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Preface

These notes represent an attempt to develop a new computer graphics course at the
advanced undergraduate level. The primary goal, as in any such course, is to cover the funda-
mental concepts of computer graphics, and the concentration is on graphics in three dimensions.
However, computer graphics has become a huge and complex field, and the typical textbook in
the field covers much more material than can reasonably fit into a one-semester undergraduate
course. Furthermore, the selection of topics can easily bury what should be an exciting and
applicable subject under a pile of detailed algorithms and equations. These details are the
basis of computer graphics, but they are to a large extent built into graphics systems. While
practitioners should be aware of this basic material in a general way, there are other things that
are more important for students on an introductory level to learn.

These notes were written over the course of the Spring semester, 2010. More information
can be found on the web page for the course at http://math.hws.edu/eck/cs424/. The notes
cover computer graphics programming using Java. Jogl is used for three-dimensional graphics
programming. Jogl is the Java API for OpenGL; OpenGL is a standard and widely used
graphics API. While it is most commonly used with the C programming language, Jogl gives
Java programmers access to all the features of OpenGL. The version of Jogl that was used in
this course was 1.1.1a. A new version, Jogl 2, was under development as the course was being
taught, but Jogl 2 is still listed as a “work in progress” in May 2010. (Unfortunately, it looks
like Jogl 1.1.1a will not be upward compatible with Jogl 2, so code written for the older version
will not automatically work with the new version. However, the changes that will be needed to
adapt code from this book to the new version should not be large.)

∗ ∗ ∗

As often happens, not as much is covered in the notes as I had hoped, and even then, the
writing gets a bit rushed near the end. A number of topics were covered in the course that did
not make it into the notes. Some examples from those topics can be found in Chapter 5 (which
is not a real chapter). In addition to OpenGL, the course covered two open-source graphics
programs, GIMP briefly and Blender in a little more depth. Some of the labs for the course
deal with these programs. Here are the topics covered in the four completed chapters of the
book:

• Chapter 1: Java Graphics Fundamentals in Two Dimensions. This chapter includes a
short general discussion of graphics and the distinction between “painting” and “drawing.”
It covers some features of the Graphics2D class, including in particular the use of geometric
transforms for geometric modeling and animation.

• Chapter 2: Overview of OpenGL and Jogl. This chapter introduces drawing with
OpenGL in both two and three dimensions, with very basic color and lighting. Drawing
in this chapter uses the OpenGL routines glBegin and glEnd. It shows how to use Jogl
to write OpenGL applications and applets. It introduces the use of transforms and scene

v



vi Preface

graphs to do hierarchical modeling and animation. It introduces the topic of optimization
of graphics performance by covering display lists.

• Chapter 3: Geometric Modeling. This chapter concentrates on composing scenes in three
dimensions out of geometric primitives, including the use of vector buffer objects and the
OpenGL routines glDrawArrays and glDrawArrayElements. And it covers viewing, that
is, the projection of a 3D scene down to a 2D picture.

• Chapter 4: Color, Lighting, and Materials. This chapter discusses how to add color,
light, and textures to a 3D scene, including the use of lights in scene graphs.

Note that source code for all the examples in the book can be found in the source directory
on-line or in the web site download.

∗ ∗ ∗

The web site and the PDF versions of this book are produced from a common set of sources
consisting of XML files, images, Java source code files, XSLT transformations, UNIX shell
scripts, and a couple other things. These source files require the Xalan XSLT processor and (for
the PDF version) the TeX typesetting system. The sources require a fair amount of expertise
to use and were not written to be published. However, I am happy to make them available
upon request.

∗ ∗ ∗

Professor David J. Eck
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
Geneva, New York 14456, USA
Email: eck@hws.edu
WWW: http://math.hws.edu/eck/



Chapter 1

Java Graphics Fundamentals in Two

Dimensions

The focus of this course will be three-dimensional graphics using OpenGL. However,
many important ideas in computer graphics apply to two dimensions in much the same way
that they apply to three—often in somewhat simplified form. So, we will begin in this chapter
with graphics in two dimensions. For this chapter only, we will put OpenGL to the side and
will work with the standard Java two-dimensional graphics API. Some of this will no doubt be
review, but you will probably encounter some corners of that API that are new to you.

1.1 Vector Graphics and Raster Graphics

Computer graphics can be divided broadly into two kinds: vector graphics and raster

graphics. In both cases, the idea is to represent an image. The difference is in how the image
is represented.

An image that is presented on the computer screen is made up of pixels. The screen
consists of a rectangular grid of pixels, arranged in rows and columns. The pixels are small
enough that they are not easy to see individually, unless you look rather closely. At a given
time, each pixel can show only one color. Most screens these days use 24-bit color , where a
color can be specified by three 8-bit numbers, giving the levels of red, green, and blue in the
color. Other formats are possible, such as grayscale , where a color is given by one number
that specifies the level of gray on a black-to-white scale, or even monochrome , where there is
a single bit per pixel that tells whether the pixel is on or off. In any case, the color values for
all the pixels on the screen are stored in a large block of memory known as a frame buffer .
Changing the image on the screen requires changing all the color values in the frame buffer.
The screen is redrawn many times per second, so almost immediately after the color values are
changed in the frame buffer, the colors of the pixels on the screen will be changed to match,
and the displayed image will change.

A computer screen used in this way is the basic model of raster graphics. The term “raster”
technically refers to the mechanism used on older vacuum tube computer monitors: An electron
beam would move along the rows of pixels, making them glow. The beam could be moved across
the screen by powerful magnets that would deflect the path of the electrons. The stronger the
beam, the brighter the glow of the pixel, so the brightness of the pixels could be controlled by
modulating the intensity of the electron beam. The color values stored in the frame buffer were
used to determine the intensity of the electron beam. (For a color screen, each pixel had a red

1



2 CHAPTER 1. JAVA GRAPHICS IN 2D

dot, a green dot, and a blue dot, which were separately illuminated by the beam.)
A modern flat-screen computer monitor is not a raster in the same sense. There is no

moving electron beam. The mechanism that controls the colors of the pixels is different for
different types of screen. But the screen is still made up of pixels, and the color values for all
the pixels are still stored in a frame buffer. The idea of an image consisting of a grid of pixels,
with numerical color values for each pixel, defines raster graphics.

∗ ∗ ∗

Although images on the computer screen are represented using pixels, specifying individual
pixel colors is not always the best way to create an image. Another way to create an image is
to specify the basic geometric shapes that it contains, shapes such as lines, circles, triangles,
and rectangles. This is the idea that defines vector graphics: represent an image as a list of
the geometric shapes that it contains. To make things more interesting, the shapes can have
attributes, such as the thickness of a line or the color that fills a rectangle. Of course, not
every image can be composed from simple geometric shapes. This approach certainly wouldn’t
work for a picture of a beautiful sunset (or for most any other photographic image). However, it
works well for many types of images, such as architectural blueprints and scientific illustrations.

In fact, early in the history of computing, vector graphics were even used directly on com-
puter screens. When the first graphical computer displays were developed, raster displays were
too slow and expensive to be practical. Fortunately, it was possible to use vacuum tube tech-
nology in another way: The electron beam could be made to directly draw a line on the screen,
simply by sweeping the beam along that line. A vector graphics display would store a display

list of lines that should appear on the screen. Since a point on the screen would glow only very
briefly after being illuminated by the electron beam, the graphics display would go through the
display list over and over, continually redrawing all the lines on the list. To change the image,
it would only be necessary to change the contents of the display list. Of course, if the display
list became too long, the image would start to flicker because a line would have a chance to
visibly fade before its next turn to be redrawn.

