clicked. With the materials button selected, the
rest of the editor panel, to the right of the buttons, is filled with controls for setting the material
properties of the selected object. Most of the controls don’t appear until a material has been

378 APPENDIX B. BLENDER

added to the object. If there is no material, you will see a “New” button in the Properties
Editor. Click the “New” button to add a new material to the object, or click the icon to the
left of “New” to select a material that already exists from a menu. The full set of controls will
appear. Here’s just a part of what you will see:

����� et material color.

Y!" �#$ enter a

name for the

material here.

Select an ex�%�$&)#%*+ial

from a list. ,-./*�% �an

share tha same m#%*+�#�a0

����� 1ere to delete this

material from the object.

����� %o r*2*#� # 3+*2�*4

of what the mat*+�#� �!!�

���e on an object.

����� %! %"+n this "Nodes"

option o5 and use only

the most basic settings.

Select which "Shader"

(basic material type)

is used.

Click to select an input

for the color, such as

an image texture.

Degree of subsurface

scattering.

Degree to which this

material is metallic (as

opposed to more like

plastic or cloth).

Degree of surface

roughness.

Click to set color of

subsurface scattered light.

Blender’s system for materials is very complex, and the default type of material is the
“Principled BSDF,” which is itself rather complex. The Principled BSDF tries to implement
physically based rendering — using physically realistic materials and lighting rather then
approximations like the diffuse and specular reflection properties that are used in OpenGL 1.1.
We will just use some of the basic settings of the Principled BSDF. For more information about
it and about materials in general, see the Blender manual. We will cover light and materials in
a little more detail in Section B.4.

The input labeled “Base Color” is just that, the basic color of the material. If you click it,
an RBG color chooser will pop up where you can set the color. Alternatively, you can get the
color from a texture, as discussed below.

The next most important input us “Metalic.” The input is a number between 0.0 and 1.0 that
determines the degree to which the material interacts with light like a metal. Basically, metals
are shiny and their specular reflection is the color of the metal. For a non-metal, the specular
reflection is white. The “Specular” input determines the amount of specular reflection. Note
that there is no specular color as such in the Principled BSDF. (Don’t be fooled by “Specular

B.1. BLENDER BASICS 379

Tint,” which is nothing of the sort and which has almost no visible effect that I can see.)

The “Roughness” input tells how rough the surface is. It is similar to OpenGL’s shininess
property. That is, a rougher surface has larger specular highlights. It also has less sharp
reflections.

I have also labeled controls relevant to subsurface scattering. This refers to the fact that
light can enter an object, bounce around, and emerge at a different point. It is an important
effect for material like skin, milk, and jade, and you can enable it by setting the “Subsurface”
control to a value greater than 0.0.

∗ ∗ ∗

A texture makes the color or some other property of an object vary from point to point.
One type of texture copies colors from an image, effectively painting the image on the surface
of the object. This is called an image texture. Alternatively, the color can be computed
algorithmically from the coordinates of the point. This is called a procedural texture. Blender
has both types of texture.

It’s not hard to use a texture as the “Base Color” in a Principled BSFD. Click the yellow
dot next to “Base Color,” and select “Image Texture” from the popup. (Note that most of
the items in the popup are not useful here!) Then click “Open” and browse for an image file.
You will probably need to set the projection type to “Box” or “Sphere,” but otherwise you can
accept the default settings. Unfortunately, there is no way to apply a texture transformation,
without using more advanced material configuration. Here is what it looks like in the Properties
Editor:

T67 87xture

shown on

a cube.

9ou will see this if you click the

yellow dot under Base Color, and

search for and s7:7;8 <=>?@7 Texture"

in the pApBpD 9ou should click

<Ep7F< to get a Gle browser where

you can select an image.

Hfter selecting an image, the image

Gle name is shown here, and some

settings for the texture are added

below the Base Color input.

Select how the image is prAI7;87J

onto the suface. "Box" works best

in general, "Sphere" is good for

spheres and similar shapes.

Some of the other entries in the popup are procedural textures. You might try the “Checker,”
“Voronoi,” or “Noise” texture. The “Wave” procedural texture can be used to make marble-
like textures, although for now it is limited to grayscale. (See Section B.4 to learn how to add
color.) Here is an example, using settings as shown:

380 APPENDIX B. BLENDER

B.1.5 Saving Your Work

The 3D window shows positions, sizes, and colors of your objects. To see a fully rendered scene
from the point of view of the camera, hit the F12 key. To return to the main window, hit
Escape or F11 (or just close the render window). There are are also commands in the “Render”
menu, at the top of the Blender menu, that do the same things. Remember that you need to
render an image to see some aspects of the scene.

When you render an image, the image is created but it is not saved anywhere. To save it,
use the “Save” command from the “Image” menu at the top of the render window. The size
of the image is set in the Properties Editor, with the “Output” properties selected. The file
format can be set there, or in the file browser window when you save the image.

When you save an image—or need to choose a file from the file system for some other
reason—you will see the Blender File Browser window. The File Browser, like the rest of
Blender, uses a non-standard interface. However, it is not difficult to use. Shortcuts to some
directories are listed along the left edge of the window. For saving a file, you should type the
file name into the input field at the bottom of the window.

To save your entire Blender session, use the “Save” command in the “File” menu of the main
Blender window. A Blender session is stored in a file with the extension “.blend”. Opening
a .blend file will restore the saved state of the program. If you use the “Save Startup File”
command in the “Defaults” submenu of the “File” menu, Blender will save the current state
of the program in a .blend file somewhere in your home directory. After that, when you start
Blender, it will open that file as the starting point for your session, instead of the usual initial
scene. This feature allows you to customize your startup environment.

B.1.6 More Features

We have covered a lot of basic ground about Blender, but before looking at more advanced
modeling and animation, there is a little more background information that will be useful. . .

The Render Engine: A render engine produces a 2D image of a 3D world. Blender
has two render engines that can produce high-quality images: Eevee and Cycles. The Eevee
renderer is selected by default, but you can select the Cycles renderer in the “Render Engine”
menu of the “Render Properties” in the Properties Editor. The selected render engine is used

B.1. BLENDER BASICS 381

when you make a final render of the scene (F12 key) or when you use the Rendered view style
in the 3D View. (There is also a Workbench render engine in the menu, which is used for
the other view styles in the 3D View, but it is not meant for producing high-quality images.)
Eevee is a fast real-time renderer that uses OpenGL, including a lot of tricks and fancy shader
programs for advanced effects. Cycles uses path tracing, which is much slower but can produce
highly realistic, physically accurate renderings (see Section 8.2). When you use Cycles for a
final rendered image, expect it to take a while. When Cycles is used for the rendered view style
in the 3D View, it does less work and produces a “noisier” image. Path tracing is a progressive
algorithm, which means that it can produce a fast, noisy image and then add detail to it over
time. The longer it runs, the more physically accurate it can be. There are many controls in
the Render Properities for configuring the render process. Tuning the process can be difficult,
and requires a lot more knowledge than you will get here.

Active Object: When several objects are selected, only one of those objects is “active.”
If you select several objects by shift-clicking each of them in turn, the active object will be the
last one clicked. The active object is shown in a lighter orange outline than the other selected
objects. You can shift-click any of the selected objects to make it the active object. When you
use the Properties Editor to view or modify properties of an object, it is the active object that
you are working with. When you press the Tab key, it is the active object that goes into edit
mode.

Parenting: One object can be a “parent” of another. This allows you to create hierarchical
models. When you drag, rotate, or scale a parent, all its child objects are transformed as a
group along with the parent. But child objects can still have their own transformations within
the group. Furthermore, a child of one object can be a parent of another object, so you can
do multi-level hierarchical graphics. If you want to group several objects, and there is no
obvious parent, you should consider parenting all the objects to an empty object, made with
the “Empty” command in the “Add” menu. To create a parent relationship, select two or more
objects. The object that you want to be the parent should be the active object; that is, you
should shift-click it last. Hit Control-P. You will have to confirm that you want to make a
parent; select “Object” from the popup menu. A dotted line will join each child to its parent
in the 3D View. To delete a parent relationship, select the child, hit ALT-P, and select “Clear
Parent” from the popup menu.

Duplicating: To duplicate the selected object or object, you can hit Shift-D, or find the
corresponding command in the menu that you get by right-clicking the 3D View. The copy
will be in the exact same place as the original, but will be in “grab” mode so that you can
immediately move it away from the original by moving the mouse and clicking after moving it
into position.

Smooth Shading: By default, mesh objects have a “faceted” appearance where the
polygons that make up the mesh look flat. The effect is called flat shading. Sometimes this is
correct, but often you want to use the mesh as an approximation for a smooth object, such as
a sphere. In that case you want to use smooth shading instead. To select between flat shading
and smooth shading for a mesh object, select the object, right-click in the 3D View, and select
“Shade Smooth” or “Shade flat” from the popup menu. Setting a mesh object to use smooth
shading does not change the geometry of the object; it just uses different normal vectors (see
Subsection 4.1.3).

Naming: In Blender, objects, materials, scenes, etc., all have names. Blender automatically
assigns generic names such as “Cube.002” when you create or duplicate an object. Sometimes,
you need to know something’s name. An example is the “text on curve” feature that will be

382 APPENDIX B. BLENDER

discussed in the next section. To make it easier to identify an object, you might want to use
a more meaningful name. Names are generally displayed in editable boxes. You can just click
the box and enter a new name. For objects, the name is displayed in the “Object” properties in
the Properties Editor. Click the name there to change it, or find the object in the scene graph
view in the upper right area of the Blender window, and double-click the name there to change
it.

Screens: A screen in Blender is a customized layout for the Blender window, appropriate
to some editing task. In the middle of the menu bar at the top of the Blender window, there
is a set of buttons for selecting the current screen. (If you are working in a small window, you
might have to middle-mouse-drag the menu bar to see them all.) Here are the default screens:

We have only been talking about the “Layout” screen, which is the default when Blender starts
up. We will look at some of the other screens later, but most of them are for techniques that
will not even be mentioned in this textbook. The “+” sign on the right end can be used to add
new, customized screens of your own.

Scenes: A “scene” in Blender is its own 3D world. Each scene can contain unique objects,
but it is also possible for scenes to share objects. There is a popup menu at the top of the
Blender window that you can use to create new scenes and to switch from one scene to another.
Scene controls can be found near the right end of the menu bar, next to a set of View Layer
controls that I will not discuss:

Click the icon at the left end of the controls to pop up the menu where you can select a scene.
Click the center of the control to enter a new name for the current scene. Click the icon to
the right of the name to add a new scene. When you do that, you will get several options in a
popup menu: “New” or “Copy Settings” will create an empty scene. “Linked Copy” will create
a scene that contains the same objects as the current scene, with the same transforms; if you
move an object in one scene, it also moves in the other one. You can then add new objects later
that will be in only one of the scenes. You might use this, for example, if you want to set up
a common static background world and then make several scenes that show different “actors”
doing different things in different scenes, but with the same environment. “Full Copy” makes
a new copy of everything in the current scene, so the scenes look the same originally, but really
have no shared data in common.

B.2 Blender Modeling

Blender has a wide variety of basic shapes and tools for making more complex objects.
This section will discuss just a few of the possibilities for modeling 3D shapes.

B.2.1 Text

Blender can work with text, which it can render either as a flat 2D shape or as a 3D shape with
added thickness.

B.2. BLENDER MODELING 383

To add a text object to your scene, use the “Text” command in the “Add” menu. When
you put a text object into Edit Mode, by pressing the TAB key while it is selected, you can use
the keyboard, including the backspace and arrow keys, to edit the text that it contains; you
will certainly want to do this, since the initial text is just the word “Text”.

When a text object is selected, the button for selecting the Object Data properties in the
Properties Editor shows an “a”. Clicking the “a” reveals various useful controls, some of which
are shown in this picture:

For example, there are buttons to control whether multi-line text is Right, Left, or Center
justified, and there are numeric inputs to control character, word, and line spacing. (Not shown
here — look further down, in the “Paragraph” section of the Object Data properties.) You
can also select the font to be used for the text. Blender has only one pretty basic built-in
font, but you can select a font file from the file system to be used instead. Blender can work
with Postscript Type 1, True Type, and Open Type fonts. To select a font file, click a small
“folder” icon in the “Font” section, as shown above. You can set separate fonts for “Regular,”
“Bold,” “Italic,” and “BoldItalic” styles. There are menu commands available while editing a
Text object for selecting the style, but by default only the “Regular” style font is used. (By
the way, you can download lots of free fonts from Google Fonts at www.google.com/fonts.)

An interesting feature is that you can lay your text out along the shape of a curve. You need
a curve object, which you can create as described in the next subsection. You need to know
the name of the curve object; you might want to change the name to something meaningful.
Select the text object. Go to the Object Data controls for the text, shown above. Find the box
labeled “Text on Curve” (in the “Transform” section under “Font”), click the icon on the left
end of the box, and select the curve from the popup menu of available curves. The baseline of
the text will curve to match the shape of the curve. If you change the shape of the curve or
scale it, the text will follow the new shape. You will likely have to scale the text and/or the

384 APPENDIX B. BLENDER

curve to get it to fit nicely. Note that the text does not jump onto the curve; it just uses the
curve object’s shape, wherever the curve is located. The curve itself will not be visible in a
rendered image. If you don’t want to see the curve in the 3D View you can turn off the visibility
of the curve in the scene graph display in the top right area of the Blender window. For the
following sample image, I used a Bezier Circle for the Text on Curve feature, and I made the
background using a circle with another circle deleted from its center. I used a Checker texture
for the material on the background.

Once you have your text, you can extrude and bevel it, exactly as described in the next
subsection for curves, to get a nice 3D appearance. The text in the above image has been
extruded and beveled, and you can see the shadow of the 3D text object on the background.

B.2.2 Curves

Blender has two types of curves: Bezier curves and NURBS curves. (There are also “paths”,
which are just a kind of NURBS curve.) To add a curve to your scene use the “Add” / “Curve”
sub-menu. A Bezier curve has “control points” with “handles” that can be adjusted to change
the shape of the curve. NURBS curves are similar, but the curve is determined entirely by
control points and isn’t constrained to pass through any particular points. NURBS curves are
known for making nice smooth shapes. (There are also NURBS surfaces.)

By default, a curve is “3D,” that is it doesn’t have to lie in a plane. Usually, you want
“2D” curves that are constrained to lie on a plane. To make a curve 2D, go to the “Object
Data” controls for the curve in the Properties Editor. When a curve is selected, the button for
“Object Data” looks like a curve connecting two points. Click the “2D” button. The interior
of the curve might not be filled in at this point. To get a filled-in curve, set the “Fill Mode” in
the Object Data properties to “Both.”

When you put a curve into Edit Mode, you will see its control points. For a NURBS curve,
they lie alongside the curve. For a Bezier curve, the control points are at the ends of “handles”
that are attached to points on the curve. You can select control points and drag them (using
the G key) or otherwise transform them. For a Bezier curve, you can also select the points on

B.2. BLENDER MODELING 385

the curve and drag them. By default, the two ends of a handle line up, making a straight line;
if you move one end, the other end also moves. (There are actually four types of handles: Auto,
Vector, Aligned, and Free. Select one or more vertices in Edit Mode, and hit V to change the
type of handle at the selected vertices. In particular, “Free” allows you to make sharp corners
on a curve.)

More important, you can extend a non-closed curve by adding new points. You should start
with a basic Bezier or NURBS curve, rather than a circle. If you want the curve to be 2D, it’s
best to set it to 2D before adding points (but if you change it to 2D later, it will be forced onto
a plane). Put the curve into Edit Mode; the curve must be in Edit Mode to add new points. For
a Bezier curve, select one endpoint of the curve, by left-clicking near it. For a NURBS curve,
select one of the two end control points. To add a new point, control click with the right mouse
button at the location where you want the new point to be located. The new point that you
add will be connected to the selected endpoint, and the selection will move to the point that
you just added. This makes it easy to add several points in sequence by control-right-clicking
several times.

If the curve is not already closed and you want to close it (that is, connect the end back to
the beginning), just hit “ALT-C” while the curve is in Edit Mode. Hitting “ALT-C” key again
will re-open the curve.

A curve can actually consist of several disconnected segments. If you add another curve
while a curve is in Edit Mode, you add a new segment to the existing curve rather than a
separate curve. For example, if you add a Bezier circle to the scene, put it into Edit Mode, and
then add another Bezier circle inside the first, you will get a ringa disk with a hole removed.
That’s how I made the background for the above image. To transform just one of the segments
of a curve, put the curve into edit mode, select all the vertices of the segment that you want to
transform, and then apply the transformation.

A closed 2D curve bounds a region, which will be shown as a flat surface when you render
the scene. When a curve self-intersects or has several disconnected segments, it’s not completely
clear what it means to be inside the curve. The rule is based on “winding number” at a point,
which means the number of times that the curve encircles the point. If the curve circles the
point an odd number of times, then the point is inside the curve; if the curve encircles it an
even number of times, then the point is outside.

You can extend the 2D region inside a closed 2D curve into the third dimension by extruding
the curve. Look in the curve’s “Object Data” controls for a numerical input labeled “Extrude”
(under “Geometry”). Increasing the value in this box extends the curve into a 3D object,
perpendicularly to the plane in which it lies. In the “Bevel” section under “Geometry,” you
will find a “Depth” box and a “Resolution” box. Increase the value in the “Depth” box to cut
an edge off the 3D shape of the extruded curve. The value in the “Resolution” box determines
how rounded the edge is. For the object on the right in the following picture, I put a Bezier
circle inside another closed Bezier curve (while in Edit Mode!) and set Extrude, Depth, and
Resolution to be positive values:

386 APPENDIX B. BLENDER

It’s possible to transform a Text object into a curve. Just select the text object, right-click
to get a pop-up menu, and select “Curve” from the “Convert To” submenu of the popup menu.
(Note, however, that you won’t be able convert the curve back to a text object.) Once you’ve
converted the text into a curve, you can edit the character outlines as curves. Furthermore,
you can add other curve segments to the text curve. For the left object in the above picture,
I created the text, converted it to a curve, put it into Edit Mode, added a Bezier circle, and
manipulated the vertices of the circle so that the circle surrounded the text. The inside of the
text was effectively subtracted from the interior of the circle.

B.2.3 Proportional Editing

The rest of this section deals mostly with mesh modeling, and even then it only covers a small
portion of all the options that are available.

By default, when you transform selected vertices (or edges or faces) of a mesh object in
Edit Mode, only the selected items are affected. This can lead to ugly, spikey objects! But if
you turn on Proportional Editing, then a vertex exerts a kind of force on neighboring vertices,
so that for example if you drag a vertex, nearby vertices are pulled along with it. There is a
small button in the header panel below the 3D view that turns on proportional editing in Edit
Mode:

In the picture, the small blue button has been clicked to enable proportional editing. The popup
menu to the right of the blue button lets you select what kind of influence the transformed
vertices will have on other vertices.

When proportional editing is turned on and you are transforming some vertices, a circle
appears in the 3D window to show the “radius of influence”, that is, the distance over which
the force exerted by a vertex extends. You can change the size of the radius of influence using
the scroll wheel on the mouse or the “PageUp” and “PageDown” keys. In the following image,
an icosphere is in Edit Mode and a group of vertices is being dragged. The white circle shows
the radius of influence, and you can see that vertices within that radius have shifted somewhat
in the same direction as the dragged vertices. The shape that results from this edit will be
much nicer than if only the selected vertices were moved.

B.2. BLENDER MODELING 387

(Try selecting the vertices along equator of a UV Sphere and scaling the selection up, with
proportional editing enabled. You can make something like a flying saucer shape!)

B.2.4 Extruding Meshes

Extrusion is a powerful method for adding geometry to a mesh. Extrusion duplicates one or
more geometry elements (vertices, edges, or faces), with the duplicate attached to the original
mesh with more new edges or faces. One way to do this is with “quick extrude” (although it
doesn’t offer the most control). To use it, put the mesh object into Edit Mode and select the
geometry elements that you want to duplicate. Mostly commonly, that will mean one of the
faces of a mesh, although you can also do multiple faces or single edges. Selecting a face means
selecting all the vertices of that face. Then all you have to do is control-right-click at some
point, and the selected face will be duplicated at that point. (Note that this is the same way
that you would extend a curve.) The original face is now de-selected, and the new duplicate
face is selected instead, making it easy to move, scale, or rotate the new face and to add more
faces at other locations.

For more control, select the geometry that you want to duplicate and press the “E” key.
When you extrude using the “E” key, the duplicated geometry is in the same location as the
original and will not be visible, but it is selected and in grab mode so that you can easily move
it away from that location simply by moving the mouse or pressing arrow keys. Remember that
you can constrain the possible translations by holding down the control keys while dragging.
And remember to left-click or press Return to exit from grab mode!

As an example, I started with a mesh cube and extruded various faces, scaling each extruded
face along the way. Here is what it looked like in the Blender 3D window in Edit Mode:

388 APPENDIX B. BLENDER

B.2.5 Mesh Modifiers

Modifiers are a powerful feature that can affect the rendered view of a mesh object, without
actually modifying the underlying geometry. To apply a modifier to an object, first select the
object. Then go to the “Modifier Properties” controls in the Properties Editor. The button for
selecting the Modifiers controls looks like a monkey wrench. Click the “Add Modifier” button
to choose from a large selection of modifiers to be added to the object. I will mention only a
few of them. In fact, I only understand a few of them myself. Here is a picture of the modifier
controls after adding two modifiers:

When you apply several modifiers to a mesh, they will be applied one after the other in the
order listed. Each modifier will take the result of the previous modifier as its starting point.