But here is the point: For an image that can be specified as a reasonably small number of
geometric shapes, the amount of information needed to represent the image is much smaller
using a vector representation than using a raster representation. Consider an image made up
of one thousand line segments. For a vector representation of the image, you only need to store
the coordinates of two thousand points, the endpoints of the lines. This would take up only
a few kilobytes of memory. To store the image in a frame buffer for a raster display would
require much more memory, even for a monochrome display. Similarly, a vector display could
draw the lines on the screen more quickly than a raster display could copy the the same image
from the frame buffer to the screen. (As soon as raster displays became fast and inexpensive,
however, they quickly displaced vector displays because of their ability to display all types of
images reasonably well.)

∗ ∗ ∗

The divide between raster graphics and vector graphics persists in several areas of computer
graphics. For example, it can be seen in a division between two categories of programs that
can be used to create images: painting programs and drawing programs. In a painting
program, the image is represented as a grid of pixels, and the user creates an image by assigning
colors to pixels. This might be done by using a “drawing tool” that acts like a painter’s brush,
or even by tools that draw geometric shapes such as lines or rectangles, but the point is to
color the individual pixels, and it is only the pixel colors that are saved. To make this clearer,
suppose that you use a painting program to draw a house, then draw a tree in front of the
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house. If you then erase the tree, you’ll only reveal a blank canvas, not a house. In fact, the
image never really contained a “house” at all—only individually colored pixels that the viewer
might perceive as making up a picture of a house.

In a drawing program, the user creates an image by adding geometric shapes, and the image
is represented as a list of those shapes. If you place a house shape (or collection of shapes making
up a house) in the image, and you then place a tree shape on top of the house, the house is
still there, since it is stored in the list of shapes that the image contains. If you delete the tree,
the house will still be in the image, just as it was before you added the tree. Furthermore, you
should be able to select any of the shapes in the image and move it or change its size, so drawing
programs offer a rich set of editing operations that are not possible in painting programs. (The
reverse, however, is also true.)

A practical program for image creation and editing might combine elements of painting and
drawing, although one or the other is usually dominant. For example, a drawing program might
allow the user to include a raster-type image, treating it as one shape. A painting program
might let the user create “layers,” which are separate images that can be layered one on top of
another to create the final image. The layers can then be manipulated much like the shapes in
a drawing program (so that you could keep both your house and your tree, even if in the image
the house is in back of the tree).

Two well-known graphics programs are Adobe Photoshop and Adobe Illustrator. Photoshop
is in the category of painting programs, while Illustrator is more of a drawing program. In
the world of free software, the GNU image-processing program, Gimp is a good alternative to
Photoshop, while Inkscape is a reasonably capable free drawing program.

∗ ∗ ∗

The divide between raster and vector graphics also appears in the field of graphics file
formats. There are many ways to represent an image as data stored in a file. If the original
image is to be recovered from the bits stored in the file, the representation must follow some
exact, known specification. Such a specification is called a graphics file format. Some popular
graphics file formats include GIF, PNG, JPEG, and SVG. Most images used on the Web are
GIF, PNG, or JPEG, and some web browsers also have support for SVG images.

GIF, PNG, and JPEG are basically raster graphics formats; an image is specified by storing
a color value for each pixel. The amount of data necessary to represent an image in this way
can be quite large. However, the data usually contains a lot of redundancy, and the data can be
compressed to reduce its size. GIF and PNG use lossless data compression , which means
that the original image can be recovered perfectly from the compressed data. (GIF is an older
file format, which has largely been superseded by PNG, but you can still find GIF images on
the web.)

JPEG uses a lossy data compression algorithm, which means that the image that is
recovered from a JPEG image is not exactly the same as the original image—some information
has been lost. This might not sound like a good idea, but in fact the difference is often not
very noticeable, and using lossy compression usually permits a greater reduction in the size of
the compressed data. JPEG generally works well for photographic images, but not as well for
images that have sharp edges between different colors. It is especially bad for line drawings and
images that contain text; PNG is the preferred format for such images.

SVG is fundamentally a vector graphics format (although SVG images can contain raster
images). SVG is actually an XML-based language for describing two-dimensional vector graph-
ics images. “SVG” stands for “Scalable Vector Graphics,” and the term “scalable” indicates
one of the advantages of vector graphics: There is no loss of quality when the size of the image
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is increased. A line between two points can be drawn at any scale, and it is still the same
perfect geometric line. If you try to greatly increase the size of a raster image, on the other
hand, you will find that you don’t have enough color values for all the pixels in the new image;
each pixel in the original image will cover a rectangle of images in the scaled image, and you
will get large visible blocks of uniform color. The scalable nature of SVG images make them
a good choice for web browsers and for graphical elements on your computer’s desktop. And
indeed, some desktop environments are now using SVG images for their desktop icons.

∗ ∗ ∗

When we turn to 3D graphics, the most common techniques are more similar to vector
graphics than to raster graphics. That is, images are fundamentally composed out of geometric
shapes. Or, rather, a “model” of a three-dimensional scene is built from geometric shapes,
and the image is obtained by “projecting” the model onto a two-dimensional viewing surface.
The three-dimensional analog of raster graphics is used occasionally: A region in space is
divided into small cubes called voxels, and color values are stored for each voxel. However,
the amount of data can be immense and is wasted to a great extent, since we generally only see
the surfaces of objects, and not their interiors, in any case. Much more common is to combine
two-dimensional raster graphics with three-dimensional geometry: A two-dimensional image
can be projected onto the surface of a three-dimensional object. An image used in this way is
referred as a texture.

Both Java and OpenGL have support for both vector-type graphics and raster-type graphics
in two dimensions. In this course, we will generally be working with geometry rather than pixels,
but you will need to know something about both. In the rest of this chapter, we will be looking
at Java’s built-in support for two-dimensional graphics.

1.2 Two-dimensional Graphics in Java

Java’s support for 2D graphics is embodied primarily in two abstract classes, Image and Graphics,
and in their subclasses. The Image class is mainly about raster graphics, while Graphics is
concerned primarily with vector graphics. This chapter assumes that you are familiar with
the basics of the Graphics class and the related classes Color and Font, including such Graphics

methods as drawLine, drawRect, fillRect, drawString, getColor, setColor, and setFont. If you
need to review them, you can read Section 6.3 of Introduction to Programming Using Java.

The class java.awt.Image really represents the most abstract idea of an image. You can’t
do much with the basic Image other than display it on a drawing surface. For other purposes,
you will want to use the subclass, java.awt.image.BufferedImage. A BufferedImage represents a
rectangular grid of pixels. It consists of a “raster,” which contains color values for each pixel
in the image, and a “color model,” which tells how the color values are to be interpreted.
(Remember that there are many ways to represent colors as numerical values.) In general, you
don’t have to work directly with the raster or the color model. You can simply use methods in
the BufferedImage class to work with the image.

Java’s standard class java.awt.Graphics represents the ability to draw on a two-dimensional
drawing surface. A Graphics object has the ability to draw geometric shapes on its associated
drawing surface. (It can also draw strings of characters and Images.) The Graphics class is
suitable for many purposes, but its capabilities are still fairly limited. A much more complete
two-dimensional drawing capability is provided by the class java.awt.Graphics2D, which is a
subclass of Graphics. In fact, all the Graphics objects that are provided for drawing in modern
Java are actually of type Graphics2D, and you can type-cast the variable of type Graphics
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to Graphics2D to obtain access to the additional capabilities of Graphics2D. For example, a
paintComponent method that needs access to the capabilities of a Graphics2D might look like
this:

protected void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g.create();

... // Use g2 for drawing.

}

The method g.create creates a new graphics context object that has exactly the same properties
as g. You can then use g2 for drawing, and make any changes to it that you like without
having any effect on g. It is recommended not to make any permanent changes to g in the
paintComponent method, but you are free to do anything that you like to g2.