When you click Add Modifier, you get a popup menu containing the available modifiers.
Towards the bottom of the popup menu, under the heading “Generate”, you will see the
“Subdivision Surface” modifier. This modifier is useful for modeling shapes, particularly when
used with extrusion. It makes a smoother shape that uses the original shape as an outline,
sort of like the control points of a NURBS curve. Try adding a “Subdivision Surface” modifier
to a cube that you have extruded a few times. When you do that, a small panel will appear
under the “Add Modifier” button with controls for the modifier, as shown above. The “Levels
Viewport” and “Render” inputs are important controls for sub-surfaces. Increasing the level
increases the number of polygons on the sub-surface, and hence its smoothness. The “Render”
control selects the number of levels that will be used when an image of object is rendered. The
“Levels Viewport” control selects how many levels you see in the 3D window, which you might
want to make smaller than the render level to speed up drawing of the window. (Remember
that if you want a really smooth appearance for a mesh, you should set the mesh to use “Smooth
Shading” instead of “Flat Shading.”)

The “X” icon at the right end of the header for a modifier’s control panel can be used to
delete the modifier from the object. In the popup menu just to the left of the “X”, you will find
an “Apply” command. If you select that command, the original mesh object will be discarded
and replaced with the modified version of the surface. This makes the modification permanent.
The modifier will disappear from the modifier control panel. You might do this if you want to

B.2. BLENDER MODELING 389

start editing the sub-surface itself—but you won’t be able to get the original back (except with
Undo).

∗ ∗ ∗

Another modifier, the “Array” modifier, can make duplicates of an object and arrange them
in a line. Just add the modifier to an object, adjust the distance between objects in the X, Y,
and Z directions, and use the “Count” control to specify how many objects you want. (There
are more advanced ways of arranging the duplicates, but I won’t cover them here.)

In the picture shown below, I started with a single “Monkey” mesh object, with a material
that uses the “Noise” texture for its base color. I applied applied three Array modifiers to
it. The first modifier turned the monkey into a line of four monkeys in the X direction, with
an X-offset of 1.1 and Y- and Z-offsets of 0. Setting the X-offset to 1.1 rather than 1.0 adds
a little space between copies. The second modifier duplicated the line in the Y direction to
give a 4-by-4 grid. The third duplicated the grid in the Z direction to give a 3D formation of
monkeys.

∗ ∗ ∗

As an example of something different that you can do with a texture, we look at displacement
mapping, where the vertices of a mesh are moved, or displaced, by an amount that depends on
a texture. You can do displacement mapping with a “Displace” modifier.

Displacement mapping can work well for an icosphere, where it can add a rough, planet-like
surface. For terrain, you can apply a Displace modifier to a mesh “Grid” object. A Grid is
just a subdivided rectangle. To get nice terrain, you need a lot of vertices, so change the “X
Res” and “Y Res” of the grid to 50 or higher when you create it. (Alternatively, you could use
a Mesh Plane and subdivide it several times. To subdivide it, go into Edit mode, make sure
all vertices are selected, and use “Subdivide” from the popup menu.) Similarly, if you want
to apply a Displace modifier to an Ico Sphere, you should increase the number of Subdivisions
when you add it.

To use a texture as a displacement map on the selected Mesh object, go to the “Modifier”
controls and add a “Displace” modifier, which you will find towards the top of the “Deform”
section of the popup menu. You will see the mesh jump, because the default displacement
is one. To use a texture as the displacement map, you will need to add a texture to the

390 APPENDIX B. BLENDER

displacement controls and then edit the texture. Click the “New” button at the top of the
displacement modifier controls to add a new texture (or select an existing texture using the
popup menu to the left of “New”). Then go the “Texture Properties” tab of the Properties
Editor. (The button for the Texture Properties is the one at the very bottom.) Here you can
select the “Type” of texture. For example, a “Clouds” procedural texture often works well.
You can also use an “Image” texture, and Open an image to be used as a “height map” for
the displacement. (Height maps are often used to make natural-looking terrain.) You can
sometimes get an interesting effect by using an image both for the base color of the material
and as the displacement map for a mesh.

You should see the effect on the Mesh immediately. You will almost certainly want to
go back to the Modifier properties and decrease the “Strength” of the modifier to make the
displacement effect less extreme. Also you will probably want to use Smooth Shading for the
mesh. (To make the mesh even smoother, you might add a Subdivision Surface modifier to the
mesh, before the Displace modifier. Note that you can drag modifiers around in the Modifier
Properties panel.)

Here is an example of a Displace modifier applied to a Grid. I used a Clouds texture on
the grid to produce the brown terrain. To make the blue “water”, I added a Plane in the same
location as the grid and gave it a blue material.

(By the way, the textures in the Texture Properties are called “legacy textures.” They were
used for materials in older versions of Blender, but I haven’t found a way to do that in the
current version. In fact, I have not yet found anything that they can be used for other than
displacement mapping.)

∗ ∗ ∗

The examples for this section were rendered as .png images with a transparent background.
To get Blender to use a transparent background in a rendered image, you need to go to the
“Render Propreties” in the Properties Editor, and enable the “Transparency” checkbox in the
“Film” section. When you save the image, be sure to use RGBA format and save it as a PNG
image, not JPEG.

B.3. BLENDER ANIMATION 391

B.3 Blender Animation

Blender can be used to create animations and videos. We will look at basic keyframe
animation in Blender as well as a couple kinds of animation that can’t be done with simple
keyframes. At the end of the section, I will explain how to render an animation in Blender.

B.3.1 Keyframe Animation and F-Curves

Blender uses “keyframe animation.” That is, you set the value of a property, such as location
or scale, in several “key” frames in the animation, and Blender will compute a value for other
frames by interpolating between the values for the key frames. Exactly how the interpolation
is done is determined by a set of “F-curves,” which you can edit to completely control the
interpolation (and extrapolation beyond the key frames).

There is Timeline area at the bottom of the default Blender window that contains some
information about animations and lets you control them:

The timeline shows the starting frame number, the end frame, and the current frame of the
animation (1, 250, and 12 in the picture). The current frame number specifies the frame that is
displayed in the 3D View. These are numerical input buttons that you can edit. To the left of
the frame number inputs is a set of playback controls, which run the animation in the 3D View
window. You can also start and stop playing the animation by pressing the spacebar. The start
and end frames determine the range of frames that are displayed when the animation is played.
They also determine what frames will be included when you render an animation. Note that
the default 250 frames make a rather short animation when viewed at a typical frame rate of
about 30 frames per second.

Below the frame number inputs and playback controls is the timeline itself, with the frame
number running along an axis from left to right. The blue tab marks the current frame on the
timeline. You can drag the blue tab or click on the timeline to set the current frame. The
orange and white diamond shapes mark frames that have been set as key frames for the object
that is currently selected in the 3D View (if any). You can drag a diamond to move the key to
a different frame, and you can select groups of diamonds. (The orange ones are the ones that
are selected). If you right-click the timeline, you get a popup menu; the “Interpolation Mode”
submenu can be used to set how interpolation between the selected (orange) keys is computed.
(Try the “Elastic” Dynamic Effect.)

To animate an object, you need to enter values for one or more of its properties for at least
two key frames. Select the frame number for which you want to enter a key value, by clicking
in the timeline or entering the value in the current frame input. Select the object and hit the
“I” key to insert a key value for that object in the current frame. (The mouse cursor must
be in the 3D View for this to work.) A popup menu will allow you to select the property or
properties for which you want to insert key values. For example, to store values for both the
current location and the current rotation of the object, select “Location Rotation” from the
menu.

After inserting one key frame, change the current frame number, move or rotate or scale the
object to the values that you want for the new keyframe, and use the I key again. Then, when

392 APPENDIX B. BLENDER

you drag the blue tab in the timeline back and forth, you can see how the object animates.
To delete a key from an object, go to the frame from which you want to delete the value,

select the object, and hit ALT-I. You will asked to confirm that you want to delete the key.
You can also animate many properties in the Properties Editor panel. For example, to

animate the color of the object, set the frame number, point the mouse at the Base Color in
the Material Properties, and hit the I key. Change the current frame number and repeat, and
so on. You can also insert a key frame by right-clicking a property in the Properties Editor and
selecting “Insert Keyframe” from the popup; if a key frame already exists, the popup has an
entry for deleting it.

∗ ∗ ∗

As you get into keyframe animation, you might find that you need more control. You
get some control using the Timeline popup menu. But interpolation between keyframes is
ultimately controlled by functions called F-curves. You can see the F-curves and edit them in
the Graph Editor, which is not shown by default. One way to use it is in the animation screen
that you get by clicking the “Animation” button at the top of the Blender window. The bottom
of that screen has a “Dope Sheet” that shows keyframe markers for all animated properties. In
the Dope Sheet “View” menu, there is a “Toggle Graph Editor” command that will replace the
Dope Sheet with a Graph Editor. Alternatively, you can change the editor in any area of the
window to a Graph Editor by selecting it from the popup menu in the top-left corner of the
area.

The Graph Editor shows F-curves for the object that is selected in the 3D View. Here is
the Graph editor showing some F-curves for an animated object that has key frame values for
the location and rotation:

Each curve controls one animated property, plotting the value of the property on the vertical
axis against the frame number on the horizontal axis. The curves are Bezier curves by default.
In the picture, the Rotation curves have been hidden (by clicking the “eyes” next to the curve
names), and the three visible curves and all their Bezier handles have been selected (by hitting
the “A” key while the mouse is over the graphs).

B.3. BLENDER ANIMATION 393

The dots on the curves mark key frame values. You can select and move them using the
“G” Key; hit the “Y” key after the “G” key to force the dot to stay in the same frame. Any
changes that you make will immediately affect the 3D View. You can select and move the
control points on the Bezier curve handles to change the shape of the curve.

You can change the scale on the graphs using the scroll wheel on the mouse. Or you
can control-middle-mouse drag on the graphs; drag vertically to change the vertical scale,
horizontally to change the horizontal scale. Without the Control key, dragging the middle
mouse button will translate the graphs. An easy way to nicely fit the scale to the graphs is to
hit the “Home” key, with the mouse over the graphs.

∗ ∗ ∗

Let’s say that you want an object to rotate through one complete 360-degree rotation about
the y-axis as the frame number goes from 1 to 60. You can start with an unrotated object in
frame 1 and insert a Rotation keyframe using the I Key. Then move to frame 60. You want
the rotation in frame 60 to be 360 degrees about the y-axis, but that means that object will
look exactly the same as it did at the beginning! How do you set the value for the rotation
keyframe at frame 60? Hit the “N” key with the mouse in the 3D View to reveal the Transform
controls, including numerical inputs for the Location, Rotation, and Scale that are applied to
the object. You can use those inputs to set the value numerically. Change the Y-rotation value
to 360, and then use the I Key to insert the keyframe.

Now, as the frame changes from 1 to 60, you should see the object go through a complete
rotation. If you click the playback button starting in frame 0, you will notice that the rotation
starts out slow, speeds up, then slows down again at the end. This might be reasonable for
an object that starts out at rest, then goes through one rotation, and stops at the end. But
suppose you really want a constant speed of rotation? This is a question of interpolation
between keyframes. There is also the issue of what happens before the first keyframe and after
the last keyframe. That is a question of extrapolation.

To get a constant speed of rotation, you want linear interpolation. To get that, you can
select the start and end keys — either on an F-curve, in the Dope Sheet, or in a Timeline —
and then choose “Linear” Interpolation Mode, which you can find in the “Key” menu or in the
popup menu that you get by right-clicking.

To control extrapolation of the selected properties in the Dope Sheet or Graph Editor, you
can use the “Extrapolation Mode” submenu of the “Channel” menu. “Constant” extrapolation,
which is the default, means that the property does not change after the last keyframe. “Linear”
extrapolation means that the property continues to change after the last keyframe with the same
rate of change. “Make Cyclic” means that the entire animation will loop forever after the last
keyframe.

For our rotation example, “Make Cyclic” extrapolation will make the full 360-degree rotation
repeat forever. Here’s what the F-curve for the y-rotation looks like with “Linear”” interpolation
and “Make Cyclic” extrapolation:

394 APPENDIX B. BLENDER

You should have perpetual rotation at a constant speed. Admittedly, this is more complicated
than it should be. But hopefully if you work through this exercise, it will give you some idea
of how F-curves can be used.

B.3.2 Tracking

Recall that you can “parent” one object to another (Subsection B.1.6). “Tracking”” is a kind
of parenting. When one object tracks another, the rotation of the first object is always set so
that it faces the object that it is tracking. To set up a tracking relation, click the object that
you want to do the tracking, then shift-click the object that you want it to track. Go to the
“Track” submenu of the “Object” menu in the 3D View, and select “Damped Track Constraint”
or “Track To Constraint.” The first, “Damped Track Constraint” seems to work well in general,
but “Track To Constraint” seems to work better when it’s a camera that’s doing the tracking.
(You can clear tracking by selecting the object that is doing the tracking and using the “Clear
Track” command in the same menu.)

Tracking is in fact a “constraint”, and after you set it up you will find it listed in the
“Constraint Properties” in the Properties Editor when the tracking object is selected. In the
Constraint Properties, you can set which axis of the tracking object points towards the object
that is being tracked. (Tracking is only one kind of “constraint.” You can use the Constraint
controls in the properties editor panel to set and clear various constraints in addition to tracking.
“Stretch To” is interesting, and we will look at “Follow Path” later in this section.)

Tracking works especially well for cameras and spotlights. You can make them track moving
objects, so that the camera or light is always pointed at the object. This is a place where using
an “Empty” object can make sense: You can point the camera or spotlight at a location without
having an actual object there, by making it track an Empty. You can move the Empty to direct
the spotlight, and by animating the Empty, you can make the camera or spotlight pan across
the scene. Or if the camera or light is animated, you can set it to track a stationary Empty to
keep it pointed at the same location even as it moves around.

B.3.3 Path Animation

Path animation can be used to move an object along a curve. Any Bezier or NURBS curve will
work. For example, you can get circular motion by moving an object along a Bezier circle. For

B.3. BLENDER ANIMATION 395

path animation, if you want the motion to be restricted to two dimensions, remember to set
the curve to be 2D (Subsection B.2.2).

Curves of type “Path” are often used for path animation. A “Path” in Blender is a kind of
NURBS curve for which the endpoints of the curve are constrained to lie at the first and last
control point of the curve, which makes it easier to control where the curve begins and ends.
To add a path to a scene, use Add / Curve / Path. (The path might be almost invisible, since
it is a straight line. I suggest going immediately into Edit Mode by hitting the Tab key, so that
you can see it better. You will probably want to be in Edit Mode in any case.) Initially, the
path is a straight line with four control points. Recall that you can extend a non-closed path
by going into Edit Mode, selecting one of the endpoints, and using control-right-click to add
points. You can also add points in the middle of the curve by selecting a pair of consecutive
control points and hitting “Subdivide” in the 3D View popup menu. You can close the path
by hitting ALT-C key while in Edit Mode. And, of course, you can select control points and
move, scale, or rotate them.

There are two ways to make an object follow a curve. The easiest way treats path animation
as a kind of parenting: Click the object, shift-click the curve, hit Control-P, and select “Follow
Path” from the popup menu. You will notice that the object does not actually jump onto
the curve. To make it do that, select the object that is following the path, go to the “Clear”
submenu in the “Object” menu, and select the “Clear Origin” command. You should now have
a path animation in which the object moves along the path between frame number 0 and frame
number 100, with linear extrapolation after frame 100. To change the number of frames, go to
the Object Properties for the curve, in the Properties Editor, and change the value of “Frames”
under “Path Animation.” Remember that 100 frames is only about 4 seconds! Also, make
sure Path Animation is checked there, or you won’t see any animation. Checking the “Clamp”
checkbox will change the extrapolation mode to constant, so that the object will stop at the
end of the path. The “Follow” checkbox makes the object rotate to keep a constant heading as
it moves along the curve.

In many cases, this is as much control as you need. But for more control, you can do path
animation by using a “Follow Path” constraint. To do that, make sure that you know the name
of the curve that you want to use. Select the object that you want to move along the curve, and
go to the Constraint Properties in the Properties Editor. Click the “Add Object Constraint”
button and select “Follow Path” under the “Relationship” section of the popup menu. This
will add the constraint and give you a set of controls for configuring it:

396 APPENDIX B. BLENDER

You will need to use the “Target” menu to select the name of the curve that you want the
object to follow. To get the object to actually jump onto the curve, you will need to clear it’s
Location, not its Origin. (Select the object and use ALT-G, or use the “Location” command
in the “Clear” submenu of the “Object” menu.)

Use the “Forward Axis” setting in the constraint controls to say which axis of the object
points along the curve. You need to check the “Follow Curve” checkbox for that to actually
happen. Make sure “Up Axis” is different from “Forward Axis,” or you will get strange behavior.
Now, if you leave “Fixed Position” unchecked and click “Animate Path,” you will get exactly
the same kind of path animation that was discussed previously. If instead, however, you check
“Fixed Position,” you will be able to completely control the animation by animating the “Offset
Factor” control, and maybe editing the F-curve for the Offset Factor. A value of the Offset
factor between 0.0 and 1.0 specifies distance traveled along the curve as a fraction of the length
of the curve. Values less than 0.0 or greater than 1.0 correspond to extrapolated positions
beyond the curve or further along the curve if the curve is closed.

For example, insert a keyframe for Offset Factor with value 0.0 at frame 0, and a keyframe
value 2.0 at frame 100. The object will traverse the entire curve for the first 50 frames, but
then continue moving for the next 50, with values for “Offset Factor” that are greater than 1.0.

The nice thing is that you can start and end the animation at any time. You can choose
the interpolation and extrapolation modes. And you can edit the F-curve for full control of
the animation along the path. For example, you can vary its speed and even make it move
backwards

Note that path animation is not just for visible objects! You can move a Camera or Light
along a path. You can combine path animation with tracking. For example, set up a spotlight
to track an Empty and move the Empty along a path to tell the spotlight where to point. Or
do the same thing with a camera.

B.3.4 Rendering an Animation

There is a command for rendering an animation in Blender’s “Render” menu, but you shouldn’t
simply jump into using it—if you do, it will dump several hundred individual image files
with names like 0001.png, 0002.png, . . . , somewhere on your hard drive. Before rendering
an animation, you should use the Output Properties in the Property Editor to set up the image
size, file format, and output location of the rendered animation. Note that’s it’s not possible

B.3. BLENDER ANIMATION 397

to render an animation without saving the result, but you don’t get any kind of dialog box
when you use the Render Animation command — it just automatically uses the settings in the
Output Properties. Here are the relevant properties:

Select output destination;
click Kle folder to browse.

Menu for selecting
common sizes.

Typical Kle format for
saving animations.

Menu for selecting
common encodings.

LNQRS UVXSZ

Be sure to set frame
start and end when
UQ[V\R Q\ Q\VNation.

Default US]]V\RU g^S\
 HZ_`b V\ cdb
S\fhjV\R VU USkSfted
lmhN]he menuZ

nQf^ UfS\e has its
hg\ hq]rq] US]]V\RUZ

The Output Properties control rendering of individual images as well as animations. The
“Resolution” section controls the size of the image that will be produced. You can specify the
X and Y dimensions, in pixels, and also a percentage; the stated dimensions are multiplied by
the percentage to get the actual image size (presumably to make it easy to make small size test
runs). The “Frame Range” duplicates the animation start and end frames from the timeline at
the bottom of the Blender window. Note that the “Frame Step” lets you render just a subset
of the frames. For example, set it to 2 to render every other frame; again, this can be used to
speed things up for test runs.

Also important is a section labeled “Output” near the bottom of the Output Properties,
shown on the right in the above image. This section is for controlling the output destination
and file format of animations. (It also sets the default file format for single images, but you can
also select the file type when you save the rendered image.) When you render an animation,
you will see each frame being rendered on the screen. As each frame is rendered, it is saved to
disk. You have to set the output destination and format before rendering the animation.

To set the output destination, enter a file path in the box just below the word “Output”. If
the destination is a directory name ending in a slash, blender will make up the file name, using
frame numbers and an appropriate file extension. If there is no slash at the end, then the part
after the last slash is the file name, possibly with an added file extension if needed.

The default format for the output is PNG, which is good for single images and could also be
used for animations. When you use a single-image format for an animation, Blender will save
each frame in a separate file. The file names will include the frame numbers. This is something
that is often done to allow further processing, but you probably want to use a video file format
such as AVI JPEG or H.264. I suggest using “H.264 in MP4,” since it is widely supported and
can be used on web pages in almost all web browsers. For that, you have to set the file format
to FFMpeg Video. This will add an “Encoding” section to the output properties, and you can

398 APPENDIX B. BLENDER

select “H.264 in MP4” from the menu. If you write your own web pages, here is an example of
the HTML code that you can include to embed your animation on a web page:

<video width="640" height="480" controls>

<source src="myAnimation.mp4" type="video/mp4">

<b style="color:red">Sorry, but your browser can’t show this video.

</video>

It can take some time to render an animation, since each frame must be rendered as a
separate image. For experimentation, I suggest using a short animation, a small image size,
and the Eevee renderer. The Cycles renderer will generally take much longer. You will see each
frame as it is being rendered. You can abort the rendering with the Escape key.

∗ ∗ ∗

There are a few more controls that affect rendering. You can use the “Add” menu to add
extra cameras to a scene, just like you add other objects. In the Scene Properties, you can select
the camera that is used for rendering images. When you render an image, the scene is rendered
from the point of view of the camera that is currently selected in the Scene Properties. This is
useful for making images and animations that show the same scene from several different points
of view. You can also change the rendering camera by selecting the camera in the 3D View and
hitting Control-Numpad-0.

Finally, I’ll note that you can set the clip range, projection type, and other properties of a
camera in the Object Data Properties for the camera. Like OpenGL, Blender will only render
objects that are within a certain range of distances from the camera. The limits are given by
“Clip Start” and “End” in the camera properties, with defaults of 0.1 and 1000. If an object
is farther from the camera than the camera’s “End” clipping value, or closer than the “Start”
clipping value, then the object is not seen by the camera. If you have a problem with faraway
objects disappearing, check the camera clipping range.