1.2.1 BufferedImages

There are basically two ways to get a BufferedImage. You can create a blank image using a
constructor from the BufferedImage class, or you can get a copy of an existing image by reading
the image from a file or some other source. The method

public boolean read(File source)

in the class javax.imageio.ImageIO can be used to read an image from a file. Supported image
types include at least PNG and JPEG. Other methods in the ImageIO class make it possible to
read an image from an InputStream or URL.

When you want to create a blank image, the constructor that you are most likely to use is

public BufferedImage(int width, int height, int imageType)

The width and height specify the size of image, that is, the number of rows and columns of
pixels. The imageType specifies the color model, that is, what kind of color value is stored for
each pixel. The imageType can be specified using a constant defined in the BufferedImage class.
For basic full-color images, the type BufferedImage.TYPE INT RGB can be used; this specifies
a color model that uses three eight-bit numbers for each pixel, giving the red, green, and blue
color components. It is possible to add an eight-bit “alpha,” or transparency, value for each
pixel. To do that, use the image type BufferedImage.TYPE INT ARGB. Grayscale images can
be created using the image type BufferedImage.TYPE BYTE GRAY.

Once you have a BufferedImage, you might want to be able to modify it. The easiest way is
to treat the image as a drawing surface and to draw on it using an object of type Graphics2D.
The method

public Graphics2D createGraphics()

in the BufferedImage class returns a Graphics2D object that can be used to draw on the image
using the same set of drawing operations that are commonly used to draw on the screen.

It is also possible to manipulate the color of individual pixels in the image. The Buffered-

Image class has methods public int getRGB(int x, int y) and public void setRGB(int

x, int y, int rgb) for getting and setting the color of an individual pixel. There are also
methods for getting and setting the color values of a large number of pixels at once. See the
API documentation for more information. (For these methods, colors are specified by 32-bit
int values, with eight bits each for the alpha, red, green, and blue components of the color.)
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Once you have your complete image, you can save it to a file using a write method from
the ImageIO class. You can also copy the image to a drawing surface (including another image)
using one of the drawImage methods from the Graphics class, such as

public boolean drawImage(Image image, int x, int y, ImageObserver obs)

This method draws the image at its normal size with its upper left corner at the point (x,y). The
ImageObserver is meant for use when drawing an image that is still being loaded, for example,
over the Internet; it makes it possible to draw a partially loaded image (and the boolean return
value of the method tells whether the image has been fully drawn when the method returns);
the ImageObserver is there to make sure that the rest of the image gets drawn when it becomes
available. Since a BufferedImage is always already in memory, you just pass null as the fourth
parameter when drawing a BufferedImage, and you can ignore the return value.

One important use of BufferedImages is to keep a copy of an image that is being displayed
on the screen. For example, in a paint program, a BufferedImage can be used to store a copy
of the image that is being created or edited. I sometimes call an image that is used in this way
an off-screen canvas. Any changes that are made to the image are applied to the off-screen
canvas, which is then copied to the screen (for example, in the paintComponent method of a
JPanel). You can then draw extra stuff, such as a box around a selected area, over the on-screen
image without affecting the image in the off-screen canvas. And you can perform operations
on the off-screen canvas, such as reading the color of a given pixel, that you can’t do on the
on-screen image. Using an off-screen image in this way is referred to as double buffering ,
where the term “buffer” is used in the sense of a “frame buffer” that stores color values for the
pixels in an image. One advantage of double-buffering is that the user doesn’t see changes as
they are being made to an image; you can compose an image in the off-screen canvas and then
copy that image all at once onto the screen, so that the user sees only the completed image.
(In fact, Java uses double-buffering automatically for Swing components such as JPanel. The
paintComponent method actually draws to an off-screen canvas and the result is copied onto
the screen. However, you don’t have direct access to the off-screen canvas that is used for this
purpose, and for many applications, you need to create an off-screen canvas of your own.)

1.2.2 Shapes and Graphics2D

You should be familiar with Graphics methods such as drawLine and fillRect. For these methods,
points are specified in pixel coordinates, where a pair of integers (x,y) picks out the pixel
in column x and in row y. Using pixel coordinates allows you to determine precisely which
pixels will be affected by a given drawing operation, and sometimes such precision is essential.
Often, however, coordinates are most naturally expressed on some other coordinate system. For
example, in an architectural drawing, it would be natural to use actual physical measurements as
coordinates. When drawing a mathematical object such as the graph of a function, it would be
nice to be able to match the coordinate system to the size of the object that is being displayed.
In such cases, the natural coordinates must be laboriously converted into pixel coordinates.
Another problem with pixel coordinates is that when the size of the drawing area changes, all
the coordinates have to recomputed, at least if the size of the image is to change to match the
change in size of the drawing area. For this reason, computer graphics applications usually
allow the specification of an arbitrary coordinate system. Shapes can then be drawn using the
coordinates that are most natural to the application, and the graphics system will do the work
of converting those coordinates to pixel coordinates.

The Graphics2D class supports the use of arbitrary coordinate systems. Once you’ve specified
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a coordinate system, you can draw shapes using that coordinate system, and the Graphics2D

object will correctly transform the shape into pixel coordinates for you, before drawing it. Later
in the chapter, we will see how to specify a new coordinate system for a Graphics2D. For now,
we will consider how to draw shapes in such coordinate systems.

Note that the coordinate system that I am calling “pixel coordinates” is usually referred
to as device coordinates, since it is the appropriate coordinate system for drawing directly
to the display device where the image appears. Java documentation refers to the coordinate
system that is actually used for drawing as user coordinates, although the “user” in this
case is the programmer. Another name, more appropriate to OpenGL, is world coordinates,
corresponding to the idea that there is a natural coordinate system for the “world” that we
want to represent in the image.

When using general coordinate systems, coordinates are specified as real numbers rather
than integers (since each unit in the coordinate system might cover many pixels or just a small
fraction of a pixel). The package java.awt.geom provides support for shapes defined using real
number coordinates. For example, the class Line2D in that package represents line segments
whose endpoints are given as pairs of real numbers. (Although the older drawing methods such
as drawLine use integer coordinates, it’s important to note that any shapes drawn using these
methods are subject to the same transformation as shapes such as Line2Ds that are specified
with real number coordinates. For example, drawing a line with g.drawLine(1,2,5,7) will have
the same effect as drawing a Line2D that has endpoints (1.0,2.0) and (5.0,7.0). In fact, all
drawing is affected by the transformation of coordinates, even, somewhat disturbingly, the
width of lines and the size of characters in a string.)

Java has two primitive real number types: double and float. The double type can represent
a larger range of numbers, with a greater number of significant digits, than float, and double
is the more commonly used type. In fact, doubles are simply easier to use in Java. There is no
automatic conversion from double to float, so you have to use explicit type-casting to convert a
double value into a float. Also, a real-number literal such as 3.14 is taken to be of type double,
and to get a literal of type float, you have to add an “F”: 3.14F. However, float values generally
have enough accuracy for graphics applications, and they have the advantage of taking up less
space in memory. Furthermore, computer graphics hardware often uses float values internally.

So, given these considerations, the java.awt.geom package actually provides two versions
of each shape, one using coordinates of type float and one using coordinates of type double.
This is done in a rather strange way. Taking Line2D as an example, the class Line2D itself
is an abstract class. It has two subclasses, one that represents lines using float coordinates
and one using double coordinates. The strangest part is that these subclasses are defined as
static nested classes inside Line2D: Line2D.Float and Line2D.Double. This means that you can
declare a variable of type Line2D, but to create an object, you need to use Line2D.Double or
Line2D.Float:

Line2D line1 = new Line2D.Double(1,2,5,7); // Line from (1.0,2.0) to (5.0,7.0)

Line2D line2 = new Line2D.Float(2.7F,3.1F,1.5F,7.1F); // (2.7,3.1) to (1.5,7.1)

This gives you, unfortunately, a lot of rope with which to hang yourself, and for simplicity,
you might want to stick to one of the types Line2D.Double or Line2D.Float, treating it as a
basic type. Line2D.Double will be more convenient to use. Line2D.Float might give better
performance, especially if you also use variables of type float to avoid type-casting.

∗ ∗ ∗

Let’s take a look at some of the classes in package java.awt.geom. I will discuss only some of
their properties; see the API documentation for more information. The abstract class Point2D—
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and its concrete subclasses Point2D.Double and Point2D.Float—represents a point in two di-
mensions, specified by two real number coordinates. A point can be constructed from two real
numbers (“new Point2D.Double(1.2,3.7)”). If p is a variable of type Point2D, you can use
p.getX () and p.getY () to retrieve its coordinates, and you can use p.setX (x ), p.setY (y), or
p.setLocation(x,y) to set its coordinates. If pd is a variable of type Point2D.Double, you can
also refer directly to the coordinates as pd.x and pd.y (and similarly for Point2D.Float). Other
classes in java.awt.geom offer a similar variety of ways to manipulate their properties, and I
won’t try to list them all here.

In addition to Point2D, java.awt.geom contains a variety of classes that represent geometric
shapes, including Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D, Arc2D, and Path2D. All
of these are abstract classes, and each of them contains a pair of subclasses such as Rectan-

gle2D.Double and Rectangle2D.Float. (Note that Path2D is new in Java 6.0; in older versions,
you can use GeneralPath, which is equivalent to Path2D.Float.) Each of these classes imple-
ments the interface java.awt.Shape, which represents the general idea of a geometric shape.
Some shapes, such as rectangles, have interiors that can be filled ; such shapes also have
outlines that can be stroked . Some shapes, such as lines, are purely one-dimensional and can
only be stroked.

Aside from lines, rectangles are probably the simplest shapes. A Rectangle2D has
a corner point (x,y), a width, and a height, and can be constructed from that data
(“new Rectangel2D.Double(x,y,w,h)”). The corner point (x,y) specify the minimum x- and
y-values in the rectangle. For the usual pixel coordinate system, (x,y) is the upper left corner.
However, in a coordinate system in which the minimum value of y is at the bottom, (x,y)
would be the lower left corner. The sides of the rectangle are parallel to the coordinate axes.
A variable r of type Rectangle2D.Double or Rectangle2D.Float has public instance variables r.x,
r.y, r.width, and r.height. If the width or the height is less than or equal to zero, nothing will
be drawn when the rectangle is filled or stroked. A common problem is to define a rectangle by
two corner points (x1,y1 ) and (x2,y2 ). This can be accomplished by creating a rectangle with
height and width equal to zero and then adding the second point to the rectangle:

Rectangle2D.Double r = new Rectangle2D.Double(x1,y1,0,0);

r.add(x2,y2);

Adding a point to a rectangle causes the rectangle to grow just enough to include that point.

An Ellipse2D that just fits inside a given rectangle can be constructed from the upper left cor-
ner, width, and height of the rectangle (“new Ellipse2D.Double(x,y,w,h)”). A RoundRect-

angle2D is similar to a plain rectangle, except that an arc of an ellipse has been cut off each
corner. The horizontal and vertical radius of the ellipse are part of the data for the round
rectangle (“new RoundRectangle2D.Double(x,y,w,h,r1,r2)”). An Arc2D represents an arc
of an ellipse. The data for an Arc2D is the same as the data for an Ellipse2D, plus the start
angle of the arc, the end angle, and a “closure type.” The angles are given in degrees, where
zero degrees is in the positive direction of the x-axis. The closure types are Arc2D.CHORD
(meaning that the arc is closed by drawing the line back from its final point back to its starting
point), Arc2D.PIE (the arc is closed by drawing two line segments, giving the form of a wedge
of pie), or Arc2D.OPEN (the arc is not closed).

The Path2D shape is the most interesting, since it allows the creation of shapes consisting
of arbitrary sequences of lines and curves. The curves that can be used are quadratic and
cubic Bezier curves, which are defined by polynomials of degree two or three. A Path2D

p is empty when it is first created (“p = new Path2D.Double()”). You can then construct
the path by moving an imaginary “pen” along the path that you want to create. The method
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p.moveTo(x,y) moves the pen to the point (x,y) without drawing anything. It is used to specify
the initial point of the path or the starting point of a new segment of the path. The method
p.lineTo(x,y) draws a line from the current pen position to (x,y), leaving the pen at (x,y). The
method p.close() can be used to close the path (or the current segment of the path) by drawing
a line back to its starting point. (Note that curves don’t have to be closed.) For example, the
following code creates a triangle with vertices at (0,5), (2,−3), and (−4,1):

Path2D p = new Path2D.Double();

p.moveTo(0,5);

p.lineTo(2,-3);

p.lineTo(-4,1);

p.close();

For Bezier curves, you have to specify more than just the endpoints of the curve. You also
have to specify control points. Control points don’t lie on the curve, but they determine the
velocity or tangent of the curve at the endpoints. A quadratic Bezier curve has one control
point. You can add a quadratic curve to a Path2D p using the method p.quadTo(cx,cy,x,y).
The quadratic curve has endpoints at the current pen position and at (x,y), with control point
(cx,cy). As the curve leaves the current pen position, it heads in the direction of (cx,cy), with
a speed determined by the distance between the pen position and (cx,cy). Similarly, the curve
heads into the point (x,y) from the direction of (cx,cy), with a speed determined by the distance
from (cx,cy) to (x,y). Note that the control point (cx,cy) is not on the curve—it just controls
the direction of the curve. A cubic Bezier curve is similar, except that it has two control points.
The first controls the velocity of the curve as it leaves the initial endpoint of the curve, and
the second controls the velocity as it arrives at the final endpoint of the curve. You can add a
Bezier curve to a Path2D p with the method

p.curveTo( cx1, cy1, cx2, xy2, x, y )

This adds a Bezier curve that starts at the current pen position and ends at (x,y), using
(cx1,cy1 ) and (cx2,cy2 ) as control points.

To make this clearer, the picture on the left below shows a path consisting of five quadratic
Bezier curves, with their control points. Note that at each endpoint of a curve, the curve is
tangent to the line from that endpoint to the control point. (In the picture, these lines are
shown as dotted lines.) The picture on the right shows a path that consists of four cubic Bezier
curves, with their control points. Note that by choosing appropriate control points, you can
always ensure that one cubic Bezier curve joins smoothly to the next, as is done at the point
where the first curve joins the second in the picture here.
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The source code files QuadraticBezierEdit.java and CubicBezierEdit.java define applications
that let you edit the curves shown in this image by dragging the control points and endpoints
of the curve. You can also find applet versions of these applications in the web-site version of
these notes.

∗ ∗ ∗

Once you have a Path2D or a Line2D, or indeed any object of type Shape, you can use it
with a Graphics2D. The Graphics2D class defines the methods

public void draw(Shape s)

public void fill(Shape s)

for drawing and filling Shapes. A Graphics2D has an instance variable of type Paint that tells
how shapes are to be filled. Paint is just an interface, but there are several standard classes
that implement that interface. One example is class Color. If the current paint in a Graphics2D

g2 is a Color, then calling g2.fill(s) will fill the Shape s with solid color. However, there are
other types of Paint, such as GradientPaint and TexturePaint, that represent other types of fill.
You can set the Paint in a Graphics2D g2 by calling g2.setPaint(p). For a Color c, calling
g2.setColor(c) also sets the paint.