B.4 More on Light and Material

Blender has extensive support for light and materials, and we only scratched the surface
in Subsection B.1.4. In this section, we will go into a little more depth, but of course this is still
only an introduction. In particular, we will look at the Shader Editor, which offers complete
control over the design of materials.

B.4.1 Lighting

You can add lighting a scene by adding objects of type light, from the “Light” submenu of the
“Add” menu. Note that correct lighting effects are only shown in the 3D View if you set it to
use the rendered view style.

When a light object is selected in the 3D View, you can view and edit its properties in the
Light Properties tab of the Properties Editor, in the lower right corner of the default screen.
You can actually change the basic type of light: Point, Sun, Spot, or Area. Every light has
a “Color” property, which determines the color of the light, and a “Power” or “Strength”
property, which determines how bright it is. By default, lights cast shadows, but there is a
checkbox in the Light Properties that you can turn off if you want to add light to a scene
without adding shadows. (You can make an object that doesn’t cast any shadows at all, by
setting the “Shadow Mode” property of its material to “None” in the “Settings” section of the
object’s Material Properites.)

B.4. MORE ON LIGHT AND MATERIAL 399

An Area light has a shape and size. Larger area lights produce softer (not hard-edged)
shadows. But a Point or Spot light also has a size, and you can make it produce soft shadows
by increasing its size. (A Sun can never make soft shadows.) For a Spot light, you can set the
angle for the cone of light, under the “Spot Shape” section of the Light Properties.

Furthermore, you can add emission color to the material of an object. For example, there
is an “Emission” input in the default material to set the emission color. Unlike in OpenGL, an
object that has a non-black emission color does not just look brighter; it actually emits light
that affects other lights in the scene.

But lighting in Blender is also affected by the background of the scene. You can set the
background in the World Properties tab of the Properties Editor. The default background
is a dark gray color, which adds something like a bit of ambient light to a scene. But the
implementation in this case is that the background is actually considered to emit light of the
given color. Note that the background is visible by default in rendered images, but you can
get a rendering that includes only actual objects in the scene by turning on the “Transparent”
option under the “Film” section of the Render Properties.

The background color does not have to be constant; it can be given by a texture. Usually,
you want to use an image texture that wraps nicely around a sphere like the Earth image that
I have used in several examples in this textbook. You will want a fairly large image for a nicely
detailed background. To use such an an image as a background, go to the World Properties,
and set the “Color” to be an Environment Texture. (Click the yellow dot to the left of the
color input, and select “Environment Texture” from the “Texture” section of the popup menu.)
Then click the “Open” button to select the image.

With an appropriate background image, it is possible to light a scene entirely with the
background, with no Light objects or emissive objects in the scene. Here is an example of a
rendered scene lit only by a background image:

400 APPENDIX B. BLENDER

The background image for this scene is a 4096-by-2048 pixel image from polyhaven.com, a
source for fully free HDR images, as well as 3D models and realistic textures. (An .hdr image
has more detailed color information than the usual .png or .jpeg. Depending on the software
you have, you might not be able to open the image file on your computer, but Blender can use
it.) The light for the scene comes mostly from the bright windows in the background image.

The scene shows a checkerboard-patterned platform with several objects standing on it or
floating over it. The object on the bottom left is a highly reflective sphere (“Metalic” proprety
set to 1.0 and “Roughness” property set to 0.0 in the Material Properties for the sphere).
It reflects the background, but the sphere does not use an environment map, like we did for
three.js in Subsection 5.3.5; the background is part of the scene, and Blender lighting can handle
reflections correctly, even of the background.

The file Blender-hdri-background-example.zip, which can be found in the source folder of
the web site download of this textbook, is a compressed archive file that contains the Blender
project that produced this image. (The project in the archive uses a jpg version of the much
larger hdr background image file. This gives a poorer rendered image, but it makes the file size
more reasonable.)

B.4.2 Eevee versus Cycles

The above image was rendered by the Cycles renderer, one of two realistic renderers available
in Blender. (You can select the renderer in the Render Properties tab of the Properties Editor.)
Blender’s default editor, Eevee, can produce similar, but not identical, images. And with the
default settings, the Eevee image will lack certain essential features: the lens won’t refract light,
and objects in the scene won’t show reflections of other objects.

Cycles uses a physically correct global illumination algorithm called path tracing (see
Section 8.2). Eevee is a faster renderer that needs to use some tricks to simulate some effects
that happen automatically in Cycles. Because some of those tricks can significantly increase the
rendering time, they are not enabled by default. They can be enabled in the Render Properties
tab of the Propeties editor. Also, for certain kinds of material, you need to change some settings
in the Materials Properties for the objects that use those materials. Note that none of these
properties are even available if you are using Cycles. Here are the changes you need to make
to cover the examples used in this textbook:

In Render Properties, turn
on "Scruuv wyz{u |e}ections"
and "Refraction."

In the Material Properties for
the object, under "Settings,"
turn on "Screen Space
Refraction". You might need
to increase "Refraction Duy~��
to a value greater than zero.

���~u ~�z~ ��� �o not need
~� {�zv�u ���uv� ���u� in
~�u �z~u��z� �roperties ���
��z������u �z~u��z��� ��~ ��
��� ��u z�y�z�~�zv�yz�uv{��

��� ������ �et it t� ���y�a
��uv�� �� ���y�z �z��u��
zv� �u~ �w�z��� ���u�
~� ���y�z �z��u����

B.4. MORE ON LIGHT AND MATERIAL 401

Note, however, that there are some things that will work in one of the renderers but not in the
other.

B.4.3 The Shader Editor

So far, for configuring materials, we have only looked at using a “Principled Shader” in the
Materials Properties. And in fact, it’s possible to do all material configuration in the Propreties
Editor. However, as materials become more complex, it’s much easier to use an editor that
lets you visualize the relationships among the various aspects of the configuration. For that,
Blender has the Shader Editor (sometimes called the “Node Editor” because it lets you visually
manipulate nodes that represent steps in the computation that defines the material). You can
change any area of a Blender window into a Shader Editor, using the popup menu in a corner of
the area. If you click the “Shader” button at the very top of the window, the window changes
to the Shader screen, which has a Shader Editor at the bottom and a 3D View at the top. The
Shader Editor should show the material nodes for whatever object is currently selected in the
3D View. (But note that there is a selection menu in the top left corner of the Shader Editor
that must be set to “Object” for this to be true. The menu is there because the Shader Editor
can be used to edit other things besides materials.) If the selected object does not yet have an
assigned material, there will be a “New” button in the header at the top of the Shader Editor.

The Shader Editor visualizes a material as a network of rectangular nodes. A node can have
inputs on the left and outputs on the right. An output of one node can be connected to an input
of another node (or to inputs of several nodes). The network represents the computation that
is used to create the material, and connections represent data flow within that computation.
Inputs and outputs are color coded to show the type of data that they represent: gray for
numbers, yellow for colors, green for shaders, and blue for vectors. In general, an output should
only be connected to an input of the same color, but there are some exceptions. For example,
if you connect a color output to a numerical input, then the grayscale equivalent of the color
value will be used as the numerical input.

There must be a “Material Output” node, which represents the final material that will be
applied to the object. The “Surface” input of the “Material Output” represents the appearance
of the surface of the object. The “Surface” input must be attached to the output of a node
that computes the material for the surface. There is also a “Volume” input, which I will not
discuss at all, and a “Displacement” input which we will look at briefly below.

There is an “Add” menu in the Shader Editor that can be used to add new nodes. You can
also hit Shift-A, with the mouse over the Shader Editor, to call up the Add menu. You can
set up a connection between two nodes by dragging from an output of one node to an input
of another node. You can delete a connection by clicking the output to which it is connected
and dragging away from the output before releasing the mouse. Or you can drag to a different
input to change the destination of the data.

Here is an example of a node network for a fairly simple material. This combination of
“Diffuse” and “Glossy” is the sort of thing that was often done to make basic materials before
the Principled Shader existed, and it can still be a lot less intimidating.

402 APPENDIX B. BLENDER

To make this material, I started with a New material, and deleted the Principled Shader that
was added by default to a new material, because I wanted to use a different shader to compute
the “Surface” input for the “Material Output” node. Shader nodes can be found in the “Shader”
submenu of the Add menu. I could have just used a “Diffuse BSDF” shader node, which would
have produced a fully diffuse color. Or I could have just used a “Glossy BSDF,” which would
have produced a shiny, metal-like material. But I wanted a mixture of the two types of color, so
I added a “Mix Shader,” which can combine the outputs from two other shaders. I then added
a “Diffuse BSDF” and a “Glossy BSDF” and connected their outputs to the two inputs of the
Mix Shader. The “Fac,” or “Factor,” input of the Mix Shader determines how much of each
shader input goes into the mix. I set it to 0.75, which means that 25% of the Mix Shader output
comes from the Diffuse BSDF and 75% comes from the Glossy BSDF. I also set the colors for
the Diffuse and Glossy shaders (by clicking their color samples next to the word “Color”).

To show what the material looks like, I added a picture of a torus that uses it to the
illustration — this is not something that would be shown in the actual Shader Editor.

∗ ∗ ∗

A numerical input like the “Fac” input of a Mix shader can be set by hand, or its value can
come from another node. If you connect the input to an output from another node, you can get
a value that varies from point-to-point on a surface. Here is an example where the degree of
mixing between two colors comes from a texture, giving a color that varies from point to point
on an object.

B.4. MORE ON LIGHT AND MATERIAL 403

I could have done this example using another Mix Shader, but I decided to use the default
Principled Shader and connect its Base Color input to the output from a color mixer node.
The node that does the color mixing is of type “MixRGB,” which can be found in the “Color”
submenu of the “Add” menu. The colors for the mix are set here as constant values, but the
“Fac” input comes from a Wave Texture node (found in the “Texture” submenu of the “Add”
menu). With the settings shown for the Wave texture, this gives a marble-like pattern of color.
I tried connecting the output from the Wave texture directly to the “Fac” input, but I wanted
the bands of red color in the material to be narrower. To make that happen, I inserted a “Math”
node — from the “Converter” submenu of the “Add” menu — between the Wave Texture node
and the Mix node. The Math node has a selection menu to say which mathematical operation
it performs on its two inputs. I selected “Power,” so the math node computes the output from
the wave texture raised to the power 5.000. (I should have used the “Fac” output of the Wave
Texture rather than the “Color” output, but the Fac output just gives the grayscale level of
the Color output, which is the same thing that you get when you connect a color output to a
numerical input. So the two outputs are actually equivalent for this example.)

∗ ∗ ∗

In the next example, the base color of the material comes from an image texture. In the
sample render that is shown in the following illustration, the texture is applied to a smooth-
shaded isosphere. The texture is represented by an “Image Texture” node, from the “Texture”
submenu of the Add menu. We already saw in Subsection B.1.4 how to apply a texture to
an object. The problem here is that the default mapping of the texture to the isosphere isn’t
correct, so I needed to add another node to change the mapping. The “Vector” input of the
Image Texture node sets the texture coordinates for mapping. I added a “Texture Coordinates”
node, from the “Input” submenu of the Add menu, and connected the “Generated” output from
the Texture Coordinate node to the Vector input of the Image Texture node. I also had to change
the center selection menu in the Image Texture node from the default “Flat” to “Sphere.” That
gave the correct mapping in this case.

404 APPENDIX B. BLENDER

It turns out that the texture would work fine on a UVSphere with no extra nodes. The default
texture mapping uses the UV texture coordinates of the object. A UVSphere comes with
textures coordinates that map the texture once around the sphere, which is what I wanted here.
You could get exactly the same result by adding a Texture Coordinate node and connecting the
UV output from that node to the Vector input of the Image Texture node. For the Icosphere,
however, the default UV coordinates were not correct.

The “Generated” output of the Texture Coordinates node means that the output value is
given by the object coordinates of the object to which the material is applied. (Generated
texture coordinates are discussed in Subsection 7.3.2.) The central select menu in the Image
Texture node, which is set to Sphere in the example, determines an extra function that is applied
to the 3D Vector input, to map it to the 2D coordinate space of the image. The default, “Flat,”
means that the third component of the vector input is simply dropped.

By the way, you might want to apply a texture transformation to the texture coordinates,
to fit the texture better to the object. (See Subsection 4.3.4.) For that, you can insert a
computation between the Texture Coordinate node and the Texture Image node. You can use
a “Vector Math” node, from the “Converter” submenu of the Add menu, to add an offset to
the texture coordinates or to multiply them by scaling factors. If you want to do both, you can
use two Vector Math nodes. There is also a “Mapping” node in the “Vector” submenu that
can apply a combined scale, rotate, and translate.

∗ ∗ ∗

Next, we look at an example that uses the “Displacement” input of the Material Output
node. We saw in Subsection B.2.5 that a Displace constraint can be used in Blender to do
displacement mapping. It turns out that you can also do displacement mapping in the Shader
Editor, using a Displacement Node attached to the Displacement input of the Material Output
node. The “Height” input of the Displacement node gives the amount of displacement, which
would ordinarily come from a texture node.

In Subsection 7.3.4, we looked at bump mapping, which makes it look as if the orientation
of a surface is changing from point to point by adjusting its normal vectors. bump mapping is
basically the cheap version of displacement mapping. When you use displacement in a material,
the Eevee renderer will actually do bump mapping. The Cycles rendered can do either bump
mapping or displacement mapping, but it will do bump mapping by default. To get Cycles
to do actual displacement mapping based on the material, you have to go to the “Settings”
section of the Material Properties and change the “Displacement” input from “Bump Only” to
“Displacement Only.” But note that you will still see actual displacement only in a rendered

B.4. MORE ON LIGHT AND MATERIAL 405

view!

The sample render for my example uses displacement mapping on an icosphere. You can
see that the actual geometry has been modified:

For displacement mapping to work, the surface must be finely subdivided. For the icosphere
in the example, I used 4 subdivisions when I created it, and then I added a Subdivision Surface
modifier with three levels of subdivision to divide it even more finely.

∗ ∗ ∗

Transparent materials that refract light, like glass, can be modeled easily in Blender. The
lens in the image at the start of this section was made entirely in a Principled Shader simply
by setting the “Transmission” value to 1.0 and the “Roughness” value to 0.0. (I also set the
IOR in the shader to 0.5, which is not at all physically realistic. But I liked how it looked.)
Remember that to see the effect when using the Eevee renderer, you need to adjust render and
material properties as shown in the illustration earlier in this section.

Note that even though the lens transmits 100% of light, it is not simply invisible, since
it bends light that passes through it. Simple transparency, without bending of light, can be
done with alpha blending, where the alpha component of the color determines the degree of
opaqueness. The Principled Shader has an “Alpha” input that represents the alpha value for
the material color. Setting the value to zero would make the object completely invisible. Setting
it to a value between 0.0 and 1.0 makes the object translucent. (Again, if you want to see the
effect in Eevee, you need to change the “Blend Mode” in the material settings; refer back to
the above illustration.)

You can also control transparency using a Transparent Shader in the Shader Editor. For
no good reason, I decided to make a material in which the alpha component varies from point
to point, with the degree of transparency coming from a wave texture. In the sample render,
the material is used on a cylinder. I put an orange inside the cylinder so that you can see the
transparency (so to speak). You can even see the shadows of the opaque parts on the orange.
Here is the node setup that I used:

406 APPENDIX B. BLENDER

Appendix C

Gimp and Inkscape for 2D Graphics

Gimp and Inkscape are free and open-source programs for creating and manipulating
two-dimensional images. Gimp is a painting program; that is, it is primarily concerned with
setting the colors of individual pixels in an image. Inkscape is a drawing program; that is, it
represents an image as a data structure that contains information about the objects in a 2D
scene. The difference between painting and drawing is discussed in Section 1.1.

Even though the main focus of this book is on programming for three-dimensional graphics,
it can be useful to get some experience with 2D image manipulation programs. Such
programs illustrate some important concepts, such as color manipulation, transparency, shape
creation and editing, Bezier curves, and (in drawing programs) grouping graphical objects into
hierarchical structures. And the programs are often useful even in 3D graphics, for working
with texture images. This appendix offers just a very brief introduction to Gimp and Inkscape,
but maybe enough to let you start experimenting with the programs and to inspire you to learn
more about them from other sources.

When I teach computer graphics, I often include a few labs on Gimp and Inkscape. The
material in this appendix was adapted from those labs. While Gimp and Inkscape are not quite
the equivalent of the commercial programs Photoshop and Illustrator, they are free, they can be
used in serious graphics projects, and they already have far more features than can be covered
in a couple of labs.

C.1 Gimp: A 2D Painting Program

Gimp, the Gnu Image Manipulation Program, is a free and open-source program that has
many of the capabilities of the better-known commercial program, Adobe Photoshop. Gimp
can be used both for creating images from scratch and for modifying existing images. This
book covers only a very limited subset of Gimp’s features. It’s easy to find documentation and
tutorials on Gimp, starting with its “Help” menu.

Gimp can be downloaded from https://www.gimp.org. It is available for Linux, Mac OS,
and Windows. (For Linux, consider installing it from your distribution’s software repository.)
This section was originally written for Gimp 2.8. The current stable version as of July, 2021 is
Gimp 2.10, and version 3.00 is under development. If you are using version 2.10, you will see
additional tools and options, but everything covered in this section is still valid. I will note a few
differences as we go along. User manuals are available on-line at https://docs.gimp.org/2.8/en
and https://docs.gimp.org/2.10/en/.

About Gimp 2.8: Note that when you start Gimp 2.8 for the first time, it will be in

407

408 APPENDIX C. GIMP AND INKSCAPE

“multi-window mode.” I find it much easier to use “single-window mode,” which organizes all
of Gimp’s open images and dialogs into one window. To use it, just enable the option “Single-
Window Mode” in the “Windows” menu. You will then see a window with a central area where
you can work on images, with dialogs along the left and right edges. The central editing area
uses tabs when multiple images are open. If you ever mess up the original window layout, it
can be difficult to figure out how to get it back. To do that: Select the “Preferences” command
from the menu. Go to the “Window Management” section of the preferences. Click “Reset
Saved Window Positions to Default Values.” Restart Gimp for the changes to take effect. And
finally, switch back to single-window mode by selecting the option in the “Windows” menu.

About Gimp 2.10: Gimp 2.10 will start up in single-window mode by default, but there
is still an option for multi-window mode in the “Windows” menu if you prefer that mode.
However, I would recommend changing some interface preferences. Open the “Preferences”
dialog from the “Edit” menu (or from the “Gimp 2.10” menu on Mac), and look under the
“Interface” section in the list on the left. Under the “Toolbox” section, I strongly recommend
turning off the “Use tool groups” option. This will let you see all the tools at once, similar to
what is shown in the image below, rather than hiding many of them in groups. Under “Theme”
in the “Interface” section, I prefer the “Light” or “System” theme. And under “Icon Theme”,
I much prefer “Color” or “Legacy”.

∗ ∗ ∗

Gimp’s “File” menu has a “New” command that lets you create a new image from scratch.
You will be able to set the size of the image and other properties, such as background color.
And there is an “Open” command that lets you open an existing image for editing.

Saving is a little more problematic. The “Save” command will save an “.xcf” file, which is
Gimp’s own format. An xcf file is not an image, and it can only be opened with Gimp. It saves
the full Gimp editing environment, which you need for more complex projects if you want to
be able to return to editing them later.

To save an image file, you should use the “Export” or “Export As” command in the “File”
menu. If you opened an image file for editing, the “Export” command becomes an “Overwrite”
command that is used to replace the original image with the edited version. These commands
let you save images in a wide variety of formats. In general, you should save your images in
JPEG or PNG format.

C.1.1 Painting Tools

I strongly suggest that you get Gimp and experiment with it as you read about it here! As you
experiment, remember that you can always use Control-Z to undo any action (Command-Z on
a Mac).

Gimp has a wide variety of tools, which you can find in the “Toolbox” in the upper left
corner of the window. (My discussion here assumes that you are working in single-window
mode, with the window in its original configuration.) You can hover your mouse over a tool
button to find out what the tool is for. Click a button to select a tool. Click or drag the mouse
on an image window to apply the selected tool. The Toolbox also has buttons for controlling the
foreground and background color. Here is an illustration of the Toolbox with a few annotations.
The appearance of the Toolbox on your computer will depend on the version of Gimp and on
the theme that you are using, but all the tools shown here should be available:

C.1. GIMP: A 2D PAINTING PROGRAM 409

����� �� et

¡�¢£¤¢�¥¦§ color̈

����� �� £� ©ª

����¢ ¡�¢ £¢« �¦¤¨

����� ��

 ¬« ����¢ ¨

����� ¢£ tore

§£¡«¥�� ����¢ ¨

®£��«¦¤¥lar select¨

¯����ical selec�¨

°«�± ����¨

²��� ¬��± ª¢«§�£¦�¨

����� �� ³�� «¢£«¨

©¢¥ ± ����¨

Below the Toolbox is the “Tool Options” dialog, which contains options for the drawing tool
that is currently selected. The contents of the dialog change when you select a new tool. Here,
for example, are the options for the Brush tool, which is used for painting on an image in the
usual sense. (In Gimp 2.10, you will see some additional options.) The Brush is probably the
most basic and useful tool:

´µ¶·¸ ¹º »elect the brush

¹¼½¹ ¾º¿ À½Á¹ ¹º ÂÃ½À À¶¹¼Ä

ÅÆ¹ »¶ÇÆ ºÈ ÉÃ¿»¼Ê ¶Á pixelsÄ

´µ¶·¸ ¹º »ÆµÆ·¹ ¹¾ËÆ ºÈ

Â¾Á½Ì¶· ÆffÆ·¹ À¼¶µÆ

ÂÃ½À¶ÁÍ À¶¹¼ the br¿»¼Ä

´µ¶·¸ ¹º »elect thÆ ÍÃ½Â¶ÆÁ¹Ê

¿»ÆÂ ºÁµ¾ À¼ÆÁ Î¾½Ì¶·» is

Ï´ºµºÃ ÈÃºÌ ÐÃ½Â¶ÆÁ¹ÏÄ

ÅÆ¹ À¼Æ¹¼ÆÃ ¹¼Æ ÍÃadient

or other effect repeats as

¾º¿ ·ºÁ¹¶Á¿Æ ¹º ÂÃ½ÍÄ

Reduce the Opaci¹¾ ¹º

ÂÃ½À À¶¹¼ ¹Ãanslucent

ÉÃ¿»¼Ä

´µ¶·¸ ¹Ã¶½ÁÍµÆ ¹º ÃÆÑÆ½µ

ºË¹¶ºÁ» ÈºÃ Â¾Á½Ì¶·»Ä

ÒºÀ È½»¹ ·ºµºÃ È½ÂÆ» ÓR

ÍÃ½Â¶ÆÁ¹ ·ºµºÃ ·¼½ÁÍÆ»Ä

ÔÃ¾ ¹¿ÃÁ¶ÁÍ ºÁ ÏÕ¶¹¹ÆÃÏ and

»Æ¹¹¶ÁÍ Ñ½µ¿Æ ¹º ÖÄ

You’ll notice that Gimp does not have tools for drawing shapes such as rectangles and
circles. However, it is possible to draw such shapes using selections. Selection tools can be
used to select regions in the image. For example, click the Rectangle tool, and drag the mouse
on the image to select a rectangular region. One of the settings in the “Tool Options” dialog
for the Rectangle Select tool allows you to round off the corners of the rectangle. The Ellipse
Select tool can be used to select oval-shaped regions. The Free Select (or Lasso) tool, which
is next to the Ellipse in the above image, can be used to select polygonal regions: Just click a

410 APPENDIX C. GIMP AND INKSCAPE

sequence of points to select the vertices of the polygon, and click back on the initial point to
close the polygon. You can also drag the Lasso tool to draw the outline of a region freehand.
Once you have a selection, there are many things that you can do with it.

One important fact is that when there is a selection, you can only draw inside the selection—
the area outside the selection is completely unaffected by painting tools, or by anything else
that you try to do the image! If you forget about this, you can be very confused when you try
to apply a painting tool outside the selection and it has no effect at all.

The Bucket Fill Tool, which looks like a spilling paint bucket, is especially useful with
selections. After selecting the bucket tool, set the “Affected Area” in its Tool Options dialog
to “Fill whole selection”. With that setting, clicking inside the selected area will fill that area
with color. Another useful option is the “Fill Type” which allows you to fill regions with either
the foreground color, the background color, or a a pattern. To change the pattern that is used,
click on the image of the pattern, just below the “Pattern fill” option.

Drawing straight lines in Gimp is a little strange. To draw a line, click the image and
immediately release the mouse button. Then press the shift key. Move the mouse while holding
down the shift key (without holding down any button on the mouse). Then click the mouse
again. A line is drawn from the original click to the final click. You can apply this technique
to the Brush tool as well as to other tools, such as the Eraser.

The Gradient tool allows you to paint with gradients. A gradient is a smoothly-changing
sequence of colors, arranged in some pattern. Many different gradients are available in Gimp.
After selecting the Gradient tool, click the image of the gradient in the Tool Options dialog
to select the gradient that you would like to use. Note that some of the more interesting
gradients include transparent colors, which create regions where the gradient is transparent or
translucent.

Linear gradients, radial gradients and other shapes can be selected using the “Shape” setting
in the gradient Tool Options. And you can get much smoother-looking gradients by turning on
the “Adaptive supersampling” option.

To apply a gradient to an image, press the left mouse button at the point where you want
the color sequence to start, drag the mouse while holding down the button, and release the
button at the point where you want the color sequence to end. Remember that you can limit
the area affected by the gradient by making a selection; that is, you can fill a shape with a
gradient by creating the shape as a selection and then applying the gradient tool.

The gradient tool is somewhat changed in Gimp 2.10. By default, after you draw a gradient,
a line remains on the screen with dots along the line showing the gradient’s color stops. You
can edit the gradient by dragging the dots. Or click one of the dots and you will get a dialog
where you can edit the color. Press return to finish editing. This can get annoying if you don’t
actually want to edit the gradient. If you turn on “Instant mode” in the Tool Options for the
gradient tool, then you will not get the editing option when you draw a gradient.

As an example of what you can do with gradients, here is an image that was created entirely
with a few applications of the gradient tool:

C.1. GIMP: A 2D PAINTING PROGRAM 411

For this picture, the background was made by selecting the gradient named “Land and Sea”,
setting the gradient Shape set to “Linear”, and dragging the mouse from the bottom of the
image to the top. The frame around the edges was made using the “Square Wood Frame”
gradient with the Shape option set to “Square”. Much of the “Square Wood Frame” gradient
is transparent. The frame was made by dragging the mouse from the center of the image to
the edge, but the only opaque part of the gradient was near the edges. The eye was made
using a “Radial Eyeball” gradient with the shape set to “Radial”. And the rainbow used the
“Radial Rainbow Hoop” gradient with the shape set to “Radial.” A rectangular selection was
used while creating the rainbow. Without the selection, the rainbow would have been a full
circle. However, only part of that circle was inside the selection, so only that part was drawn.

You will want to try some of the other tools as well, such as the Smudge tool, the Eraser,
and the Clone tool. For help on using any tool, look at the message at the bottom of the image
window while using the tool. Consult the user manual if you want to learn more.

∗ ∗ ∗

In addition to its painting tools, Gimp has a wide variety of color manipulation tools that
apply to an entire image at once (or just to the selected part of the image, if there is a selection).
Look for them in the “Color” menu and in the “Filter” menu. These tools are often used to
modify the colors in photographs or to apply effects to images.

For example, the “Brightness and Contrast” command in the “Color” menu opens a dialog
that can be used to adjust the brightness and the contrast of an image, while the “Color
Balance” and “Hue-Saturation” dialogs in the same menu can be used to adjust the color.
Remember that if there is a selection, then the change will apply only to the pixels in the
selected area.

As an example, I used the “Hue-Saturation” dialog to change the color of the flowers in an
image from purple to pink:

412 APPENDIX C. GIMP AND INKSCAPE

(The original image, on the left, is from Wikimedia Commons, https://commons.wikimedia.org,
which is a good source of images for experimentation. This image is in the public domain.)
Note that only the colors of the flowers have been modified, not the leaves or branches. To make
that possible, I had to select the flowers before changing the color, so that the color change
would be limited to the selection. The selection was made using the “Select by Color” tool. If
you click on an image using that tool, all pixels that have a similar color to the clicked pixel
will be selected. By holding down the shift key as you click, you can add new pixels to the
pixels that were already selected. I found that it was easier to get the selection that I wanted
when I change the “Threshold” option for the tool from 15.0 to 30.0; this option determines
how similar the colors have to be. I had to click many times, using Undo whenever I accidently
added too much to the selection. Once the selection was ready, I selected “Hue-Saturation”
from the “Color” menu, changed the hue, and increased both the lightness and the saturation
to get the color that I wanted.

Another way to modify an image is with a filter. Filters in Gimp can be very general. They
might better be called “effects.” For example, there is a filter for blurring the image, one for
making the image look like an old photograph, and one to make it look like it’s made out of
cloth. Some filters in Gimp generate images from nothing, and some do even more complicated
things. You will find Gimp’s filters in the “Filter” menu. I will not discuss them further here,
but some interesting filters to try include: Distorts/Emboss, Distorts/Mosaic, Distorts/Ripple,
Edge-Detect, Artistic/Apply-Canvas, Artistic/Cubism, Decor/Old-Photo, and Map/Warp.

C.1.2 Selections and Paths

Selections are very important in Gimp, and there is a lot more to learn about them. One of the
most important things to understand about them is that a pixel can be “partially selected.” That
is, a selection is not necessarily just a collection of pixels; it’s really an assignment of a “degree
of selectedness” to each pixel. For example, the Cut command (Control-X or Command-X on
Mac) deletes the content of a selection. It sets a fully selected pixel to transparent (if the image
has an alpha component) or to the background color (if there is no alpha component). However,
a partially selected pixel will only be partially cut. If there is an alpha component, the pixel
becomes translucent; if not, the current color of the pixel is blended with the background color.
Similarly, when you fill a selection, the current color of a partially selected pixel is blended with
the fill color. This is very much like alpha blending, with the degree of selectedness playing the
role of the alpha component. (See Subsection 2.1.4 for a discussion of the alpha color component
and alpha blending.)

One way to get partially selected pixels is to “feather” a selection. When a selection is
feathered by, say, 10 pixels, the sharp boundary around the selection is replaced by a 10-pixel-

C.1. GIMP: A 2D PAINTING PROGRAM 413

wide border, with the degree of selectedness decreasing from one to zero across the width of
the border. Use the “Feather” command in the “Select” menu to feather the current selection.
Alternatively, selection tools, such as the Rectangle Select tool, have a Tool Option that will
automatically feather the border of any selection that you create with the tool. As an example,
a feathered elliptical selection was used to make the image on the right, starting from the image
on the left:

The original image is, again, a public-domain image from Wikimedia Commons. I started with
an elliptical selection around the flowers in the original image. In the Tool Options for the
Elliptical Selection tool, the “Feather Edges” option was set to 40. I then applied the “Invert”
command from the “Select” menu, which inverted the selection so that the outside of the ellipse
was selected instead of the inside. Finally, I used “Cut” to delete the selected region, leaving
just the flowers, with a 40-pixel border in which the flowers fade into the background. (Note:
To add some visual interest to the image, I applied the “Artistic” / “Oilify” filter to the original
before doing the selection.)

Gimp users often put a great deal of work into creating a selection. One way to get more
control over selections is with the Path tool, which is discussed below. Another is the “Quick
Mask,” which gives you complete control of the degree of selectedness of individual pixels. Use
the “Toggle Quick Mask” command in the “Select” menu to turn the Quick Mask on and off.
When the Quick Mask is on, the current selection is represented as a translucent pink overlay on
the image. The degree of transparency of the overlay corresponds to the degree of selectedness
of the pixel. The overlay is completely transparent for fully selected pixels. When the Quick
Mask is on, all painting tools affect the mask rather than the image. For example, drawing
with black will add to the mask (and therefore subtract from the selection), and drawing with
white—or erasing—will subtract from the mask (and therefore add to the selection). When
editing the Quick Mask, consider using the pencil tool instead of the bursh tool. The pencil
tool is the same as the brush tool, except that it does not do any transparency or antialiasing.

∗ ∗ ∗

A “path” in Gimp is a Bezier curve. (See Subsection 2.2.3.) Paths are not visible in the
actual image, but you can “stroke” a path to make it visible. Paths are not selections, but they
are closely related. You can convert a path into a selection, or a selection into a path.

Paths are created using the Paths Tool. To create a path, click a sequence of points with
the Path Tool. Optionally, you can make a closed path by control-clicking back on the first
point (or command-clicking on a Mac). This gives a polygonal path. You can then drag on one
of the sides of the polygon to change it from a straight line into a curve. When you do that,
the usual Bezier control handles will appear at the endpoints of the curve. You can drag the

414 APPENDIX C. GIMP AND INKSCAPE

ends of the control handles for finer control of the shape. At a point where two segments of
the curve join, there are two control handles. If you hold down the shift key while dragging an
end of one of the two handles, then the two handles are constrained to be a straight line and
to have the same length, which makes the curve smooth at that point.

Paths are ordinarily not visible except when they are being edited with the Paths Tool.
However, any path that you create is saved to the Path Dialog. The Path Dialog is one of a
group of tabbed dialogs that you will find along the right edge of the Gimp window. (See the
illustration of the Layers Dialog, later in this section.) Initially, it is hidden behind the Layers
Dialog. Click the Paths tab to see the Path Dialog. The Paths Dialog contains a list of paths.
Right-click one of the paths in the list to get a popup menu. From the popup menu, choose
“Path Tool” to make the path visible again in the image and to switch to the Path Tool so
that the path can be edited. Choose “Path to Selection” from the popup menu to convert the
path into a selection; all of the pixels that lie inside the path will be selected. Choose “Stroke
Path” to draw a line or drag a paint tool along the path. A dialog box will open to let you
set the properties of the stroke. There is also a command “Selection to Path” that will convert
the current selection into a path; this command is available in the popup menu if you click
anywhere in the Path Dialog.

As an example of using paths, this illustration explains how I made a heart shape using the
Path Tool:

×ØÙÚÛ ÜÝ Þour pointßà

then contáâØãÚØÙÚÛ Ýhe

ärst point to mÜÛå Ü

áâæçè âæÝØÙéå âÞ Ýhe

ßèÜêåë

ìáÜç Ýèe center

âÞ Ü ØÙéå to turn

it intâ Ü Úæáíåë

îÜéïØåß appearë

ìáÜç Ýèå èÜéïØåßð

endpoints Þâá

äner câéÝáâØë

ñèÜêå Ýèå Úæáíå

òó ïáÜççÙéç Úæáíåß

and handlesë ×ØÙÚÛ

a point to see its

èÜéïØåßë ñèÙÞÝãïáÜç

Ýâ ÞâáÚå èandles to

òå ßóôôåÝáÙÚë

The heart älled õòó

ÚâéíåáÝÙéç it to a

selection and usinç

the bucÛåÝ ÝââØö Üéï

ßÝáâÛåï õòó æßÙéç

ñÝáâÛå ÷ÜÝèöë

C.1.3 Layers

In Gimp, an image can be composed from a stack of “layers.” Each layer is itself an image. The
final image is composed by starting with a blank canvas, then copying each layer to the canvas,
one after the other. A layer doesn’t necessarily have to be the same size as the canvas. A layer
can be translucent, and can have transparent parts. The advantage of layers is that you can
edit one layer without changing the others. You can move a layer (with the Move Tool), and
the stuff in the lower layers will be still be there. While layers are used mostly in advanced
applications, they are an important feature and one that can lead to confusion if you don’t
know about them—especially since several tools and commands add new layers to an image
automatically.

It is important to understand that only one layer can be edited at any given time. That
layer is called the active layer. This can be annoying if you lose track of which layer is active.

C.1. GIMP: A 2D PAINTING PROGRAM 415

It can be especially annoying if the active layer is hidden in the visible image or has been made
completely transparent!

Layers are listed in the Layer Dialog, one of the tabbed dialogs in the upper right or lower
right corner of the Gimp window. In the list of layers, the active layer is highlighted. Click a
different layer in the list to make it active. Right-click the dialog for a popup menu of commands
for working with layers. Some of the commands are duplicated in the “Layer” menu. If you
right-click one of the layers in the list, the popup menu will also include commands that apply
to that individual layer. Here is an illustration of the Layer Dialog from a project that uses
four layers:

Layers Tab Paths Tab

Opacity of selected layer.

Reduce it to make the

entire layer translucent.

øùúûüý þÿis option to

p�ý�ýùþ �ÿanges to layer.

øùúûüý þÿis option to

p�ý�ýùþ �ÿúùaý� þ� úüpÿa

��cp�ùýùþ� ý�ý� it is

ýùúûüýe�

This is a text üú�ý�� .ÿe

text tool aut�cúþo�úüü�

cúmý� ú ùý� üú�ý��

This üú�ý� o� ú�þo�ý�

Oùü� þÿý ú�þo�ý üú�ý�

can be modi	ýe�

Cüo�m þÿý ý�ý þ� �ÿ��

and hide þÿý üú�ý��

A new image will only have one layer. You can add a new layer with a command in the
“Layer” menu or in the popup menu that you get by right-clicking the Layer Dialog. New layers
are also added automatically in some cases. The Text Tool, in particular, always creates a new
layer. Text layers are special. They only contain text, and they can only be edited with the
text tool. (More exactly, if you edit a text layer with some other tool, it is converted into a
regular layer, and you can no longer edit it as text.)

The Paste command will also create a new layer. In this case, the layer is special because it
is a “floating” layer. After pasting an image into a Gimp window, you can use the Move Tool to
drag the floating layer to the desired position. Before you do anything else, aside from moving
the layer, you need to either “anchor” the layer (that is, make it part of the active layer), or
convert it into a new regular layer. To anchor it, just click outside the pasted layer. To convert
it into a regular layer, right click on its entry in the Layer Dialog, and use the “To New Layer”
command in the popup menu. (There will also be an “Anchor” command in the menu.) Again,
this behavior can be annoying if you don’t know about it.

416 APPENDIX C. GIMP AND INKSCAPE

C.2 Inkscape: A 2D Drawing Program

This section is a very brief introduction to Inkscape, a free program for creating and editing
2D vector graphics images. I used Inkscape to create many of the illustrations for this textbook.
As a vector graphics program, instead of storing colors of pixels, Inkskape stores a list of the
objects in a scene, together with their attributes. It saves images in the SVG (Scalable Vector
Graphics) format, which is covered in Section 2.7. SVG images can be opened in many standard
image viewers and can be used on the Web. Inkscape adds some extra data to the SVG files
that it creates, but that data will be ignored by other programs.

Inkscape can be downloaded from its web site at inkscape.org. It is available for Windows,
Mac OS, and Linux. The latest version as of July, 2021 is 1.1. This section was written based
on Inkscape 0.92. Although there are some differences in the newer version, especially in the
management of dialog boxes, everything here applies to both versions.

∗ ∗ ∗

The Inkscape window has a large central drawing area, with several toolbars around the
edges. Many dialog boxes, such as the one for setting stroke and fill properties, will open along
the right edge of the window. The layout is configurable. For example, toolbars can be hidden,
and dialog boxes can be moved out of the main window to become independent windows. My
discussion assumes the standard layout.

When a new window is opened, the drawing area probably shows a scaled-down view. I
prefer to work with a full size drawing, so the first thing I usually do is hit the “1” key to get an
unscaled view. For detailed work, magnified views are also useful. You can zoom in by typing
“+” and zoom out by typing “-”. There is also a “Zoom” submenu in the “View” menu.

A toolbar that contains the Inkscape drawing tools runs along the left edge of the window.
You might not see exactly the same set of tools that is shown here. The tools that you are
most likely to use are labeled in this illustration:

C.2. INKSCAPE: A 2D DRAWING PROGRAM 417

Select Tool

Rectangle

Tool

Ellipse

Tool

Star/Polygon

Tool

Spiral Tool

Bezier Path

Tool

Text Tool

Control Point

Editing Tool

You can also get a description of a tool by hovering your mouse over its icon. (The same is true
for most interface elements.) It’s a good idea to learn some of the keyboard equivalents, such
as F1 or S for the select tool.

The drawing tools, which create shapes, are the Rectangle, Ellipse, Star/Polygon, Spiral,
Bezier, and Text tools. After selecting those tools, you can use the mouse to add a shape to
the image. For the most part, the tools are easy to use, but some of them are discussed in more
detail below.

The Select tool is fundamental. It is used to select shapes for editing and to move selected
shapes. It is only useful after you’ve drawn some items. Click on an item with the Select tool
to select it. Select multiple items by dragging a box around them with the Select tool. You
can also add items to the selection by shift-clicking them, or by shift-dragging around a group
of items.

When multiple items are selected, you can manipulate them as a group. For example, you
can use the Select tool to drag the group to a new position, or you can resize the group as a
whole. You can use the “Group” command in the “Object” menu to permanently group the
selected items into a compound item; you can break up a compound item using the “Ungroup”
command. The “Group” command allows you to do hierarchical graphics (Section 2.4); that
is, you can group compound objects into higher level compound objects.

When you select an item, or group of items, handles appear around the item. You can
drag the handles to transform the selection. Hold down the control key to constrain the
transformation. For example, when resizing an item, holding down the control key will preserve
the aspect ratio of the shape. There are actually two sets of handles, as well as the possibility
of modifying the shape by dragging “control points.” Using a rectangle as an example:

418 APPENDIX C. GIMP AND INKSCAPE

��� � ��ape once

w��� ��� ����� �ool

to get th� ������ng

��h����� w���

�h �� ��aggeg to

���� ��� ���s��

��� ��� ���s�

again to get the

��h���� �hat can

�� b��� to rotate

�h� �ss�� ��ear

�t ��� ���s��

Dtb������� ���

���s� �t ���

control poin�� ����

�h �� ��agged to

�t���� ��� ���s��

(���t ��h��� �tt��!

For a rectangle, the small round control points can be dragged to make rounded corners. The
control points also appear when you first draw the shape. To make them go away, you can
switch to the Select Tool.

A shape in Inkscape can be stroked and/or filled. There is a dialog box for setting stroke
and fill properties, which you can open by selecting “Fill and Stroke” from the “Object” menu.
The dialog box applies to the currently selected object or objects. It has tabs for setting the
stroke and the fill colors. There is also a “Stroke Style” tab, where you can set the stroke width
and other attributes. There is a shortcut for setting colors, using the “Color Palette” near the
bottom of the window:

"#$#% &'$)**)+ Click ' ,#$#% &'*,- *# /)* *-e 0ll color of

-) /)$),)1 /-'&)2/3+ "$l,k *-) "X" to remove the 0ll color.

H#$1 1#45 /-l6* k)7 4-l$) ,$l,kl58 *# /)* the st%#k) ,#$#%

l5/*)'1 #6 the 0ll color+

Watch this r)8l#5 6#% l56#%iation

'9#:* -#4 *# :/) the cur%)5* *##$r

S-#4/ 0ll and str#k) 6#%

selected /-'&)2/3+

;#:9$)<,$l,k *# #&)5 *he

Fl$$<'51<S*%#k) 1l'$#8+

The status bar under the color palette, as shown in the illustration, contains information about
the currently selected shape and the currently selected tool. You can learn a lot about how to
use Inkscape by paying attention to the help text in this status bar!