Calling g2.draw(s) will “stroke” the shape by moving an imaginary pen along the lines or
curves that make up the shape. You can use this method, for example, to draw a line or the
boundary of a rectangle. By default, the shape will be stroked using a pen that is one unit
wide. In the usual pixel coordinates, this means one pixel wide, but in a non-standard coordinate
system, the pen will be one unit wide and one unit high, according the units of that coordinate
system. The pen is actually defined by an object of type Stroke, which is another interface. To
set the stroke property of a Graphics2D g2, you can use the method g2.setStroke(stroke). The
stroke will almost certainly be of type BasicStroke, a class that implements the Stroke interface.
For example to draw lines with g2 that are 2.5 times as wide as usual, you would say

g2.setStroke( new BasicStroke(2.5F) );

Note that the parameter in the constructor is of type float. BasicStroke has several alternative
constructors that can be used to specify various characteristics of the pen, such as how an
endpoint should be drawn and how one piece of a curve should be joined to the next. Most
interesting, perhaps, is the ability to draw dotted and dashed lines. Unfortunately, the details
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are somewhat complicated, but as an example, here is how you can create a pen that draws a
pattern of dots and dashes:

float[] pattern = new float[] { 1, 3, 5, 3 }; // pattern of lines and spaces

BasicStroke pen = new BasicStroke( 1, BasicStroke.CAP BUTT,

BasicStroke.JOIN ROUND, 0, pattern, 0 );

This pen would draw a one-unit-long dot, followed by a 3-unit-wide space, followed by a 5-
unit-long dash, followed by a 3-unit-wide space, with the pattern repeating after that. You can
adjust the pattern to get different types of dotted and dashed lines.

Note that in addition to the current Stroke, the effect of g2.draw(s) also depends on the
current Paint in g2. The area covered by the pen is filled with the current paint.

∗ ∗ ∗

Before leaving the topic of drawing with Graphics2D, I should mention antialiasing. Aliasing

is a problem for raster-type graphics in general, caused by the fact that raster images are made
up of small, solid-colored pixels. It is not possible to draw geometrically perfect pictures by
coloring pixels. A diagonal geometric line, for example, will cover some pixels only partially,
and it is not possible to make a pixel half black and half white. When you try to draw a
line with black and white pixels only, the result is a jagged staircase effect. This effect is an
example of aliasing. Aliasing can also be seen in the outlines of characters drawn on the screen
and in diagonal or curved boundaries between any two regions of different color. (The term
aliasing likely comes from the fact that most pictures are naturally described in real-number
coordinates. When you try to represent the image using pixels, many real-number coordinates
will map to the same integer pixel coordinates; they can all be considered as different names or
“aliases” for the same pixel.)

Antialiasing is a term for techniques that are designed to mitigate the effects of aliasing.
The idea is that when a pixel is only partially covered by a shape, the color of the pixel should
be a mixture of the color of the shape and the color of the background. When drawing a
black line on a white background, the color of a partially covered pixel would be gray, with the
shade of gray depending on the fraction of the pixel that is covered by the line. (In practice,
calculating this area exactly for each pixel would be too difficult, so some approximate method
is used.) Here, for example, are two lines, greatly magnified so that you can see the individual
pixels. The one on the right is drawn using antialiasing, while the one on the left is not:
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Note that antialiasing does not give a perfect image, but it can reduce the “jaggies” that are
caused by aliasing.

You can turn on antialiasing in a Graphics2D, and doing so is generally a good idea. To do
so, simply call

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING, RenderingHints.VALUE ANTIALIAS ON);

before using the Graphics2D g2 for drawing. Antialiasing can be applied to lines, to text, and
to the curved shapes such as ellipses. Note that turning on antialiasing is considered to be a
“hint,” which means that its exact effect is not guaranteed, and it might even have no effect
at all. In general, though, it does give an improved image. Turning antialiasing on does slow
down the drawing process, and the slow-down might be noticeable when drawing a very complex
image.

1.3 Transformations and Modeling

We now turn to another aspect of two-dimensional graphics in Java: geometric trans-
formations. The material in this section will carry over nicely to three dimensions and OpenGL.
It is an important foundation for the rest of the course.

1.3.1 Geometric Transforms

Being able to draw geometric shapes is important, but it is only part of the story. Just as
important are geometric transforms that allow you to modify the shapes that you draw,
such as by moving them, changing their size, or rotating them. Some of this, you can do by
hand, by doing your own calculations. For example, if you want to move a shape three units to
the right, you can simply add 3 to each of the horizontal coordinates that are used to draw the
shape. This would quickly become tedious, however, so its nice that we can get the computer
to do it for us simply by specifying an appropriate geometric transform. Furthermore, there
are things that you simply can’t do in Java without transforms. For example, when you draw
a string of text without a transform, the baseline of the text can only be horizontal. There is
no way to draw the string tilted to a 30-degree angle. Similarly, the only way to draw a tilted
image is by applying a transform. Here is an example of a string and an image drawn by Java
in their normal orientation and with a counterclockwise 30-degree rotation:
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Every Graphics2D graphics context has a current transform that is applied to all drawing
that is done in that context. You can change the transform, and the new value will apply to
all subsequent drawing operations; it will not affect things that have already been drawn in
the graphics context. Generally, in a newly created Graphics2D, the current transform is the
identity transform , which has no effect at all on drawing. (There are some exceptions to
this. For example, when drawing to a printer, the pixels are very small. If the same coordinates
are used when drawing to the printer as are used on the screen, the resulting picture would
be tiny. So, when drawing to a printer, Java provides a default transform that magnifies the
picture to make it look about the same size as it does on the screen.)

The transform in a Graphics2D can be any affine transform . An affine transform has the
property that when it is applied to any set of parallel lines, the result is also a set of parallel
lines (or, possibly, a single line or even a single point). An affine transform in two dimensions
can be specified by six numbers a, b, c, d, e, and f, which have the property that when the
transform is applied to a point (x,y), the resulting point (x1,y1 ) is given by the formulas:

x1 = a*x + b*y + e

y1 = c*x + d*y + f

Affine transforms have the important property that if you apply one affine transform and then
follow it with a second affine transform, the result is another affine transform. For example,
moving each point three units to the right is an affine transform, and so is rotating each point by
30 degrees about the origin (0,0). Therefore the combined transform that first moves a point to
the right and then rotates it is also an affine transform. Combining two affine transformations
in this way is called multiplying them (although it is not multiplication in the usual sense).
Mathematicians often use the term composing rather than multiplying.

It’s possible to build up any two-dimensional affine transformation from a few basic kinds
of simple transforms: translation , rotation , and scaling . It’s good to have an intuitive
understanding of these basic transforms and how they can be used, so we will go through them
in some detail. The effect of a transform depends on what coordinate system you are using for
drawing. For this discussion, we assume that the origin, (0,0), is at the center of the picture,
with the positive direction of the x-axis pointing to the right and the positive direction of the y-
axis pointing up. Note that this orientation for the y-axis is the opposite of the usual orientation
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in Java; it is, however, the more common orientation in mathematics and in OpenGL.

∗ ∗ ∗

A translation simply moves each point by a certain amount horizontally and a certain
amount vertically. The formula for a translation is

x1 = x + e

y1 = y + f

where the point (x,y) is moved e units horizontally and f units vertically. (Thus for a translation,
a = d = 1, and b = c = 0.) If you wanted to apply this translation to a Graphics2D g, you
could simply say g.translate(e,f ). This would mean that for all subsequent drawing operations,
e would be added to the x-coordinate and f would be added to the y-coordinate. Let’s look
at an example. Suppose that you are going to draw an “F” centered at (0,0). If you say
g.translate(4,2) before drawing the “F”, then every point of the “F” will be moved over 4
units and up 2 units, and the “F” that appears on the screen will actually be centered at (4,2).
Here is a picture:

The light gray “F” in this picture shows what would be drawn without the translation; the
dark red “F” shows the same “F” drawn after applying a translation by (4,2). The arrow shows
that the upper left corner of the “F” has been moved over 4 units and up 2 units. Every point
in the “F” is subjected to the same displacement.