Above the drawing area, you can find a tool options bar, whose content changes depending
on which tool is selected. In the options for the Select Tool, for example, you’ll find some icons
for rotating and flipping the current selection, and for raising or lowering the selection (to move
it in front of or behind other shapes). Hover your mouse over an icon to find out what it does.
Again, paying attention to the options toolbar can help you learn how to use Inkscape! Here,
for example, is part of the Star/Polygon tool options bar, which appears when the Star/Polygon
tool is being used and applies to the star/polygon shape that is being edited:

C.2. INKSCAPE: A 2D DRAWING PROGRAM 419

Click one of these
icons to set whether
the shape is a polygon
or a star.

The number of
sides of a polygon
or the number of
points on a star.

Some options that only
affect the shapes of stars.

As you can probably see, it’s not possible to use this tool effectively unless you are aware of its
options and how to change them. Without using the options, you can’t even change a shape
from the default star-shape into a polygon. The Star/Polygon tool can produce a wide variety
of interesting shapes by changing the “Rounded” and “Randomized” options for a star.

∗ ∗ ∗

The most versatile shape tool is the Bezier tool, which lets you draw straight lines, polygonal
paths, and Bezier curves. For a straight line segment, click at the first endpoint of the line,
then double-click at the second endpoint. For a polygonal path, just click on a series of points
and double-click the final point. Inkscape refers to the endpoints and vertices of the path as
“nodes.” For a more general curved shape, I have found it easiest to start with a polygonal
shape, which can then be edited to turn the straight sides into curves.

Once you have the polygonal path, switch to the Control Point Editing Tool (F2 or N key)
to modify the shape. (You might need to click a shape to begin editing it.) With that tool, you
can drag the middle of a line segment to make it into a curve. You can also drag the path’s
nodes. When you click the node at an end of a curved segment, handles will appear, and you
can drag the control points at the ends of the handles to adjust the shape. (This is all very
much like editing Bezier paths in Gimp.) You should note these four button icons in the tool
options bar for the Control Point Editing Tool:

Click one of these buttons while a node is selected to set how the handles for that node work.
The left button allows you to freely adjust the two handles separately. This is the default
setting. With that setting, you get a sharp point or corner. The second button forces the
control points and the node to lie on a line, giving a shape that is smooth at that node. The
third button makes an even smoother shape by forcing the two control handles to have the
same length.

∗ ∗ ∗

Hopefully, I have given you enough information to get you started with Inkscape. There is
a lot more to learn. I will mention just a few more features.

The “Symbols” command in the “Object” menu will open a dialog box, on the right side
of the window, with several sets of “symbols” that can be added to an image. A symbol in
Inkscape is just a predefined image. For example, there is a set of “Word Balloons” and a set of
“Logic symbols” for use in circuit diagrams. A popup menu in the dialog box selects the symbol
set. You can drag an image from a symbol set into the drawing area of the window. Once it’s
part of the drawing, you can resize and edit it just like other shapes. Remember that one of
the advantages of vector graphics is that shapes can be resized without any loss of quality, so

420 APPENDIX C. GIMP AND INKSCAPE

you get nice looking symbols at any size! Also, in general, you can change the stroke and fill
properties of a symbol.

In fact, you can add arbitrary images to the scene, using the “Import” command in the
“File” menu. Once an image is part of the scene, it can be scaled and rotated just like any
other object.

Here’s an example of a shape that you can make as a “difference” of two shapes. For this
shape, a square was subtracted from a circle. I added a blue rectangle behind the shape so that
you can see that there’s actually a square hole in the circle, not simply a white square on top
of a red circle:

“Difference” is one of several commands in the “Path” menu for combining two shapes in
various ways. Other operations include “Union”, “Intersection”, “Exclusion”, and “Division”.
(Division can be used to cut a shape into two independent pieces.)

Here is how to make the circle-minus-square shape, including a few notes about new
techniques: Draw a square inside a circle. To get perfect circles and squares instead of ovals
and rectangles, hold down the control key while creating the shape. To align the two shapes
so that the square is perfectly centered in the circle, select both shapes and use the “Align
and Distribute” command in the “Object” menu; this will bring up a dialog box containing
icons that you can click to align and distribute the selected objects in various ways. Finally,
to subtract one shape from the other, select both shapes and use the “Difference” command in
the “Path” menu. Note that the upper shape is subtracted from the lower, which means that
you should draw the square after you draw the circle. You can set the stroke and fill properties
of the combined shape. Filling the shape should fill the region between the square and the
circle, as shown in the picture. If you draw a blue rectangle at this point, it will be on top of
the circle/square shape. To move it under the shape, select the rectangle and use the “Lower”
command from the “Object” menu.

One last suggestion: You might want to investigate some of the many commands in the
“Filters” and “Extensions” menu. It’s interesting that you can apply a blur filter to a shape,
and still edit the properties of the shape. (The filter is stored as an attribute in the SVG file
and is applied whenever the shape is rendered.)

Appendix D

List of Sample Programs

This appendix contains a list of the programs that are used as examples in this book. If you
have downloaded the web site version of the book, you can find the source code examples in
the folder named source. This page also contain a list of the “live demos” that are used in the
book. In the web site download, they can be found in the folder named demos. (The web site
download is available on book’s web page, http://math.hws.edu/graphicsbook.)

(Note: Examples and demos for HTML canvas graphics, three.js, and WebGL are html files,
which can be opened in a web browser. Many of the html programs use images. In certain
browsers, the three.js and WebGL programs that use images will not work when the html files
are loaded from a local hard drive. That is, they will fail in some web browsers when run from
the source or demo folder in the web site download of this book. The programs should work
OK when loaded from a web server.)

Java Graphics2D Examples

There are a few examples in Section 2.4 and Section 2.5 that uses the 2D graphics API that is
part of Java’s Swing GUI toolkit. In the web site download, the source code for these examples
can be found in the folder named java2d inside the source folder. Each example is a single file
that can be compiled to produce an application; no additional Java files are needed.

• HierarchicalModeling2D.java — shows a simple animated scene, with a moving cart and
rotating windmills, that uses hierarchical modeling. In this version of the program, the
hierarchy is implemented procedurally, using subroutines to draw the objects in the scene.

• SceneGraphAPI2D.java — shows the same scene as the previous example, but this time
implemented using a scene graph data structure. The scene graph is implemented using
static nested classes in the main class.

• GraphicsStarter.java and AnimationStarter.java draw simple static and animated scenes,
respectively, and are meant to be used as a framework for experimenting with Java
graphics. EventsStarter.java is a similar framework for working with mouse and key
events in a graphics program.

• PaintDemo.java draws a polygon that can be filled with either a gradient or a texture
image, and lets you adjust their properties. This is just a demo of Java paints. The image
files QueenOfHearts.png and TinySmiley.png are part of this program and must be in the
same location as the compiled Java class files when the program is run.

• JavaPixelManipulation.java is a demo that manipulates colors of individual pixels in
a BufferedImage. The user can draw a simple picture or load an image from a file.

421

422 APPENDIX D. LIST OF SAMPLE PROGRAMS

A “Smudge” tool smears out pixel colors, and filters modify the image by performing
averaging operations on the pixel colors in the image.

HTML Canvas 2D Examples

The 2D canvas API is discussed in Section 2.6, and several examples are mentioned in that
section. Canvas examples are written as web pages, and you can look at the web page in a
browser to see what it does. However, you are also meant to read the source code. And the
first four examples are meant to be used as a basis for your own experimentation. (Note that
all of the live demos in Chapter 2 use the canvas API, but you are not necessarily meant to
understand the source code of the demos.) In the web site download of this book, you can find
these examples in the canvas2d folder inside the source folder.

• GraphicsStarter.html is a minimal framework for drawing on an HTML canvas. It includes
examples of drawing text and various shapes.

• GraphicsPlusStarter.html adds a few convenience functions to the previous example,
including a function for setting up a coordinate system on the canvas and functions to
draw shapes such as lines and ovals that are not included in the basic API. It includes
examples of using transforms

• AnimationStarter.html adds animation to the previous example and includes a simple
example using hierarchical modeling.

• EventsStarter.html is a minimal framework for using keyboard and mouse events with a
canvas, with some examples of basic event handling.

• SimplePaintProgram.html lets the user draw using simple shapes. There is also a “smudge”
tool that lets the user smudge the drawing as if it is drawn in wet paint; this is an example
of pixel manipulation in the HTML canvas API. The program shows how to use an “off-
screen canvas.” The demo program c2/SimplePaintDemo.html is a version of this program
that uses an “overlay canvas” instead of an off-screen canvas.

Scalable Vector Graphics Examples

Section 2.7 discusses SVG, a scene description language for 2D vector graphics. Several examples
were discussed in that section. These examples can be opened in a web browser to see the images
they produce. View the source code for the web page to see the program that produces the
image. You can also open the files in a text editor to read the source. Some of the examples
produce animated images. SVG images should work in almost all modern web browsers. These
examples can be found in the svg folder inside the source folder.

• first-svg-example.svg is a very short first example that just draws a few basic shapes.

• svg-starter.svg shows the basic document structure for an SVG image, includes examples
of most of the basic shapes, and has a lot of comments to explain what is going on.

• svg-face.svg is a very simple first example of grouping.

• svg-hierarchy.svg is an example of hierarchical modeling that makes a model of a wheel
and a model of a cart that uses two wheels as components. The image shows a wheel and
four copies of the cart. The wheel and cart models are also used in the cart-and-windmill
animation at the end of this list.

423

• first-svg-animation.svg contains examples of simple animation, keyframe animation, and
transform animation.

• hierarchical-animation.svg shows a simple animated hierarchical model.

• cart-and-windmill.svg is a more complex example of hierarchical modeling in SVG. The
scene is an animation that shows a “cart” moving down a road as windmills turn
in the background. The animation is the same as the one implemented in the Java
example java2d/HierarchicalModeling2D.java and in the JavaScript demo c2/cart-and-
windmills.html.

OpenGL 1.1 Examples

OpenGL 1.1 is the topic of Chapter 3 and Chapter 4. Examples in those chapters primarily
use the C API for OpenGL. However, the Java API, JOGL, is also discussed. Most program
examples are available in both the C and the Java APIs. The JOGL versions can be found
in the directory named jogl inside the source directory. The C versions, which use the GLUT
library to create and manage OpenGL windows, can be found in the directory named glut inside
source. (Many of these programs use a “camera” API defined in jogl/Camera.java for Java and
in glut/camera.c and glut/camera.h for C.)

The OpenGL demos in the book are written using glsim.js, a JavaScript library that
implements a small subset of the C API for OpenGL 1.1 on top of WebGL 1.0. Information
about glsim can be found in glsim/glsim-doc.html. Some of the program examples are available
in HTML versions that use the glsim library. They can be found in the glsim directory inside
the source directory.

• glut/first-triangle.c, jogl/FirstTriangle.java and glsim/first-triangle.html are C, Java, and
JavaScript versions of the very first OpenGL example: a triangle whose vertices are
assigned the colors red, green, and blue. You can use this example as a starting point for
trying out some basic 2D drawing commands. From Section 3.1.

• glut/unlit-cube.c, jogl/UnlitCube.java, and glsim/unlit-cube.html are C, Java, and
JavaScript versions of a program that draws a cube using modeling transformations ap-
plied to a square. There is no lighting in this program, and it uses a basic orthographic
projection, so the image is not realistic. From Section 3.2.

• glut/opengl-cart-and-windmill-2d.c (for C), jogl/CartAndWindmillJogl2D.java (for Java),
and glsim/opengl-cart-and-windmill.html (for JavaScript) are versions of an example of
hierarchical modeling and animation in two dimensions with OpenGL 1.1. It illustrates
2D graphics in OpenGL as well as the use of glPushMatrix and glPopMatrix for
hierarchical modeling. The animation is almost the same as the one implemented in the
Java Graphics2D example java2d/HierarchicalModeling2D.java and in the HTML canvas
graphics demo c2/cart-and-windmills.html. From Section 3.2.

• glut/camera.c and the corresponding header file glut/camera.h for C, or jogl/Camera.java
for JOGL, implement a “camera” API for use with OpenGL 1.1. This is a library for use
in other programs, not itself a complete program. The corresponding API for JavaScript
is part of my GLSim library, glsim/glsim.js. A camera is used in most of the following
examples. Discussed in Section 3.3.

• glut/ifs-polyhedron-viewer.c and jogl/IFSPolyhedronViewer.java are C and Java versions
of a program that lets the user view polyhedra that are defined as indexed face sets. The

424 APPENDIX D. LIST OF SAMPLE PROGRAMS

polyhedra models are defined in jogl/Polyhedron.java for Java and in glut/polyhedron.c
and glut/polyhedron.h for C. This program also requires the camera API discussed in the
previous item. From Section 3.4.

• glut/cubes-with-vertex-arrays.c, jogl/CubesWithVertexArrays.java, and the JavaScript ver-
sion glsim/cubes-with-vertex-arrays.html demonstrate drawing using glDrawArrays and
glDrawElements. From Section 3.4.

• glut/color-cube-of-spheres.c and jogl/ColorCubeOfSpheres.java draw a large number of
spheres using a variety of rendering methods, and show the time that it takes to render the
image. The point is to compare render times for different rendering methods, including
display lists, glDrawArrays, and vertex buffer objects. The reader is not expected to
understand all of the code in this program. From Section 3.4.

• glut/glut-starter.c, jogl/JoglStarter.java, and glsim/glsim-starter.html are “starter” files
for writing OpenGL 1.1 applications using C, Java, and my JavaScript OpenGL simulator.
These programs don’t draw anything, but they have function/method stubs for drawing
as well as for mouse and keyboard interaction and animation. Discussed in Section 3.6

• glut/four-lights.c and jogl/FourLights.java are an example of using light sources and
material properties. The program demonstrates multiple, moving light sources and lets
the user turn the lights on and off to see the effect. The demo glsim/fout-lights-demo.html
is a JavaScript version of the same program. From Section 4.2.

• glut/texture-demo.c is a C program that shows a variety of textures on a variety of objects.
It depends on the files glut/textured-shapes.c and glut/textured-shapes.h, and on the folder
glut/textures that contains the texture images used by the program. The Java version
is jogl/TextureDemo.java, and it requires jogl/TexturedShapes.java, as well as the image
folder jogl/textures. From Section 4.3.

• glut/texture-from-color-buffer.c and jogl/TextureFromColorBuffer.java demonstrate the
technique of copying an image from the color buffer using the function glCopyTexIm-
age2D(). Draws an animated 2D scene and then uses it as a texture on various objects.
Requires the same textured shape libraries mentioned in the previous item. From Sec-
tion 4.3.

• glut/texture-objects.c is a small program to demonstrate the use of texture objects to
handle multiple textures. It is available for C only. From Section 4.3.

Three.js Examples

Three.js is a JavaScript library for 3D graphics on Web pages, using WebGL and the HTML
canvas. It is discussed in Chapter 5. The examples can be found in the folder named threejs,
inside the source folder of the web site download. All of the examples use the JavaScript file
threejs/three.min.js, which is a “minified” version of the library, not meant for human readers.
A human-readable version, threejs/three.js is also available. The version is three.js Release 129.
Note that although three.js is written using JavaScript modules, the examples in this book
only use the non-modular form of the library. Three.js is an open-source project. It can be
downloaded from threejs.org.

• threejs/full-window.html — Three.js is typically used to write programs that fill the
browser window and continually run an animation. This example shows how to do that,
but my other examples do not follow the same pattern. The animation shows colored balls

425

bouncing around inside a translucent box. The user can rotate the scene with the mouse.
From Section 5.1

• threejs/modeling-starter.html — A starter program for experimenting with building and
animating a scene graph model with three.js. The user can rotate the model using the
keyboard. It includes a simple example. From Section 5.1

• threejs/diskworld-1.html — Shows an animated model of a simple “car” driving around
the edge of a disk, with “trees” made from a cylinder and a cone. Based on the previous
sample program. From Section 5.1

• threejs/vertex-groups.html — Shows how to use an array of materials on a cube and on a
pyramid whose geometry is constructed by hand. This uses the “vertex group” feature of
THREE.BufferedGeometry. This is also a version threejs/vertex-groups-indexed.html that
represents the pyramid using the indexed face set pattern. From Section 5.2

• threejs/textured-pyramid.html — Shows the same pyramid as the previous example, with a
texture. Shows how to define texture coordinates for a three.js geometry. From Section 5.2

• threejs/curves-and-surfaces.html — Creates several surfaces using a parametric surface,
tube geometry, lathing, and extrusion. From Section 5.2

• threejs/model-viewer.html — Displays models that are loaded from files various formats,
using three.js loaders. Models are from the three.js download. (See the demo c5/mesh-
animation.html to see animated versions of two of the models.) From Section 5.2

• threejs/instanced-mesh.html — A small example of using a THREE.InstancedMesh object,
which makes it possible to draw a large numbers of instances of the same basic geometry,
with different transformations and, optionally, different colors for each copy. From
Section 5.3

• threejs/skybox.html — Demonstrates using a cubemap texture to make a skybox. From
Section 5.3

• threejs/reflection.html — A demonstration of using an environment map to simulate the
reflection by an object of its environment. The environment is a skybox. From Section 5.3

• threejs/refraction.html —A demonstration of simulated refraction. This example is almost
identical to the previous example, except for using refraction rather than reflection. From
Section 5.3

WebGL Examples

WebGL is the version of OpenGL for use on Web pages. It is discussed in Chapter 6 and
Chapter 7. The sample programs can be found in a folder named webgl, inside the source folder
of the web site download. The sample programs for WebGL are HTML files. Run the programs
by opening them in a Web browser. View the source code in a text editor or using a “View
Source” command in a web browser. Part of a WebGL program is written in JavaScript. The
other part consists of a vertex shader and a fragment shader written in GLSL. Many of these
examples rely on scripts that are in the same webgl directory. In particular, the 3D examples
use the glMatrix library (Subsection 7.1.1). Most of these programs work with WebGL 1.0, but
a few require WebGL 2.0, as noted.

• webgl/VAO-test-webgl2.html — Demonstrates the use of Vertex Array Objects. Mentioned
in Subsection 6.1.7, but it uses many techniques that will be covered later in the textbook.
This program requires WebGL 2.0.

426 APPENDIX D. LIST OF SAMPLE PROGRAMS

• webgl/instancing-test-webgl2.html — Demonstrates the use of instanced drawing with
gl.drawArraysInstanced(). Mentioned in Subsection 6.1.8, but it uses techniques that
will be covered later in the textbook. This program requires WebGL 2.0

• webgl/webgl-rgb-triangle.html — The standard OpenGL example rendered using WebGL:
a triangle whose vertices are red, green, and blue, where the colors of interior pixels are
computed by interpolating colors from the vertices. Demonstrates the use of attributes
and varying variables. From Section 6.2

• webgl/shape-stamper.html — The user “stamps” shapes onto the canvas by clicking it
with the mouse. Properties of the shape are determined by a set of pop-up menus.
Demonstrates the use of uniform variables, the preserveDrawingBuffer option on the
WebGL context, and a simple coordinate transformation in the vertex shader. From
Section 6.2

• webgl/moving-points.html — A set of circles moves around in the canvas, bouncing off the
edges. Shows how to use the POINTS primitive in WebGL and introduces the discard
statement in the fragment shader. From Section 6.2

• webgl/simple-texture.html — A very minimal texture example. It just applies a texture
image to a triangle. From Section 6.4.

• webgl/texture-from-pixels.html — Shows how to load a texture from an array that contains
the pixel color component values for the texture. (Also demonstrates the difference
between a gl.LINEAR and a gl.NEAREST magnification filter.) From Section 6.4.

• webgl/cubemap-fisheye.html — Loads a cubemap texture, but uses it in a 2D context to
imitate a picture taken with a fisheye lens. 2D texture coordinates are first mapped onto
a sphere to get the direction vector that is used to sample the cubemap. From Section 6.4.

• webgl/webgl-game-of-life.html — An implementation of John H. Conway’s “Game of Live”
in WebGL, as a basic example of how GPUs can be used to perform computational tasks.
From Section 6.4.

• webgl/texelFetch-MonaLisa-webgl2.html — A rather silly demo program that uses the
GLSL ES 3.00 function texelFetch() to get colors from a texture image. This program
requires WebGL 2.0. From Section 6.4.

• webgl/simple-hierarchy2D.html — Demonstrates using 2D modeling transformations in
WebGL and GLSL, with some simple animated hierarchical objects. Transforms are
implemented in JavaScript as objects of type AffineTransform2D, defined in the file
webgl/AffineTransform2D.js. From Section 6.5.

• webgl/glmatrix-cube-unlit.html — A first example of doing 3D graphics directly in WebGL,
with no lighting. From Section 7.1.

• webgl/cube-with-simple-rotator.html — Demonstrates the use of a SimpleRotator (defined
in webgl/simple-rotator.js) to do mouse rotation. From Section 7.1.

• webgl/cube-with-trackball-rotator.html — Demonstrates the use of a TrackballRotator

(defined in webgl/trackball-rotator.js) to do mouse rotation. This is almost identical to
the previous example. From Section 7.1.

• webgl/cube-with-basic-lighting.html — A first example of implementing lighting directly in
WebGL. Adds lighting to webgl/glmatrix-cube-unlit.html. The lighting in this case uses
only diffuse color and a directional light from the direction of the viewer. From Section 7.2.

• webgl/basic-specular-lighting.html — A first implementation of specular reflection. From
Section 7.2.

427

• webgl/basic-specular-lighting-Phong.html — A second implementation of specular reflec-
tion, using Phong shading (with the lighting calculations in the fragment shader). Aside
from moving the calculation to the fragment shader, this example is identical to the
previous example. From Section 7.2. There is also a version that has been ported to
WebGL 2.0 and GLSL ES 3.00: webgl/basic-specular-lighting-Phong-webgl2.html. The re-
quired changes are minimal.

• webgl/parametric-function-grapher.html — Lets the user graph a parametric surface, given
by equations x(u,v), y(u,v), and z(u,v) entered by the user. A relatively complex
program, it illustrates GLSL data structures, two-sided lighting, and polygon offset. From
Section 7.2.

• webgl/spotlights.html — A demo of spotlights, with three colored spotlights. The user can
change the cutoff angle and spot exponent. From Section 7.2

• webgl/diskworld-2.html — A relatively complex program with hierarchical modeling and
several kinds of lighting, including moving lights, spotlights, and light attenuation. This
is the same scene as the three.js example threejs/diskworld-1.html, with added lighting
features. From Section 7.2.

• webgl/texture-transform.html — Animated texture images, using glMatrix to implement
texture transformations. From Section 7.3.

• webgl/bumpmap.html — A mostly successful attempt to implement bumpmapping. From
Section 7.3.

• webgl/skybox-and-env-map.html — Uses a cubemap texture to make a skybox and as an
environment map. From Section 7.3.

• webgl/image-blur.html — Applies a blur filter to an image. A very simple demo of using
blending for something other than transparency. Also a very simple example of a multi-
pass algorithm. From Section 7.4.

• webgl/render-to-texture.html — Uses a WebGL framebuffer to draw an image directly into
a texture. From Section 7.4. There is also a port to WebGL 2.0, which uses vertex array
objects and gl.texStorage2D(): webgl/render-to-texture-webgl2.html.

• webgl/cube-camera.html — Shows a skybox and moving cubes reflected on the surface of an
object. Uses a dynamic cubemap texture as an environment map on the reflective object.
The six images for the cubemap texture are redrawn for each frame of an animation. From
Section 7.4.

• webgl/anisotropic-filtering.html — Demonstrates the use of the WebGL anisotropic
filtering extension. Shows a large textured rectangle extending into the distance and
lets the user turn anisotropic filtering on and off. From Section 7.5.

• webgl/image-evolver.html — Demonstrates use of the WEBGL color buffer float WebGL
extension. The application is a simple genetic algorithm that tries to approximate a given
image. The floating point color buffer is used for two computations: finding the average
of the color values in an image and computing an image that represents the difference
between two images. From Section 7.5.

• webgl/instancing-test-webgl1.html — Demonstrates the use of an extension to do instanced
drawing in WebGL 1.0. This is a copy of webgl/instancing-test-webgl2.html, modified to
work with WebGL 1.0. From Section 7.5.

• webgl/multiple-draw-buffers-webgl2.html — Demonstrates drawing to multiple textures
attached as draw buffers to the same framebuffer. Requires WebGL 2.0 (but something

428 APPENDIX D. LIST OF SAMPLE PROGRAMS

similar could be done in WebGL 1.0 with an extension.) From Section 7.5.

Live Demos

The web site version of this book includes “live” or “interactive” demos that are embedded in
the web pages. The demos are small programs written as web pages using JavaScript and either
HTML canvas graphics or WebGL. Although they are designed to be run as small applications
inside other web pages, they can also be run as independent web pages. In the web site download
of this book, you can find the demos in the folder named demos, organized by chapter number.
They can be run directly from that folder. Note that each of the demos requires certain other
files that are contained in the demos folder; if you copy a demo to a different location, be sure
to also copy all the files on which it depends.

The demos from Chapter 2 use the 2D canvas graphics API, which will work in almost all
modern web browsers, Demos from the remaining chapters use WebGL, which will also work
with almost all modern desktop browsers, and many browsers on mobile devices. (However,
WebGL might still have problems in some of these browsers on some machines.) All demo
programs that use WebGL will work with WebGL 1.0.

The demos in Chapter 3 and Chapter 4 use glsim.js, a JavaScript library that I wrote to
simulate a subset of OpenGL 1.1. Information about glsim can be found in glsim/glsim-doc.html.

For many of the demos, the reader is not expected to understand the program code for the
demo at the point where the demo occurs in the book. Note that the JavaScipt code in the
demos has not been updated to use the more modern version of JavaSctipt that is covered in
Section A.3.

• c2/pixel-magnifier.html — from Section 2.1. Magnifies a small square of pixels in an image
so that the user can see how text, lines and other shapes are made from pixels, including
antialiasing.

• c2/rgb-hsv.html — from Section 2.1. Lets the user modify a color in the RGB and HSV
color spaces by dragging sliders.

• c2/approximating-ovals.html — from Section 2.2. Shows how ovals can be approximated
by a polygons with different numbers of sides.

• c2/cubic-bezier.html — from Section 2.2. Lets the user modify a cubic Bezier curve by
dragging endpoints and control points.

• c2/quadratic-bezier.html — from Section 2.2. Lets the user modify a quadratic Bezier
curve by dragging endpoints and control points.

• c2/transforms-2d.html — from Section 2.3. Lets the user apply a sequence of rotation,
scaling, and translation transforms to a shape and see the results.

• c2/transform-equivalence-2d.html — from Section 2.4. attempts to demonstrate the
equivalence between the modeling transform and the viewport transform in 2D.

• c2/cart-and-windmills.html — from Section 2.4. Shows a simple, animated 2D scene
constructed using hierarchical modeling.

• c2/SimplePaintDemo.html — from Section 2.6. Lets the user draw on a canvas using some
basic shapes. A “Smudge” tool illustrates pixel manipulation. This demo is pretty much
the same as the sample program canvas2d/SimplePaintProgram.html.

429

• c2/image-filters.html — from Section 2.6. Lets the user apply a variety of “filters” to
several images. A filter, as the term is used here, replaces the color of each pixel with a
weighted average of the colors of that pixel and its eight neighbors.

• c3/first-triangle-demo.html — from Section 3.1. Shows the usual first example for
OpenGL: A triangle with differently colored vertices. For this demo, you can change
the colors of the vertices.

• c3/first-cube.html — from Section 3.1. Draws a cube with six different colors for the sides
(with no lighting effects, and with the default orthographic projection). The user can turn
the depth test on and off to see the effect. And the user can use a bigger cube, to see the
effects of “clipping” when parts of the cube extend outside the visible range of z-values.

• c3/axes3D.html — from Section 3.2. Shows a set of coordinate axes in 3D. The user can
drag the mouse to rotate the view.

• c3/rotation-axis.html — from Section 3.2. Illustrates rotation about an axis in 3D. A cube
spins about an axis of rotation. The user can select the axis.

• c3/transform-equivalence-3d.html — from Section 3.3. attempts to demonstrate the
equivalence between modeling and viewing in 3D. The user drags sliders to modify a
transform, and sees that transform applied both to objects as a modeling transform and
to the view volume as a viewing transform. The contents of the view volume and the
image that is produced are the same in either interpretation.

• c3/ifs-polyhedron-viewer.html — from Section 3.4. Lets the user view a variety of
polyhedra that are defined in the program as indexed face sets. The user can rotate
the polyhedron and control some rendering options.

• c4/materials-demo.html — from Section 4.1. Lets the user change the diffuse, specular
and shininess properties of an object and see the result.

• c4/smooth-vs-flat.html — from Section 4.1. Lets the user see the difference between using
normal vectors to model a smooth surface versus modeling a flat-sided polyhedron.

• c4/four-lights-demo.html — from Section 4.2. Demonstrates the effect of multiple,
differently colored, moving lights.

• c4/two-sided-demo.html — from Section 4.2. A little demo that illustrates two-sided
lighting, with different front and back materials.

• c4/texture-transform.html — from Section 4.3. Shows textures on various objects, with
texture transformations that the user can control using sliders.

• c4/texture-from-color-buffer.html — from Section 4.3. A simple demo of the copyTexIm-
age2D() function; draws an animated 2D scene and uses it as a texture on a 3D object.

• c4/walkthrough.html — from Section 4.4. Lets the user move around in a 3D world by
clicking buttons, demonstrating the idea of a moving viewer or camera.

• c5/point-cloud.html — from Section 5.1. A first example of using the three.js JavaScript
3D modeling API. It uses a PointCloud object to show an animated cloud of points.

• c5/mesh-objects.html — from Section 5.1. Lets the user view many of the basic three.js
geometries, with a variety of materials.

• c5/vertex-and-color-animation.html — from Section 5.2. Uses per-face and per-vertex
coloring to create a multicolored sphere. Both the colors and the position of the vertices
can be animated.

430 APPENDIX D. LIST OF SAMPLE PROGRAMS

• c5/textures.html — from Section 5.2. Demonstrates textures on a variety of three.js
objects.

• c5/mesh-animation.html — from Section 5.2. Shows animated models of a horse and a
stork, using models with “morph targets” and the class THREE.MorphAnimation. The
models are from the three.js download.

• c5/raycaster-input.html — from Section 5.3. Lets the user edit a scene using the mouse.
Uses an object of type THREE.Raycaster to get mouse input from the user.

• c5/shadows.html — from Section 5.3. Demonstrates support for shadows in three.js.

• c5/reflection-demo.html — from Section 5.3. Demonstrates environment mapping to
simulate reflection of an environment. The environment in this case is a skybox. (The
demo is very similar to the sample program threejs/reflection.html.)

• c6/shape-stamper-demo.html — from Section 6.2. A demo version of the sample WebGL
program webgl/shape-stamper.html. The user clicks the canvas to stamp shapes onto the
canvas, with properties determined by a set of popup menus. The demo has the same
functionality as the sample program, but the shapes are drawn using a different technique.

• c6/moving-points-demo.html — from Section 6.2. A demo version of the sample WebGL
program webgl/moving-points.html, with identical functionality. Uses a single gl.POINTS
primitive to display a set of moving, colored disks.

• c6/webgl-limits.html — from Section 6.3. Displays a list of values for certain resource
limits in WebGL, such as the number of attributes in a shader program or the size of the
viewport. These values can be different on different devices and in different web browsers.

• c6/textured-points.html — from Section 6.4. shows texture images used on a primitive
of type gl.POINTS. It is similar to moving-points-demo.html, except that the points are
textured instead of colored.

• c6/multi-texture.html — from Section 6.4. Uses two textures on the same object, with
two sampler variables in the shader program to represent the texture units that are used
to apply the textures.

• c7/rotators.html — from Section 7.1. Demonstrates the difference between a SimpleRota-
tor (webgl/simple-rotator.js) and a TrackballRotator (webgl/trackball-rotator.js) by letting
the user rotate cubes using the two rotators.

• c7/per-pixel-vs-per-vertex.html — from Section 7.2. Lets the user compare per-pixel
lighting to per-vertex lighting, by applying the two techniques to identical objects with
identical lighting settings.

• c7/spotlight-demo.html — from Section 7.2. Three colored spotlights shine on a square,
and the user controls the cutoff angle and spot exponent. A demo version of the sample
program webgl/spotlights.html, with some added animation for fun.

• c7/generated-texcoords.html — from Section 7.3. Uses texture coordinates generated from
object or eye coordinates, instead of providing the texture coordinates to the shader
program as an attribute.

• c7/procedural-textures.html — from Section 7.3. Demonstrates several 2D and 3D
procedural textures.

• c7/cube-camera-demo.html — from Section 7.4. Essentially a copy of the sample WebGL
program webgl/cube-camera.html. Shows a skybox and moving cubes reflected on the
surface of a teapot or other object. Uses a dynamic cubemap texture that is redrawn for
every frame.

Appendix E

Glossary

abstract class. In object-oriented programming, a class that is meant to be used only as
a basis for subclasses. Objects can be created from the subclasses, but not from the
abstract class itself. The purpose of an abstract class is to define the properties and
behaviors that all of its subclasses have in common.

affine transform. A transform that preserves parallel lines. That is, when the transform
is applied to a pair of lines that are parallel, then the resulting transformed lines are
also parallel. An affine transform, T, has the property that the transform of the line
segment between a point (x1,y1) and a point (x2,y2) is the line between the points
T(x1,y1) and T(x2,y2). Effectively, the transform of a line segment can be computed
just by transforming its two endpoints. This makes affine transforms very efficient for
computer graphics. Any affine transform can be represented as a composition of rotations,
translations, and scalings.

alpha blending. Using the alpha component of a color to blend the color with a background
color, when the color is drawn over the background color. That is, the new color of a
pixel is obtained by blending the drawing color with the current color, with the degree
of blending depending on the alpha component of the drawing color. Alpha blending is
most commonly used to simulate transparency.

alpha color component. An extra component (that is, one of the numbers that are used to
specify a color) in a color model that is not part of the actual color specification. The
alpha component is extra information. It is most often used to specify the degree of
transparency of a color.

ambient color. A material property that represents the proportion of ambient light in the
environment that is reflected by a surface.

ambient light. Directionless light that exists in an environment but does not seem to come
from a particular source in the environment. An approximation for light that has
been reflected so many times that its original source can’t be identified. Ambient light
illuminates all objects in a scene equally.

ambient occlusion. A rendering technique that takes into account the fact that ambient light
will illuminate different surfaces to varying extents, depending on the degree to which
ambient light is blocked, or “occluded,” from reaching each surface by other geometry
in the scene. Ambient occlusion is an improvement on basic ambient lighting, but, like
ambient light itself, it is not an actual physical phenomenon.

anaglyph stereo. A technique for combining stereographic images of a scene, one for the left
eye and one for the right eye, into a single image. Typically, the image for the left eye

431

432 APPENDIX E. GLOSSARY

is drawn using only shades of red, and the image for the right eye contains only blue
and green color components. The 3D effect can be seen by viewing the combined image
through red/cyan glasses, which allow each eye to see only the image that is intended for
that eye.

animation. A sequence of images that, when displayed quickly one after the other, will produce
the impression of continuous motion or change. The term animation also refers to the
process of creating such image sequences.

anisotropic filtering. A technique for more accurate sampling of texture images, in the case
where a pixel on the surface that is being textured corresponds to a non-rectangular region
in the texture. Anisotropic filtering is available as an optional extension in WebGL.

antialiasing. A technique used to reduce the jagged or “staircase” appearance of diagonal
lines, text, and other shapes that are drawn using pixels. When a pixel is only partly
covered by a geometric shape, then the color of the pixel is a blend of the color of the
shape and the color of the background, with the degree of blending depending on the
fraction of the pixel that is covered by the geometric shape.

API. Application Programming Interface. A collection of related classes, functions, constants,
etc., for performing some task. An API is an “interface” in the sense that it can be used
without understanding how its functionality is actually implemented.

aspect ratio. The ratio of the width, w, of a rectangle to the height, h, of the rectangle,
expressed either as a ratio w:h or as a fraction w/h.

attenuation. Refers to the way that illumination from a point light or spot light decreases
with distance from the light. Physically, illumination should decrease with the square of
the distance, but computer graphics often uses a linear attenuation with distance, or no
attenuation at at all.

attribute. A property, such as color, of a graphical object. An image can be specified by the
geometric shapes that it contains, together with their attributes.

attribute variable. Variables that represent input to the vertex shader in a programmable
graphics pipeline. An attribute variable can take on a different value for each vertex in
a primitive.

axis of rotation. Rotation in 3D space is rotation about a line, which is called the axis of
rotation. The axis of rotation remains fixed, while everything else moves in circles around
the axis.

back face. One of the two sides of a polygon in 3D. A polygon has two sides. One is taken to
be the front face, and the other is the back face. In OpenGL, the difference is determined
by the order in which the vertices of the polygon are enumerated. The default is that,
seen from the back, the vertices are enumerated in clockwise order around the polygon.

barycentric coordinates. A coordinate system on a triangle in which a point is written as
a linear combination of the vertices of the triangle, that is, a*A+b*B+c*C, where A, B,
and C are the vertices and a, b, and c are numbers. Any point in the triangle can be
written in this form where the coefficients a, b, and c have values in the range 0 to 1 and
a+b+c is equal to 1.

Bezier curve. A smooth curve between two points defined by parametric polynomial
equations. A cubic Bezier curve segment is defined by its two endpoints P1 and P2
and by two control points C1 and C2. The tangent to the curve (its direction and speed)
at P1 is given by the line from P1 to C1. The tangent vector to the curve at P2 is given

433

by the line from C2 to P2. A quadratic Bezier curve is defined by its two endpoints and
a single control point C. The tangent at each endpoint is the line between that endpoint
and C.

Blender. A free and open source 3D modeling and animation program.

Bresenham’s line algorithm. A specific algorithm for deciding which pixels to color to
represent a geometric line segment, using only integer arithmetic. The algorithm can be
implemented very efficiently in computer hardware

BSDF. Bidirectional Scattering Distribution Function. A generalization of the idea of
“material” in 3D graphics. A BSDF gives the probability that a light ray that arrives
at point of space from one direction will leave that point heading in a another direction.
The probability is a function of the two directions, the point, and the wavelength of the
light. One kind of scattering is reflection of light from a surface. For that case, the term
BRDF (Bidirectional Reflectance Distribution Function) is used.

bumpmapping. Using a texture to modify the normal vectors on a surface, to give the
appearance of variations in height without actually modifying the geometry of the surface.

camera. In 3D computer graphics, an object that combines the projection and viewing
transforms into an abstraction that imitates a physical camera or eye.

clip coordinates. The default coordinate system in OpenGL. The projection transform maps
the 3D scene to clip coordinates. The rendered image will show the contents of the cube
in the clip coordinate system that contains x, y, and z values in the range from -1 to 1;
anything outside that range is “clipped” away.

color buffer. In OpenGL, the region of memory that holds the color data for the image. It
acts as the drawing surface where images are rendered.

color component. One of the numbers used in a color model to specify a color. For example,
in the RGB color model, a color is specified by three color components representing the
amounts of red, green, and blue in the color.

color gamut. The color gamut of a display device, such as a printer or computer screen, is
the set of colors can be displayed by the device.

color mask. In WebGL, a setting that determines which “channels” in the color buffer are
written during rendering. The channels are the RGBA color components red, green, blue,
and alpha. A color mask consists of four boolean values, one for each channel. A false
value prevents any change from being made to the corresponding color component in the
color buffer.

color model. A way of specifying colors numerically. Each color that can represented in a
color model is assigned one or more numerical component values. An example is the
RGB color model, where a color is specified by three numbers giving the red, green, and
blue components of the color.

column-major order. Column-by-column ordering of the elements of a two-dimensional
matrix; that is, an ordering that starts with the elements in the first column, followed by
the elements in the second column, and so on. Column-major order is used for matrices
in OpenGL and GLSL.

constructor. In object-oriented programming, a subroutine that is used to create objects. A
constructor for a class creates and initializes objects belonging to that class.

434 APPENDIX E. GLOSSARY

control point. A point that does not lie on the curve but that is used to help control the
shape of the curve. For example, a control point for a Bezier curve segment is used to
specify the tangent vector (direction and speed) of the curve at an endpoint.

convex. A convex geometric shape has the property that whenever two points are contained
in the shape, then the line segment between those two points is entirely contained in the
shape.

coordinate system. A way of assigning numerical coordinates to geometric points. In two
dimensions, each point corresponds to a pair of numbers. In three dimensions, each point
corresponds to a triple of numbers.

CPU. The Central Processing Unit in a computer, the component that actually executes
programs. The CPU reads machine language instructions from the computer’s memory
and carries them out.

cross product. A vector product of two 3D vectors. The cross product of v and w is a vector
that is perpendicular to both v and w and whose length is equal to the absolute value
of the sine of the angle between v and w. If v=(x,y,z) and w=(a,b,c), then their cross
product is the vector (yc-zb,za-xc,xb-ya).

CSS. Cascading Style Sheets. A language that is used for specifying the style, or presentation,
of the content of web pages. CSS can control things like colors, backgrounds, fonts,
shadows, borders, and the size and position of elements of the page.

cubemap texture. A texture made up of six images, one for each of the directions positive
x, negative x, positive y, negative y, positive z, and negative z. The images are intended
to include everything that can be seen from a given point. Cubemap textures are used
for environment mapping and skyboxes.

deferred shading. A multi-pass rendering technique where a first pass processes the geometry
and saves relevant information such as transformed coordinates, normal vectors, and
material properties. The data can be stored in textures, which are called “geometry
buffers” or “G-buffers” in this context. Lighting and other effects can then be computed in
additional passes, using the pre-computed information from the geometry buffers instead
of re-computing it for each pass.

depth buffer. A region of memory that stores the information needed for the depth test in 3D
graphics, that is, a depth value for each pixel in the image. Also called the “z-buffer.”

depth mask. In WebGL, a setting that controls whether depth values are written to the depth
buffer during rendering. When the depth mask is set to false, the depth value is discarded
and the depth buffer is unchanged.

depth test. A solution to the hidden surface problem that involves keeping track of the depth,
or distance from the viewer, of the object currently visible at each pixel in the image.
When a new object is drawn at a pixel, the depth of the new object is compared to the
depth of the current object to decide which one is closer to the viewer. The advantage of
the depth test is that objects can be rendered in any order. A disadvantage is that only
a limited range of depths can be represented in the image.

device coordinates. The coordinate system used on a display device or rendered image, often
using pixels as the unit of measure.

diffuse color. A material property that represents the proportion of incident light that is
reflected diffusely from a surface.

435

diffuse reflection. Reflection of incident light in all directions from a surface, so that diffuse
illumination of a surface is visible to all viewers, independent of the viewer’s position.