Remember that when you say g.translate(e,f ), the translation applies to all the drawing that
you do after that, not just to the next shape that you draw. If you apply another transformation
to the same g, the second transform will not replace the translation. It will be multiplied by
the translation, so that subsequent drawing will be affected by the combined transformation.
This is an important point, and there will be a lot more to say about it later.

∗ ∗ ∗

A rotation rotates each point about the origin, (0,0). Every point is rotated through the
same angle, called the angle of rotation. For this purpose, angles in Java are measured in
radians, not degrees. For example, the measure of a right angle is π/2, not 90. Positive angles
move the positive x-axis in the direction of the positive y-axis. (This is counterclockwise in the
coordinate system that we are using here, but it is clockwise in the usual pixel coordinates,
where the y-axis points down rather than up.) Although it is not obvious, when rotation
through an angle of r radians about the origin is applied to the point (x,y), then the resulting
point (x1,y1 ) is given by

x1 = cos(r) * x - sin(r) * y

y1 = sin(r) * x + cos(r) * y
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That is, in the general formula for an affine transform, e = f = 0, a = d = cos(r), b = −sin(r),
and c = sin(r). Here is a picture that illustrates a rotation about the origin by the angle −3π/4:

Again, the light gray “F” is the original shape, and the dark red “F” is the shape that results
if you apply the rotation. The arrow shows how the upper left corner of the original “F” has
been moved.

In a Graphics2D g, you can apply a rotation through an angle r by saying g.rotate(r) before

drawing the shapes that are to be rotated. We are now in a position to see what can happen
when you combine two transformations. Suppose that you say

g.translate(4,0);

g.rotate(Math.PI/2);

before drawing some shape. The translation applies to all subsequent drawing, and the thing
that you draw after the translation is a rotated shape. That is, the translation applies to a
shape to which a rotation has already been applied. An example is shown on the left in the
illustration below, where the light gray “F” is the original shape. The dark red “F” shows
the result of applying the two transforms. The “F” has first been rotated through a 90 degree
angle, and then moved 4 units to the right.

Transforms are applied to shapes in the reverse of the order in which they are given in the code
(because the first transform in the code is applied to a shape that has already been affected
by the second transform). And note that the order in which the transforms are applied is
important. If we reverse the order in which the two transforms are applied in this example, by
saying

g.rotate(Math.PI/2);

g.translate(4,0);
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then the result is as shown on the right in the above illustration. In that picture, the original
“F” is first moved 4 units to the right and the resulting shape is then rotated through an angle
of π/2 about the origin to give the shape that actually appears on the screen.

For a useful application of using several transformations, suppose that we want to rotate a
shape through an angle r about a point (p,q) instead of about the point (0,0). We can do this by
first moving the point (p,q) to the origin with g.translate(−p,−q). Then we can do a standard
rotation about the origin by calling g.rotate(r). Finally, we can move the origin back to the
point (p,q) using g.translate(p,q). Keeping in ming that we have to apply the transformations
in the reverse order, we can say

g.translate(p,q);

g.rotate(r);

g.translate(-p,-q);

before drawing the shape. In fact, though, you can do the same thing in Java with one command:
g.rotate(r,p,q) will apply a rotation of r radians about the point (p,q) to subsequent drawing
operations.

∗ ∗ ∗

A scaling transform can be used to make objects bigger or smaller. Mathematically, a
scaling transform simply multiplies each x-coordinate by a given amount and each y-coordinate
by a given amount. That is, if a point (x,y) is scaled by a factor of a in the x direction and by
a factor of d in the y direction, then the resulting point (x1,y1 ) is given by

x1 = a * x

y1 = d * y

If you apply this transform to a shape that is centered at the origin, it will stretch the shape
by a factor of a horizontally and d vertically. Here is an example, in which the original light
gray “F” is scaled by a factor of 3 horizontally and 2 vertically to give the final dark red “F”:

The common case where the horizontal and vertical scaling factors are the same is called
uniform scaling . Uniform scaling stretches or shrinks a shape without distorting it. Note that
negative scaling factors are allowed and will result in reflecting the shape as well as stretching
or shrinking it.

When scaling is applied to a shape that is not centered at (0,0), then in addition to being
stretched or shrunk, the shape will be moved away from 0 or towards 0. In fact, the true
description of a scaling operation is that it pushes every point away from (0,0) or pulls them
towards (0,0). (If you want to scale about a point other than (0,0), you can use a sequence of
three transforms, similar to what was done in the case of rotation. Java provides no shorthand
command for this operation.)
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To scale by (a,d) in Graphics2D g, you can call g.scale(a,d). As usual, the transform applies
to all x and y coordinates in subsequent drawing operations.

∗ ∗ ∗

We will look at one more type of basic transform, a shearing transform . Although shears
can in fact be built up out of rotations and scalings if necessary, it is not really obvious how
to do so. A shear will “tilt” objects. A horizontal shear will tilt things towards the left (for
negative shear) or right (for positive shear). A vertical shear tilts them up or down. Here is an
example of horizontal shear:

A horizontal shear does not move the x-axis. Every other horizontal line is moved to the
left or to the right by an amount that is proportional to the y-value along that line. When a
horizontal shear is applied to a point (x,y), the resulting point (x1,y1 ) is given by

x1 = x + b * y

y1 = y

for some constant shearing factor b. Similarly, a vertical shear by a shearing factor c has
equations

x1 = x

y1 = c * x + y

In Java, the method for applying a shear to a Graphics2D g allows you to specify both a
horizontal shear factor b and a vertical shear factor c: g.shear(b,c). For a pure horizontal
shear, you can set c to zero; for a pure vertical shear, set b to zero.

∗ ∗ ∗

In Java, an affine transform is represented by an object belonging to the class
java.awt.geom.AffineTransform. The current transform in a Graphics2D g is an object of type
AffineTransform. Methods such as g.rotate and g.shear multiply that current transform object
by another transform. There are also methods in the AffineTransform class itself for multiplying
the transform by a translation, a rotation, a scaling, or a shear. Usually, however, you will just
use the corresponding methods in the Graphics2D class.

You can retrieve the current affine transform from a Graphics2D g by calling
g.getTransform(), and you can replace the current transform by calling g.setTransform(t). In
general, it is recommended to use g.setTransform only for restoring a previous transform in g,
after temporarily modifying it.

One use for an AffineTransform is to compute the inverse transform . The inverse trans-
form for a transform t is a transform that exactly reverses the effect of t. Applying t followed
by the inverse of t has no effect at all—it is the same as the identity transform.
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Not every transform has an inverse. For example, there is no way to undo a scaling transform
that has a scale factor of zero. Most transforms, however, do have inverses. For the basic
transforms, the inverses are easy. The inverse of a translation by (e,f ) is a translation by
(−e,−f ). The inverse of rotation by an angle r is rotation by −r. The inverse of scaling by
(a,d) is scaling by (1/a,1/d), provided a and d are not zero.

For a general AffineTransform t, you can call t.createInverse() to get the inverse transform.
This method will throw an exception of type NoninvertableTransformException if t does not have
an inverse. This is a checked exception, which requires handling, for example with a try..catch

statement.

Sometimes, you might want to know the result of applying a transform or its inverse to a
point. For an AffineTransform t and points p1 and p2 of type Point2D, you can call

t.transform( p1, p2 );

to apply t to the point p1, storing the result of the transformation in p2. (It’s OK for p1 and
p2 to be the same object.) Similarly, to apply the inverse transform of t, you can call

t.inverseTransform( p1, p2 );

This statement will throw a NoninvertibleTransformException if t does not have an inverse.