Direct3D. Microsoft’s proprietary API for 3D graphics on the Windows operating system.

directed acyclic graph. Also called a “dag.” A linked data structure in which there are no
cycles. That is, it is not possible to find a sequence of nodes where each node links to
the next and the last node links back to the first.

directional light. A light source whose light rays are parallel, all arriving from the same
direction. Can be considered to be a light source at an effectively infinite distance. Also
called a “sun,” since the Sun is an example of a directional light source.

displacement mapping. A technique used to modify a polygonal mesh by moving, or
displacing, the vertices of the mesh.

display list. A list of graphics primitives and attributes which can be traversed to create all or
part of an image. Display lists were used in some early vector-graphics hardware. They
were also available in traditional OpenGL.

DOM. Document Object Model. A specification for representing a web page (and other kinds
of structured document) as a tree-like data structure. Can also refer to the data structure
itself, as in “the DOM for this web page.” A web page can be modified dynamically by
manipulating its DOM, using the JavaScript programming language.

dot product. The dot product of two vectors is the sum of the products of corresponding
coordinates. For 3D vectors v=(x,y,z) and w=(a,b,c), the dot product of v and w is
x*a+y*b+z*c. The dot product is equal to the cosine of the angle between the vectors,
divided by the product of their lengths.

double buffering. A graphics technique in which an image is drawn off-screen, in a region of
memory called an off-screen buffer or “back buffer.” When the image is drawn, it can be
copied to the buffer that represents the contents of the screen, which is also known as
the “front buffer.” In true double buffering, the image doesn’t have to be copied; instead,
the buffers can be “swapped” so that the back buffer becomes the front buffer, and the
front buffer becomes the back buffer.

drawing program. A computer program for creating images using vector-style graphics,
where the user creates the image by specifying shapes that make up the image and their
attributes.

Eclipse. An integrated development environment for writing programs in Java (and other
programming languages). Eclipse is a free program that can be downloaded from
http://eclipse.org.

emission color. A material property that represents color that is intrinsic to a surface, rather
than coming from light from other sources that is reflected by the surface. Emission
color can make the object look like it is glowing, but it does not illuminate other objects.
Emission color is often called “emissive color.”

environment mapping. A way of simulating mirror-like reflection from the surface of an
object. The environment that is to be reflected from the surface is represented as a
cubemap texture. To determine what point in the texture is visible at a given point on
the object, a ray from the viewpoint is reflected from the surface point, and the reflected
ray is intersected with the texture cube. Environment mapping is also called reflection
mapping.

436 APPENDIX E. GLOSSARY

ES6. A version of JavaScript implemented by almost all modern web browsers. More formally
known as ECMAScript 6 or ECMAScript 2015. ES6 introduced a large number of new
features.

Euclidean transform. A transform that preserves distances and angles. A Euclidean
transform represents a “rigid motion.” That is, the transform of an object is an exact copy
of the object, with the same size and shape. Any Euclidean transform can be represented
as a composition of rotations and translations.

Euler angles. Express the rotation of an object in its own coordinate system, given as
individual rotations about the x, y, and z axes in that coordinate system. The cumulative
effect of rotations about the three coordinate axes depends on the order in which the
rotations are applied.

extrusion. A technique for producing a solid from a 2D shape by moving the shape along a
curve in 3D. The solid is the set of points through which the shape passes as it moves
along the curve. The most common case is moving the shape along a line segment that
is perpendicular to the plane that contains the shape. In practice, in computer graphics,
the object that is produced by extrusion is just the surface of the extruded solid.

eye coordinates. The coordinate system on 3D space defined by the viewer. In eye coordinates
in OpenGL 1.1, the viewer is located at the origin, looking in the direction of the negative
z-axis, with the positive y-axis pointing upwards, and the positive x-axis pointing to the
right. The modelview transformation maps objects into the eye coordinate system, and
the projection transform maps eye coordinates to clip coordinates.

filling a shape. Drawing the interior of a shape, by coloring the pixels that lie inside the
shape. Filling does not apply to shapes, such as lines, that have no interior.

fixed-function pipeline. A graphics processing pipeline with a fixed set of processing stages
that cannot be modified by a programmer. Data for an image passes through a sequence of
processing stages, with the image as the end product. The sequence is called a “pipeline.”
With a fixed-function pipeline, the programmer can enable and disable stages and set
options that control the processing but cannot add to the functionality.

flat shading. A lighting computation for the faces of a polygon or polygonal mesh that uses
the same normal vector at each point in the polygon, giving the polygon a flat or faceted
appearance.

fragment shader. A shader program that will be executed once for each pixel in a primitive.
A fragment shader must compute a color for the pixel, or discard it. Fragment shaders
are also called pixel shaders.

framebuffer. In WebGL, a data structure that organizes the buffers for rendering an image,
possibly including a color buffer, a depth buffer, and a stencil buffer. A WebGL graphics
context has a default framebuffer for on-screen rendering, and additional framebuffers
can be created for off-screen rendering.

frame buffer. A region of memory that contains color data for a digital image. Most often
refers to the memory containing the image that appears on the computer’s screen.

front face. One of the two sides of a polygon in 3D. A polygon has two sides. One is taken to
be the front face, and the other is the back face. In OpenGL, the difference is determined
by the order in which the vertices of the polygon are enumerated. The default is that,
seen from the front, the vertices are enumerated in counterclockwise order around the
polygon.

437

frustum. A truncated pyramid; that is, a pyramid from which the top has been cut off. In
OpenGL 1.1, the view volume for a perspective projection is a frustum.

geometric modeling. Creating a scene by specifying the geometric objects contained in the
scene, together with geometric transforms to be applied to them and attributes that
determine their appearance.

geometric primitive. Geometric objects in a graphics system, such as OpenGL, that are not
made up of simpler objects. Examples in OpenGL include points, lines, and triangles,
but the set of available primitives depends on the graphics system. (Note that as the
term is used in OpenGL, a single primitive can be made up of many points, line segments,
or triangles.)

geometric transform. A coordinate transformation; that is, a function that can be applied
to each of the points in a geometric object to produce a new object. Common transforms
include scaling, rotation, and translation.

glMatrix. An open-source JavaScript library for vector and matrix math in two and three
dimensions.

global ambient intensity. In OpenGL, ambient light that is present in the environment
independent of any light source. Total ambient light is the sum of the global ambient
light plus the ambient light intensity of each enabled light source.

global illumination. The goal of 3D rendering algorithms that take into account all the
interactions of light in a scene, including indirect illumination by light that bounces off
other objects.

GLSL. OpenGL Shader Language, the programming language that is used to write shader
programs for use with OpenGL.

GLTF. GL Transfer Format. A file format for 3D models. A GLTF file can contain complete 3D
scenes, including objects, materials, lights, and even animations. The GLTF specification
comes from the Khronos Group, which is also responsible for OpenGL, WebGL, and
Vulkan.

GLU. The OpenGL Utility library. Defines several functions for use with older versions of
OpenGL, including gluPerspective and gluLookAt. Not to be confused with GLUT.
GLU is a standard part of OpenGL.

GLUT. The OpenGL Utility Toolkit. A platform-independent library for writing OpenGL
applications. OpenGL does not include support for windows or events. GLUT adds such
support. It also has functions for drawing 3D shapes such as spheres and polyhedra (not
to mention a teapot). GLUT is written in the C programming language and is used with
the C API for OpenGL. However, many GLUT functions are also available in JOGL, the
Java API for OpenGL. A newer, and somewhat improved, version of the toolkit named
“FreeGLUT” is commonly used in place of the original version.

GPU. Graphics Processing Unit, a computer hardware component that performs graphical
computations that create and manipulate images. Operations such as drawing a line on
the screen or rendering a 3D image are done in the GPU, which is optimized to perform
such operations very quickly.

gradient. A pattern of color produced by assigning colors to certain reference points and
computing color for other points by interpolating or extrapolating colors from the
reference points. The effect is a color progression along line segments between reference

438 APPENDIX E. GLOSSARY

points. Different rules for extending the colors beyond those lines produce different types
of gradient, such as linear gradients and radial gradients.

grayscale. Refers to a color scheme or image in which each color is a shade of gray (where the
term “shade of gray” here includes black and white). Typically, 256 shades of gray are
used. Grayscale is also called “monochrome.”

GUI. (Graphical User Interface.) A user interface for a program where the user interacts with
the program using components such as windows, menus, buttons, and text-input boxes.

HDR image. A high dynamic range image. An HDR image has more color information than
the usual eight bits per color channel per pixel. This makes it more suitable to uses that
require calculation with the color values.

height map. An image in which the grayscale value represents a height, or elevation. Height
maps can be used in displacement mapping to specify the amount of displacement.

hidden surface problem. The problem in 3D graphics of deciding which object is visible at
each pixel in an image. When one object is behind another object from the point of view
of the viewer, only the front object should appear in the image. A rendering algorithm
for 3D graphics must satisfy this constraint. Algorithms that solve the hidden surface
problem include the painter’s algorithm and the depth test algorithm.

hierarchical modeling. Creating complex geometric models in a hierarchical fashion, starting
with geometric primitives, combining them into components that can then be further
combined into more complex components, and so on.

homogeneous coordinates. A way of representing n-dimensional vectors as (n+1)-
dimensional vectors where two (n+1) vectors represent the same n-dimensional vector if
they differ by a scalar multiple. In 3D, for example, if w is not zero, then the homogeneous
coordinates (x,y,z,w) are equivalent to homogeneous coordinates (x/w,y/w,z/w,1), since
they differ by multiplication by the scalar w. Both sets of coordinates represent the 3D
vector (x/w,y/w,z/w)

HSL color. A color specified by three numbers giving the hue, saturation, and lightness of the
component. The HSL color model is similar to the HSV color model. The main difference
is that in HSL, pure spectral colors occur when L=0.5, while in HSV, they occur when
V=1.

HSV color. A color specified by three numbers giving the hue, saturation, and value of the
component. The hue represents the basic color. The saturation is the purity of the color,
with a saturation value of zero producing a shade of gray, that is a color with no actual
hue at all. The value represents the brightness of the color, with a value of zero giving
black. (Value is also called brightness, and the name HSB is sometimes used instead of
HSV.)

HTML. HyperText Markup Language. A language that is used for specifying the content of
web pages. An HTML document is made up of text, along with “elements” for adding
other content, such as images, and for defining the structure of the document. Because
of nesting of elements, the document can be represented by a tree-like data structure.

HTML canvas. A canvas element on a web page. The canvas appears as a rectangular area on
the page. The JavaScript programming language can use a canvas element as a drawing
surface. HTML is a language for specifying the content of a web page. JavaScript is the
programming language for web pages. The canvas element supports a 2D graphics API.
In many browsers, it also supports the 3D graphics API, WebGL.

439

identity matrix. The n-by-n identity matrix is an n-by-n matrix which has ones on the
diagonal and zeros elsewhere. Multiplication of any matrix B by the identity matrix,
in either order, leaves B unchanged. Multiplication of an n-dimensional vector by the
n-by-n identity matrix leaves the vector unchanged; that is, the identity matrix is the
matrix for the identity transformation.

identity transform. A transform that has no effect on its argument. For example, the identity
transform in 2D is given by the formula I(x,y) = (x,y). The identity transform I has the
property that if T is any transform, then I followed by T is the same as T, and T followed
by I is the same as T.

image texture. An image that is applied to a surface as a texture, so that it looks at if the
image is “painted” onto the surface.

indexed color. A color scheme in which colors are selected from a limited palette of colors. For
example, if the palette contains 256 colors, then a color can be specified by an eight-bit
integer, giving its position, or index, in the list of colors.

indexed face set. (IFS). A data structure that represents a polyhedron or polygonal mesh.
The data structure includes a numbered list of vertices and a list of faces. A face is
specified by listing the indices of the vertices of the face; that is, a face is given as a list
of numbers where each number is an index into the list of vertices.

instanced drawing. In WebGL 2.0, the ability to draw multiple versions of a primitive with
a single function call. Each copy can have its own values for certain attributes, such as
color or transformation.

intensity of a light source. A light source emits light at various wavelengths. The intensity
of a light at a given wavelength is the amount of energy in the light at that wavelength.
The total intensity of the light is its total energy at all wavelengths. The color of a light
is determined by its intensities at all wavelengths.

interpolation. Given values for some quantity at certain reference points, computing a value
for that quantity at other points by some kind of averaging applied to the values at the
reference points.

invariant qualifier. In GLSL, a modifier that ensures that when the same expression is used
to compute the value of a variable in two different shaders, the value will be the same
in both shaders. This can be important for multi-pass algorithms, where several shader
programs are applied in succession to render one image.

inverse transform. Given a transform T, the inverse transform of T is a transform that
reverses the operation of T. For example, for a 2D transform, for R to be the inverse of T
means that R(T(x,y)) = (x,y). Scaling by 0.5 is the inverse of scaling by 2. Translation
by (-3,5) is the inverse of translation by (3,-5). Not every transform has an inverse. For
example, scaling by a factor of zero has no inverse.

IOR. Index of Refraction. A property of a medium, such as air or glass, that transmits light.
The refraction, or bending, of light rays that pass from one medium to another depends
on the ratio of the IORs of the two media. The index of refraction of a medium depends
on the speed of light in that medium.

JavaScript. A programming language for web pages. JavaScript code on a web page is
executed by a web browser that displays the page, and it can interact with the contents
of the web page and with the user. There are JavaScript APIs for 2D and for 3D graphics

440 APPENDIX E. GLOSSARY

JOGL. A Java implementation of OpenGL. JOGL is very complicated, since it attempts to
support all versions of OpenGL in one programming system. JOGL integrates seamlessly
with Java’s Swing and AWT graphics.

JSON. (JavaScript Object Notation.) A syntax for representing JavaScript objects as strings,
similar to the object literal syntax that is used in JavaScript. JSON objects cannot
contain functions, but they can contain strings, numbers, and booleans. JSON has
become a popular standard for storage and transmission of structured data.

keyframe animation. An animation technique in which the value of some quantity is given
explicitly only at certain times during the animation. The times when the quantity is
specified are called keyframes. Between keyframes, the value of the quantity is obtained
by interpolating between the values specified for the keyframes.

Lambert shading. A technique for computing pixel colors on a primitive using a lighting
equation that takes into account ambient and diffuse reflection. In Lambert shading, the
lighting equation is applied only at the vertices of the primitive. Color values for pixels
in the primitive are calculated by interpolating the values that were computed for the
vertices. Lambert shading is named after Johann Lambert, who developed the theory on
which it is based in the eighteenth century.

lathing. A technique for producing a surface by rotating a planar curve about a line that lies
in the same plane as the curve. As each point rotates about the line, it generates a circle.
The surface is the union of the circles generated by all the points on the curve. Lathing
imitates shapes that can be produced by a mechanical lathe.

length of a vector. A vector is defined by its length and its direction, so length is a
fundamental property. When a vector is represented as an arrow, its length is just
the length of that arrow. For a 2D vector given by coordinates (x,y), the length is the
square root of x*x+y*y. For a 3D vector given as (x,y,z), the length is the square root
of x*x+y*y+z*z.

lighting. Using light sources in a 3D scene, so that the appearance of objects in the scene can
be computed based on the interaction of light with the objects’ material properties.

lighting equation. The equation that is used in OpenGL to compute the visible color of a
point on a surface from the material properties of the surface, the normal vector for that
point, the direction to the viewer, the ambient light level, and the direction and intensity
of light sources.

linear algebra. The field of mathematics that studies vector spaces and linear transformations
between them. Linear algebra is part of the essential mathematical foundation of
computer graphics.

linear gradient. A color gradient pattern in which there is a color variation along a certain
line, with constant color along lines perpendicular to that line.

linear transformation. A function from one vector space to another that preserves vector
addition and multiplication by constants. Linear transformations can be represented by
matrices. In computer graphics, they are used to implement geometric operations such
as rotation and translation.

lossless data compression. A scheme for reducing the size of a dataset without losing any
of the information in that dataset. The original data can be recovered exactly from the
compressed data. The image formats GIF and PNG use lossless data compression to
reduce the size of the image file.

441

lossy data compression. A scheme for reducing the size of a dataset in which some of the
information in the dataset can be lost. The data that is recovered from the compressed
data can differ from the original data. The image format JPEG use lossy data compression
to reduce the size of the image file.

luminance. A quantity representing the perceived brightness of a color. For an RGB color,
it is a weighted average of the red, green, and blue components of the color. The usual
formula is 0.3*red + 0.59*green + 0.11*blue.

magnification filter. An operation that is used when applying a texture to an object, when
the texture has to be stretched to fit the object. For an image texture, a magnification
filter is applied to compute the color of a pixel when that pixel covers just a fraction of
a pixel in the image.

material. The properties of an object that determine how that object interacts with light
in the environment. Material properties in OpenGL include, for example, diffuse color,
specular color, and shininess.

matrix. A rectangular array of numbers. A matrix can be represented as a two-dimensional
array, with numbers arranged in rows and columns. An N-by-N matrix represents a linear
transformation from N-dimensional space to itself.

matrix mode. In OpenGL 1.1, a state variable that determines which one of several
transformation matrices will be affected by functions such as glRotatef and glFrustum.
The matrix mode is set with the function glMatrixMode. Possible values include
GL MODELVIEW, GL PROJECTION, and GL TEXTURE.

Metal. Apple’s proprietary API for 3D graphics and computation on MacOS computers and
iOS devices.

minification filter. An operation that is used when applying a texture to an object, when the
texture has to be shrunk to fit the object. For an image texture, a minification filter is
applied to compute the color of a pixel when that pixel covers several pixels in the image.

mipmap. One of a series of reduced-size copies of a texture image, of decreasing width and
height. Starting from the original image, each mipmap is obtained by dividing the width
and height of the previous image by two (unless it is already 1). The final mimpap is
a single pixel. Mipmaps are used for more efficient mapping of the texture image to a
surface, when the image has to be shrunk to fit the surface.

modeling transformation. A transformation that is applied to an object to map that object
into the world coordinate system or into the object coordinate system for a more complex,
hierarchical object.

modelview transformation. In OpenGL 1.1, a transform that combines the modeling
transform with the viewing transform. That is, it is the composition of the transformation
from object coordinates to world coordinates and the transformation from world
coordinates to eye coordinates. Because of the equivalence between modeling and viewing
transformations, world coordinates are not really meaningful for OpenGL, and only the
combined transformation is tracked.

multi-pass algorithm. A rendering algorithm that draws a scene several times and combines
the results somehow to compute the final image. A simple example is anaglyph stereo, in
which a left-eye and right-eye image of the scene are rendered separately and combined.

nio buffer. A Java object belonging to the class java.nio.Buffer or one of its subclasses. Nio
buffers are similar to arrays, but they are optimized for input/output operations. Nio

442 APPENDIX E. GLOSSARY

buffers are used instead of arrays for certain purposes in Java’s JOGL API for OpenGL.

normalized vector. The result of dividing a non-zero vector by its length, giving a unit vector,
that is, a vector of length one. (Note that “normalized vector” and “normal vector” are,
confusingly, unrelated terms!)

normal vector. A normal vector to a surface at a point on that surface is a vector that is
perpendicular to the surface at that point. Normal vectors to curves are defined similarly.
Normal vectors are important for lighting calculations.

norm of a vector. Another term for the length of the vector. For a 3D vector given as (x,y,z),
the norm is the square root of x*x+y*y+z*z.

object coordinates. The coordinate system in which the coordinates for points in an object
are originally specified, before they are transformed by any modeling or other transform
that will be applied to the object.

off-screen canvas. My term for a segment of the computer’s memory that can be used as
a drawing surface, for drawing images that are not visible on the screen. Some method
should exist for copying the image from an off-screen canvas onto the screen. In Java, for
example, an off-screen canvas can be implemented as an object of type BufferedImage.

OpenGL. A family of computer graphics APIs that is implemented in many graphics
hardware devices. There are several versions of the API, and there are implementations,
or “bindings” for several different programming languages. Versions of OpenGL for
embedded systems such as mobile phones are known as OpenGL ES. WebGL is a version
for use on Web pages. OpenGL can be used for 2D as well as for 3D graphics, but it is
most commonly associated with 3D.

orthographic projection. A projection from 3D to 2D that simply discards the z-coordinate.
It projects objects along lines that are orthogonal (perpendicular) to the xy-plane. In
OpenGL 1.1, the view volume for an orthographic projection is a rectangular solid.

painter’s algorithm. A solution to the hidden surface algorithm that involves drawing the
objects in a scene in order from back to front, that is, in decreasing order of distance
from the viewer. A disadvantage is that the order is usually not well-defined unless
some objects are decomposed into smaller sub-objects. Another issue is that the order of
drawing has to change when objects move or when the point of view changes.

painting program. A computer program for creating images using raster-style graphics, where
the user creates the image by controlling the colors of each pixel.

path tracing. A rendering algorithm based on the idea of computing all the paths that light
could have followed to arrive at the position of a viewer from each direction. Since that
is literally impossible, the algorithm traces a random sample of paths and averages the
results. As the number of samples increases, the average converges to a very high-quality
image.

pattern fill. Using copies of an image to fill the interior of a two-dimensional shape. The
image can be repeated horizontally and vertically as necessary to cover the shape.

PBR. Physically Based Rendering. A general term encompassing a variety of techniques for
rendering materials that look more physically realistic than the materials traditionally
used in OpenGL and similar graphics APIs. The idea is to implement the actual physics
of light and material more directly. PBR has become common in real-time graphics such
as video games.

443

Perlin noise. A technique invented by Ken Perlin in 1983 that is used in the computation
of natural-looking procedural textures. A Perlin noise function has numerical inputs
(usually 2 or 3) and produces an output number in the range -1.0 to 1.0. The output
is pseudo-random, but has some regularity, with features that are similarly sized and
regularly distributed, and with variation on several scales.

per-pixel lighting. Doing lighting calculations at each pixel of a primitive, which gives better
results in most cases than per-vertex lighting. Phong shading uses per-pixel lighting,
with normal vectors interpolated from the vertices.

perspective projection. A projection from 3D to 2D that projects objects along lines
radiating out from a viewpoint. A perspective projection attempts to simulate realistic
viewing. A perspective projection preserves perspective; that is, objects that are farther
from the viewpoint are smaller in the projection. In OpenGL 1.1, the view volume for a
perspective projection is a frustum, or truncated pyramid.

per-vertex lighting. Doing lighting calculations only at the vertices of a primitive, and
interpolating the results to get the colors of interior pixels. Per-vertex lighting is
the standard in traditional OpenGL. Per-vertex lighting without specular reflection is
Lambert shading.