∗ ∗ ∗

You have probably noticed that we have discussed two different uses of transforms: Co-

ordinate transforms change the coordinate system that is used for drawing. Modeling

transforms modify shapes that are drawn. In fact, these two uses are two sides of the same
coin. The same transforms that are used for one purpose can be used for the other. Let’s see
how to set up a coordinate system on a component such as a JPanel. In the standard coordinate
system, the upper left corner is (0,0), and the component has a width and a height that give
its size in pixels. The width and height can be obtained by calling the panel’s getWidth and
getHeight methods. Suppose that we would like to draw on the panel using a real-number
coordinate system that extends from x1 on the left to x2 on the right and from y1 at the top
to y2 at the bottom. A point (x,y) in these coordinates corresponds to pixel coordinates

( (x-x1)/(x2-x1) * width, (y-y1)/(y2-y1) * height )

To see this, note that (x-x1)/(x2-x1) is the distance of x1 from the left edge of the panel,
given as fraction of the total width, and similarly for the height. If we rewrite this as

( (x-x1) * (width/(x2-x1)), (y-y1) * (height/(y2-y1)) )

we see that the change in coordinates can be accomplished by first translating by (-x1,-y1)

and then scaling by (width/(x2-x1),height/(y2-y1)). Keeping in mind that transforms are
applied to coordinates in the reverse of the order in which they are given in the code, we can
implement this coordinate transform in the panel’s paintComponent method as follows

protected void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g.create();

g2.scale( getWidth() / ( x2 - x1 ), getHeight() / ( y2 - y1) );

g2.translate( -x1, -y1 );

... // draw the content of the panel, using the new coordinate system

}
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The scale and translate in this example set up the coordinate transformation. Any further
transforms can be thought of as modeling transforms that are used to modify shapes. However,
you can see that it’s really just a nominal distinction.

The transforms used in this example will work even in the case where y1 is greater than
y2. This allows you to introduce a coordinate system in which the minimal value of y is at the
bottom rather than at the top.

One issue that remains is aspect ratio, which refers to the ratio between the height and the
width of a rectangle. If the aspect ratio of the coordinate rectangle that you want to display
does not match the aspect ratio of the component in which you will display it, then shapes
will be distorted because they will be stretched more in one direction than in the other. For
example, suppose that you want to use a coordinate system in which both x and y range from
0 to 1. The rectangle that you want to display is a square, which has aspect ratio 1. Now
suppose that the component in which you will draw has width 800 and height 400. The aspect
ratio for the component is 0.5. If you simply map the square onto the component, shapes will
be stretched twice as much in the horizontal direction as in the vertical direction. If this is a
problem, a solution is to use only part of the component for drawing the square. We can do
this, for example, by padding the square on both sides with some extra x-values. That is, we
can map the range of x values between −0.5 and 1.5 onto the component, while still using range
of y values from 0 to 1. This will place the square that we really want to draw in the middle of
the component. Similarly, if the aspect ratio of the component is greater than 1, we can pad
the range of y values.

The general case is a little more complicated. The applyLimits method, shown below, can be
used to set up the coordinate system in a Graphics2D. It should be called in the paintCompoent
method before doing any drawing to which the coordinate system should apply. This method
is used in the sample program CubicBezierEdit.java, so you can look there for an example of
how it is used. When using this method, the parameter limitsRequested should be an array
containing the left, right, top, and bottom edges of the coordinate rectangle that you want to
display. If the preserveAspect parameter is true, then the actual limits will be padded in either
the horizontal or vertical direction to match the aspect ratio of the coordinate rectangle to the
width and height of the “viewport.” (The viewport is probably just the entire component where
g2 draws, but the method could also be used to map the coordinate rectangle onto a different
viewport.)

/**

* Applies a coordinate transform to a Graphics2D graphics context. The upper

* left corner of the viewport where the graphics context draws is assumed to

* be (0,0). This method sets the global variables pixelSize and transform.

*

* @param g2 The drawing context whose transform will be set.

* @param width The width of the viewport where g2 draws.

* @param height The height of the viewport where g2 draws.

* @param limitsRequested Specifies a rectangle that will be visible in the

* viewport. Under the transform, the rectangle with corners (limitsRequested[0],

* limitsRequested[1]) and (limitsRequested[2],limitsRequested[3]) will just

* fit in the viewport.

* @param preserveAspect if preserveAspect is false, then the limitsRequested

* rectangle will exactly fill the viewport; if it is true, then the limits

* will be expanded in one direction, horizontally or vertically, to make

* the aspect ratio of the displayed rectangle match the aspect ratio of the

* viewport. Note that when preserveAspect is false, the units of measure in
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* the horizontal and vertical directions will be different.

*/

private void applyLimits(Graphics2D g2, int width, int height,

double[] limitsRequested, boolean preserveAspect) {

double[] limits = limitsRequested;

if (preserveAspect) {

double displayAspect = Math.abs((double)height / width);

double requestedAspect = Math.abs(( limits[3] - limits[2] )

/ ( limits[1] - limits[0] ));

if (displayAspect > requestedAspect) {

double excess = (limits[3] - limits[2])

* (displayAspect/requestedAspect - 1);

limits = new double[] { limits[0], limits[1],

limits[2] - excess/2, limits[3] + excess/2 };

}

else if (displayAspect < requestedAspect) {

double excess = (limits[1] - limits[0])

* (requestedAspect/displayAspect - 1);

limits = new double[] { limits[0] - excess/2, limits[1] + excess/2,

limits[2], limits[3] };

}

}

g2.scale( width / (limits[1]-limits[0]), height / (limits[3]-limits[2]) );

g2.translate( -limits[0], -limits[2] );

double pixelWidth = Math.abs(( limits[1] - limits[0] ) / width);

double pixelHeight = Math.abs(( limits[3] - limits[2] ) / height);

pixelSize = (float)Math.min(pixelWidth,pixelHeight);

transform = g2.getTransform();

}

The last two lines of this method assign values to pixelSize and transform, which are assumed
to be global variables. These are values that might be useful elsewhere in the program. For
example, pixelSize might be used for setting the width of a stroke to some given number of
pixels:

g2.setStroke( new BasicStroke(3*pixelSize) );

Remember that the unit of measure for the width of a stroke is the same as the unit of measure
in the coordinate system that you are using for drawing. If you want a stroke—or anything
else—that is measured in pixels, you need to know the size of a pixel.

As for the transform, it can be used for transforming points between pixel coordinates and
drawing coordinates. In particular, suppose that you want to implement mouse interaction. The
methods for handling mouse events will tell you the pixel coordinates of the mouse position.
Sometimes, however, you need to know the drawing coordinates of that point. You can use the
transform variable to make the transformation. Suppose that evt is a MouseEvent. You can
use the transform variable from the above method in the following code to transform the point
from the MouseEvent into drawing coordinates:

Point2D p = new Point2D.Double( evt.getX(), evt.getY() );

transform.inverseTransform( p, p );

The point p will then contain the drawing coordinates corresponding to the mouse position.
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1.3.2 Hierarchical Modeling

A major motivation for introducing a new coordinate system is that it should be possible to use
the coordinate system that is most natural to the scene that you want to draw. We can extend
this idea to individual objects in a scene: When drawing an object, it should be possible to use
the coordinate system that is most natural to the object. Geometric transformations allow us
to specify the object using whatever coordinate systeme we want, and to apply a transformation
to the object to place it wherever we want it in the scene. Transformations used in this way
are called modeling transformations.

Usually, we want an object in its natural coordinates to be centered at the origin, (0,0), or
at least to use the origin as a convenient reference point. Then, to place it in the scene, we
can use a scaling transform, followed by a rotation, followed by a translation to set its size,
orientation, and position in the scene. Since scaling and rotation leave the origin fixed, those
operations don’t move the reference point for the object. A translation can then be used to
move the reference point, and the object along with it, to any other point. (Remember that in
the code, the transformations are specified in the opposite order from the order in which they
are applied to the object and that the transformations are specified before drawing the object.)