Phong shading. A technique for computing pixel colors on a primitive using a lighting
equation that takes into account ambient, diffuse, and specular reflection. In Phong
shading, the lighting equation is applied at each pixel. Normal vectors are specified only
at the vertices of the primitive. The normal vector that is used in the lighting equation
at a pixel is obtained by interpolating the normal vectors for the vertices. Phong shading
is named after Bui Tuong Phong, who developed the theory in the 1970s.

pixel. A digital image is made up of rows and columns of small rectangles called pixels. To
specify a digital image, a color is assigned to each pixel in the image.

point light. A light source whose light rays eminate from a single point. Also called a “lamp,”
since a lamp approximates a point source of light. Also called a positional light.

polygon. A multi-sided shape lying in a plane and specified by a list of points, called its
vertices, and made up of the line segments from each point in the list to the next point
in the list, plus a line segment from the last point in the list to the first point. All the
points are required to lie in the same plane. Sometimes the term “polygon” includes the
interior of the shape as well as its boundary.

polygonal mesh. A collection of polygons, where the polygons can be joined together
along their edges. A polygonal mesh can represent a polyhedron, or can be used as an
approximation for a curved surface. A polygonal mesh can be represented as an indexed
face set.

polygon offset. A 3D graphics technique that slightly increases or decreases the depth of
the pixels in a primitive as it is rendered. Polygon offset is used to avoid having several
objects at exactly the same depth, a situation that is not handled well by the depth test.

polyhedron. A closed 3D figure whose faces, or sides, are polygons. Usually, it is assumed
that the faces of a polyhedron do not intersect, except along their edges.

power-of-two texture. A texture image whose width and height are powers of two. In some
graphics systems, this is a requirement of any image that is to be used as a texture.

precision qualifier. In GLSL, one of the following modifiers on a numeric variable declaration:
lowp, mediump, or highp. A precision modifier specifies the minimum number of bits or

444 APPENDIX E. GLOSSARY

range of values for the variable.

procedural texture. A texture for which the value at a given set of texture coordinates is
computed as a mathematical function of the coordinates, as opposed to an image texture
where the value is obtained by sampling an image.

programmable pipeline. A graphics processing pipeline in which some of the processing
stages can or must be implemented by programs. Data for an image passes through
a sequence of processing stages, with the image as the end product. The sequence is
called a “pipeline.” Programmable pipelines are used in modern GPUs to provide more
flexibility and control to the programmer. The programs for a programmable pipeline
are known as shaders and are written in a shader programming language such as GLSL.

projection. A transformation that maps coordinates in 3D to coordinates in 2D. Projection
is used to convert a three-dimensional scene into a two-dimensional image.

projection transformation. In 3D graphics, a transformation that maps a scene in 3D space
onto a 2D image. In OpenGL 1.1, the projection maps the view volume (that is, the
region in 3D space that is visible in the image) to clip coordinates, in which the values of
x, y, and z range from -1 to 1. The x- and y-coordinates are then mapped to the image,
while the z coordinate provides depth information.

quad. A quadrilateral, that is a four-sided figure in the plane. OpenGL 1.1 has the primitives
GL QUADS and GL QUAD STRIP for drawing quads, but it assumes without checking
that the vertices that are provided are in fact planar and define quadrilaterals that are
convex.

quaternion. A vector in the quaternion algebra, which is a four dimensional vector space in
which two vectors, in addition to being added, can be multiplied. In computer graphics,
quaternions of length one are often used to represent rotations. An advantage is that
in the quaternion representation, it is possible to smoothly interpolate between two
rotations.

radial gradient. A color gradient pattern in which there are concentric circles, or sometimes
ellipses, of constant color, with a color variation along the radius of the circles.

raster graphics. Pixel-based graphics in which an image is specified by assigning a color to
each pixel in a grid of pixels.

rasterization. The process of creating a raster image, that is one made of pixels, from other
data that specifies the content of the image. For example, a vector graphics image must
be rasterized in order to be displayed on a computer screen.

ray casting. The process of following a ray (that is, half of an infinite line) starting at a given
point and extending in a given direction, in order to find points of intersection of the ray
with objects in a scene. Usually, only the intersection point that is closest to the starting
point of the ray is of interest.

ray tracing. A recursive rendering algorithm that uses ray casting. A ray is cast from the
viewpoint through a point in the image and into the scene, to determine what is seen at
that point. To determine the color that is seen at that point, further rays are cast from
the point, including a reflected ray (if the object has specular reflections), a refracted ray
(if the object is translucent) and shadow rays towards light sources (to determine whether
the object is illuminated by that light). Finding a color for a reflected or refracted ray
can use a recursive application of the ray tracing algorithm.

445

real-time graphics. The type of computer graphics that is needed for computer animation
or other applications where the images must be rendered quickly, at the time when they
are viewed. For computer animation, real-time graphics generally requires the ability to
render the scene sixty times per second.

reflection mapping. Another name for environment mapping.

reflectivity. The proportion or fraction of incident light that is reflected by an object. An
object can have different reflectivities at different wavelengths. The color of an object is
determined by its reflectivities at all wavelengths.

refraction. The bending of light as it passes from one transparent or translucent medium into
another.

regular polygon. A polygon in which all the sides have the same length and all the angles
between consecutive sides are equal. Usually the term is restricted to simple polygons,
which have sides that do not intersect except at their endpoints.

regular polyhedron. A polyhedron in which each face is a regular polygon, and all the faces
and angles are identical. There are only five regular polyhedra: the tetarhedron with 4
triangular faces, the cube with 6 square faces, the octahedron with 8 triangular faces, the
dodecahedron with 12 pentagonal faces, and the icosahedron, with 20 triangular faces.

renderbuffer. In WebGL, a buffer (that is, a region of memory) that can be attached to a
framebuffer for use as a color buffer, depth buffer, or stencil buffer.

rendering. The process of producing a 2D image from a 3D scene description.

render-to-texture. A technique in which the output of a rendering operation is written
directly to a texture. In WebGL, render-to-texture can be implemented by attaching the
texture as one of the buffers in a framebuffer.

RGBA color. An RGB color—specified by red, green, and blue component values—together
with an alpha component. The alpha component is most often take to specify the degree
of transparency of the color, with a maximal alpha value giving a fully opaque color.

RGB color. A color specified by three numbers giving the amount of red, green, and blue in
the color.

right-handed coordinate system. A coordinate system on 3D space in which the x, y, and
z-axes satisfy this property: If you point the thumb of your right hand in the direction
of the positive z-axis, then your fingers will curl from the positive x-axis towards the
positive y-axis.

right-hand rule. A rule that is used to determine the positive direction of rotation about an
axis in 3D space: If you point the thumb of your right hand in the direction of the axis,
then your fingers will curl in the direction of positive angles of rotation. Note that this
assumes that the axis has a direction; in OpenGL, an axis of rotation is determined by
the point (0,0,0) and another point (x,y,z), and the direction of the axis is from (0,0,0)
towards (x,y,z).

rotation. A geometric transform that rotates each point by a specified angle about some point
(in 2D) or axis (in 3D).

sampler variable. In GLSL, a variable in a shader program that can be used to do lookup
in an image texture. The value of a sampler variable specifies the texture unit that will
be used to do the lookup. In WebGL, sampler variables are of type “sampler2D” or
“samplerCube.”

446 APPENDIX E. GLOSSARY

sampling. The operation of mapping texture coordinates to colors from a texture, including
using mipmaps if available and applying a minification or magnification filter if necessary.

scalar product. The product of a number and a vector. The scalar product of a number s
and vector v is the vector obtained by multiplying each coordinate of v by s. In 3D, if s
is a number and v=(x,y,z), then the scalar product of s times v is the vector (sx,sy,sz).

scaling. A geometric transform that multiplies each coordinate of a point by a number called
the scaling factor. Scaling increases or decreases the size of an object, but also moves its
points closer to or farther from the origin. Scaling can be uniform—the same in every
direction—or non-uniform—with a different scaling factor in each coordinate direction.
A negative scaling factor can be used to apply a reflection.

scene description language. A language that can be used to specify graphics images by
stating what’s in the image. That is, the scene is created “declaratively,” by stating
what it contains, as opposed to being created “procedurally,” by a program. A document
written in a scene description language can be used to generate a scene graph for the
scene.

scene graph. A data structure that represents the objects in a scene, together with attributes
of the objects and the modeling transformations that are applied to the objects. An
image of the scene is created by traversing the scene graph data structure. A scene graph
might exist only conceptually, or it might be an actual data structure in a program.

shader. A program to be executed at some stage of the rendering pipeline. OpenGL shaders
are written in the GLSL programming languages. For WebGL, only vertex shaders and
fragment shaders are supported.

shadow mapping. A technique for determining which parts of a scene are illuminated and
which are in shadow from a given light source. The technique involves rendering the
scene from the point of the view of the light source, but uses only the depth buffer from
that rendering. The depth buffer is the “shadow map.” Along a given direction from the
light source, the object that is illuminated by the light is the one that is closest to the
light. The distance to that object is essentially encoded in the depth buffer. Objects at
greater distance are in shadow.

shadow ray. In the ray tracing algorithm, a ray that is cast from a point on object in the
direction of a light source to determine whether that point is illuminated by that light
source or is in shadow.

shear transform. A shear transformation in 2D leaves some line, L, fixed, and lines
perpendicular to L are “tilted” relative to L by the same angle. Another description
is that a line parallel to L is mapped to itself, but is moved by an amount proportional
to its distance from L. In 3D, a shear transformation leaves some plane, P, fixed, and it
maps a plane parallel to P to itself, but moved by an amount proportional to its distance
from P.

shininess. A material property that determines the size and sharpness of specular highlights.
Also called the “specular exponent” because of the way it is used in lighting calculations.
In OpenGL, shininess is a number in the range 0 to 128.

single buffering. As opposed to double buffering, a graphics technique in which the image is
drawn directly to the screen (that is, to the buffer that serves as the source for the screen
image). The disadvantage of single buffering is that, for a complex image, the user can
observe the process of drawing the image.

447

skybox. A large cube that surrounds a scene and is textured with images that form a
background for that scene, in all directions.

smooth shading. A lighting computation for the faces of a polygon or polygonal mesh that
uses a different normal vector at each vertex of the polygon. When two polygons share a
vertex, both polygons use the same normal vector for that vertex, resulting in a smooth
appearance at that vertex. Smooth shading is appropriate when a polygonal mesh is used
as an approximation for a smooth surface.

specular color. A material property that represents the proportion of incident light that is
reflected specularly by a surface.

specular exponent. A material property that determines the size and sharpness of specular
highlights. Called “shininess” in OpenGL.

specular highlight. Illumination of a surface produced by specular reflection. A specular
highlight is seen at points on the surface where the angle from the surface to the viewer
is approximately equal to the angle from the surface to a light source.

specular reflection. Mirror-like reflection of light rays from a surface. A ray of light is
reflected as a ray in the direction that makes the angle of reflection equal to the angle of
incidence. A specular reflection can only be seen by a viewer whose position lies on the
path of the reflected ray.

spotlight. A light that emits a cone of illumination. A spotlight is similar to a point light in
that it has a position in 3D space, and light radiates from that position. However, the
light only affects objects that are in the spotlight’s cone of illumination.

stack. A data structure with the operations push() and pop(). Pushing an item onto a stack
just adds that item to the stack. Popping from the stack will remove and return the item
that was most recently pushed onto the stack.

storage qualifier. In GLSL, one of the following modifiers on a variable declaration: uniform,
attribute, varying, or const.

stroking a shape. Drawing the outline of a shape, as if a pen is dragged along the boundary
of the shape. For a shape with no interior, such as a line segment, stroking the shape
simply means dragging the pen along the shape.

subsurface scattering. A lighting effect in which light enters a slightly translucent object,
is reflected internally one or more times, and then exits the object at a different point.
Subsurface scattering contributes to the appearance of materials such as jade, milk, and
skin.

SVG. Scalable Vector Graphics. An XML language for specifying 2D vector graphics. SVG is
a scene description language. It is designed to integrate into web pages.

swizzler. In GLSL, a notation such as v.yzx, where v is a vector and v.yzx represents the
three-component vector made up of the y, z, and x components of v. Technically, any
use of the dot notation with vectors is considered to be a swizzler.

texel. A pixel in a texture image.

texture. Variation in some property from point-to-point on an object. The most common type
is image texture. When an image texture is applied to a surface, the surface color varies
from point to point.

texture coordinates. Refers to the 2D coordinate system on a texture image, or to similar
coordinate systems for 1D and 3D textures. Texture coordinates typically range from 0

448 APPENDIX E. GLOSSARY

to 1 both vertically and horizontally, with (0,0) at the lower left corner of the image. The
term also refers to coordinates that are given for a surface and that are used to specify
how a texture image should be mapped to the surface.

texture object. A data structure that can potentially be stored on the graphics card, and
which can hold a texture image, a set of mipmaps, and configuration data such as the
current setting for the minification and magnification filters. Using texture objects makes
it possible to switch rapidly between textures without having to reload the data into the
graphics card.

texture repeat mode. Determines how texture coordinates outside the range 0.0 to 1.0
are treated when sampling an image texture. The texture image itself has vertical
and horizontal coordinates in the range 0.0 to 1.0. For coordinates outside that
range, the texture repeat mode CLAMP or CLAMP TO EDGE, for example, clamps
the coordinates to the range 0.0 to 1.0, essentially extending the color at the edge
of the image indefinitely in all directions. Other repeat modes include REPEAT and
MIRRORED REPEAT.

texture target. In OpenGL, one of several kinds of texture, such as 2D image texture, 1D
texture, and cube map texture. A texture target is specified by a constant such as
GL TEXTURE 2D or GL TEXTURE CUBE MAP POSITIVE X. The texture target
is a parameter to many OpenGL functions that work with textures.

texture transformation. A transformation that is applied to texture coordinates before they
are used to sample data from a texture. The effect is to translate, rotate, or scale the
texture on the surface to which it is applied.

texture unit. A hardware component in a GPU that does texture lookup. (Can also refer
to an abstraction for such a component, whether or not it is actually implemented in
hardware.) That is, it maps texture coordinates to colors from an image texture. This is
the operation called “sampling,” and texture units are associated with sampler variables
in GLSL shader programs.

three.js. A JavaScript library for 3D graphics. The library implements an object-oriented
scene graph API. While it is used primarily with WebGL, three.js can also render 3D
scenes using the 2D canvas graphics API.

TMU. Texture Mapping Unit, another name for texture unit (perhaps with a stronger
implication of actual hardware support). Also called a TPU (Texture Processing Unit).

torus. A 3D geometric object having the shape of a doughnut (or bagel).

translation. A geometric transform that adds a given translation amount to each coordinate
of a point. Translation is used to move objects without changing their size or orientation.

two-sided lighting. An option in OpenGL that allows the back face of a polygon to have
different material properties from the front face. Also, when this option is on, the normal
vector that is used in lighting calculations for the back face is taken to be the negative of
the vector for the front face. (The negative of a vector points in the opposite direction.)

typed array. In JavaScript, an array type that is limited to holding numerical values of a
single type. For example, the type Float32Array represents arrays that can hold 32-bit
floating point values, and Uint8Array arrays can hold only 8-bit integer values. Such
arrays are more efficient than general JavaScript arrays for numerical calculations. The
were introduced into JavaScript along with HTML canvas graphics and WebGL.

449

uniform scaling. A scaling transformation in which the scaling factors in all directions are
the same. Uniform scaling changes the size of an object without distorting its shape.

uniform variable. Variables that represent input to a shader program in a programmable
graphics pipeline. A uniform variable has the same value at every vertex and at every
pixel of a primitive.

unit normal. A normal vector of length one; that is, a unit vector that is perpendicular to a
curve or surface at a given point on the curve or surface.

unit vector. A vector of length one.

unsigned byte. A data type representing 8-bit non-negative integer values, taking values in
the range from 0 to 255.

URL. Uniform Resource Locator. An address of some resource on the World Wide Web. For
example, “http://math.hws.edu/grahicsbook”.

VAO. Vertex Array Object. In WebGL 2.0, a region of memory, typically on the graphics card,
that holds a collection of attribute settings such as enabled state and values of vertex
attribute pointers. All of the settings can then be selected simply by binding the VAO.

varying variable. A variable that is used to communicate values from the vertex shader
to the fragment shader in the WebGL or OpenGL ES 2.0 graphics pipeline. A varying
variable is assigned a value in the vertex shader. The value of the variable in the fragment
shader for a pixel in the primitive is obtained by interpolating the values from the vertices
of the primitive. (In newer versions of GLSL, which support additional shader stages,
the term “varying variable” is replaced by the more general terms “in variable” and “out
variable,” which refer to variables that are used for input to or output from a shader.)

VBO. Vertex Buffer Object. A block of memory that can hold the coordinates or other
attributes for a set of vertices. A VBO can be stored on a GPU. VBOs make it possible
to send such data to the GPU once and then reuse it several times. In OpenGL, VBOs
are used with the functions glDrawArrays and glDrawElements.

vector. An element of a vector space. Elements of a vector space can be added and can be
multiplied by constants. For computer graphics, a vector is just a list or array containing
two, three, or four numbers. Vectors in that sense are often used to represent points in
2D, 3D, or 4D space. Properly, however, a vector represents a quantity that has a length
and a direction; a vector used in this way can be visualized as an arrow.

vector graphics. Shape-based graphics in which an image is specified as a list of the shapes
or objects that appear in the image.

vertex. One of the points that define a geometric primitive, such as the two endpoints of a
line segment or the three vertices of a triangle. (The plural is “vertices.”) A vertex can
be specified in a coordinate system by giving its x and y coordinates in 2D graphics, or
its x, y, and z coordinates in 3D graphics.

vertex array. In OpenGL, an array that is used to store coordinates or other attribute values
for vertices, to be used with the functions glDrawArrays and glDrawElements. A vertex
array exists on the “client side” of OpenGL, and it must be transmitted to the GPU to
be used. In Java’s JOGL API for OpenGL, nio buffers are used instead of arrays.

vertex shader. A shader program that will be executed once for each vertex in a primitive.
A vertex shader must compute the vertex coordinates in the clip coordinate system. It
can also compute other properties, such as color.

450 APPENDIX E. GLOSSARY

viewing. Setting the position and orientation of the viewer in a 3D world, which determine
what will be visible when the 2D image of a 3D world is rendered.

viewing transformation. The transformation in 3D graphics that maps world coordinates to
eye coordinates. The viewing transform establishes the position, orientation, and scale
of the viewer in the world.

viewport. The rectangular area in which the image for 2D or 3D graphics is displayed.
The coordinates on the viewport are pixel coordinates, more properly called device
coordinates since they are actual physical coordinates on the device where the image
is being displayed.

viewport transformation. In OpenGL 1.1, the final transformation from clip coordinates to
device coordinates. The viewport transformation maps the clipping cube (the cube in 3D
given by x, y, and z coordinates in the range from -1 to 1) to the viewport (the rectangle
in the drawing surface where the image is rendered).

view volume. In OpenGL 1.1, the region is 3D space that is visible in the rendered image.
For orthographic projections, the view volume is a rectangular solid. For perspective
projection, the view volume is a frustum (truncated pyramid).

view window. As used in this book, the window, or view window, for 2D graphics is the
rectangle in the xy-plane that contains the portion of the plane that will be displayed in
the image. (The corresponding term in 3D graphics is “view volume.”)

Vulkan. An open-source cross-platform API for 3D graphics and computation, designed as a
more modern and efficient replacement for OpenGL.

WebGL. A 3D graphics API for use on web pages. WebGL programs are written in the
JavaScript programming language and display their images in HTML canvas elements.
WebGL is based on OpenGL ES, the version of OpenGL for embedded systems, with a
few changes to adapt it to the JavaScript language and the Web environment.

WebGL extension. An optional capability in WebGL that is not available in all implementa-
tions. The WebGL API has a function for checking whether a given extension is available
and, if so, activating it.

WebGPU. A JavaScript API under development that is designed to let web programs access
GPU computational capabilities as well as graphics.

winding number. The winding number of a path about a point that does not lie on the path
is the number of times that the path winds around the point, counting each 360-degree
rotation in the positive direction about the point as one and each 360-degree turn in the
negative direction as minus one. To compute the winding number, draw a ray extending
from the point to infinity. Each crossing of the ray by the path counts as 1 if it crosses the
ray going in the positive direction and as negative 1 if it crosses in the negative direction.

wireframe. A style of drawing a polyhedron or polygonal mesh in which only the edges are
drawn, resulting in an image made up of line segments.

world coordinates. The coordinate system in which a scene is defined. The image that is
produced of the scene will show the contents of the world coordinate system that lie
within some some view volume (for 3D) or view window (for 2D). Objects are defined in
their own object coordinate system. Modeling transformations are then applied to place
objects into the scene; that is, they transform object coordinates to world coordinates.

XML. eXtensible Markup Language. Not a single language as such, but a class of languages
that follow certain syntax rules. For example, SVG is an XML language because it follows

451

those rules, but it also has further restrictions on its syntax that make it appropriate
for specifying 2D graphics. XML documents, like HTML documents, have a tree-like
structure defined by “elements.” However, HTML is not an XML language since it does
not follow all the syntax rules. XHTML is an alternative language for web pages that is
similar to HTML but follows XML syntax rules.