The modeling transformations that are used to place an object in the scene should not affect
other objects in the scene. To limit their application to just the one object, we can save the
current transformation before starting work on the object and restore it afterwards. The code
could look something like this, where g is a Graphics2D:

AffineTransform saveTransform = g.getTransform();

g.translate(a,b); // move object into position

g.rotate(r); // set the orientation of the object

g.scale(s,s); // set the size of the object

... // draw the object, using its natural coordinates

g.setTransform(saveTransform); // restore the previous transform

Note that we can’t simply assume that the original transform is the identity transform. There
might be another transform in place, such as a coordinate transform, that affects the scene as
a whole. The modeling transform for the object is effectively applied in addition to any other
transform that was specified previously. The modeling transform moves the object from its
natural coordinates into its proper place in the scene. Then on top of that, another transform
is applied to the scene as a whole, carrying the object along with it.

Now let’s extend this a bit. Suppose that the object that we want to draw is itself a complex
picture, made up of a number of smaller objects. Think, for example, of a potted flower made
up of pot, stem, leaves, and bloom. We would like to be able to draw the smaller component
objects in their own natural coordinate systems, just as we do the main object. But this is easy:
We draw each small object in its own coordinate system, and use a modeling transformation
to move the small object into position within the main object. On top of that, we can apply
another modeling transformation to the main object, to move it into the completed scene; its
component objects are carried along with it. In fact, we can build objects that are made up of
smaller objects which in turn are made up of even smaller objects, to any level. This type of
modeling is known as hierarchical modeling .

Let’s look at a simple example. Suppose that we want to draw a simple 2D image of a cart
with two wheels. We will draw the body of the cart as a rectangle. For the wheels, suppose
that we have written a method

private void drawWheel(Graphics2D g2)
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that draws a wheel. The wheel is drawn using its own natural coordinate system. Let’s say
that in this coordinate system, the wheel is centered at (0,0) and has radius 1.

We will draw the cart with the center of its rectangular body at the point (0,0). The
rectangle has width 5 and height 2, so its corner is at (−2.5,0). To complete the cart, we need
two wheels. To make the size of the wheels fit the cart, we will probably have to scale them.
To place them in the correct positions relative to body of the cart, we have to translate one
wheel to the left and one wheel to the right. When I coded this example, I had to play around
with the numbers to get the right sizes and positions for the wheels, and I also found that the
wheels looked better if I also moved them down a bit. Using the usual techniques of hierarchical
modeling, we have to remember to save the current transform and to restore it after drawing
each wheel. Here is a subroutine that can be used to draw the cart:

private void drawCart(Graphics2D g2) {

AffineTransform tr = g2.getTransform(); // save the current transform

g2.translate(-1.5,-0.1); // center of first wheel will be at (-1.5,-0.1)

g2.scale(0.8,0.8); // scale to reduce radius from 1 to 0.8

drawWheel(g2); // draw the first wheel

g2.setTransform(tr); // restore the transform

g2.translate(1.5,-0.1); // center of second wheel will be at (1.5,-0.1)

g2.scale(0.8,0.8); // scale to reduce radius from 1 to 0.8

drawWheel(g2); // draw the second wheel

g2.setTransform(tr); // restore the transform

g2.setColor(Color.RED);

g2.fill(new Rectangle2D.Double(-2.5,0,5,2) ); // draw the body of the cart

}

It’s important to note that the same subroutine is used to draw both wheels. The reason
that two wheels appear in the picture is that different modeling transformations are in effect
for the two subroutine calls. Once we have this cart-drawing subroutine, we can use it to add
a cart to a scene. When we do this, we can apply another modeling transformation to the cart
as a whole. Indeed, we could add several carts to the scene, if we want, by calling the cart
subroutine several times with different modeling transformations.

You should notice the analogy here: Building up a complex scene out of objects is similar
to building up a complex program out of subroutines. In both cases, you can work on pieces of
the problem separately, you can compose a solution to a big problem from solutions to smaller
problems, and once you have solved a problem, you can reuse that solution in several places.

Here is our cart used in a scene. The scene shows the cart on a road, with hills, windmills,
and a sun in the background. The on-line applet version of this example is an animation in
which the windmills turn and the cart rolls down the road.
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You can probably see how hierarchical modeling is used to draw the windmills in this example.
There is a drawWindmill method that draws a windmill in its own coordinate system. Each of
the windmills in the scene is then produced by applying a different modeling transform to the
standard windmill.

It might not be so easy to see how different parts of the scene can be animated. In fact,
animation is just another aspect of modeling. A computer animation consists of a sequence
of frames. Each frame is a separate image, with small changes from one frame to the next.
From our point of view, each frame is a separate scene and has to be drawn separately. The
same object can appear in many frames. To animate the object, we can simply apply a different
modeling transformation to the object in each frame. The parameters used in the transformation
can be computed from the current time or from the frame number. To make a cart move from
left to right, for example, we might apply a translation

g2.translate(frameNumber * 0.1);

to the cart, where frameNumber is the frame number, which increases by 1 from one frame to
the next. (The animation is driven by a Timer that fires every 30 milliseconds. Each time the
timer fires, 1 is added to frameNumber and the scene is redrawn.) In each frame, the cart will
be 0.1 units farther to the right than in the previous frame. (In fact, in the actual program,
the translation that is applied to the cart is

g2.translate(-3 + 13*(frameNumber % 300) / 300.0, 0);

which moves the reference point of the cart from −3 to 13 along the horizontal axis every 300
frames.)

The really neat thing is that this type of animation works with hierarchical modeling.
For example, the drawWindmill method doesn’t just draw a windmill—it draws an animated
windmill, with turning vanes. That just means that the rotation applied to the vanes depends
on the frame number. When a modeling transformation is applied to the windmill, the rotating
vanes are scaled and moved as part of the object as a whole. This is actually an example of
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hierarchical modeling. The vanes are sub-objects of the windmill. The rotation of the vanes
is part of the modeling transformation that places the vanes into the windmill object. Then a
further modeling transformation can be applied to the windmill object to place it in the scene.

The file HierarchicalModeling2D.java contains the complete source code for this example.
You are strongly encouraged to read it, especially the paintComponent method, which composes
the entire scene.



Chapter 2

The Basics of OpenGL and Jogl

The step from two dimensions to three dimensions in computer graphics is a big one.
Three-dimensional objects are harder to visualize than two, and three-dimensional transforma-
tions take some getting used to. Three-dimensional scenes have to be projected down onto a
two-dimensional surface to be viewed, and that introduces its own complexities.

Furthermore, there is the problem that realistic 3D scenes require the effects of lighting
to make them appear three-dimensional to the eye. Without these effects, the eye sees only
flat patches of color. To simulate lighting in 3D computer graphics, you have to know what
light sources illuminate the scene, and you have to understand how the light from those sources
interacts with the surface material of the objects in the scene.

As we pursue our study of OpenGL, we will cover all of this and more. We will start in
this chapter with an overview that will allow you to use OpenGL to create fairly complex 3D
scenes. In later chapters, we will cover more of the details and advanced features of OpenGL,
and we will consider the general theory of 3D graphics in more depth.

2.1 Basic OpenGL 2D Programs

The first version of OpenGL was introduced in 1992. A sequence of new versions has
gradually added features to the API, with the latest version being OpenGL 3.2, in 2009. In
2004, the power of OpenGL was greatly enhanced in version 2.0 with the addition of GLSL, the
OpenGL Shading Language, which makes it possible to replace parts of the standard OpenGL
processing with custom programs written in a C-like programming language. This course will
cover nothing beyond OpenGL 2.1. (Indeed, I have no graphics card available to me that
supports a later version.)

OpenGL is an API for creating images. It does not have support for writing complete
applications. You can’t use it to open a window on a computer screen or to support input
devices such as a keyboard and mouse. To do all that, you need to combine OpenGL with a
general-purpose programming language, such as Java. While OpenGL is not part of standard
Java, libraries are available that add support for OpenGL to Java. The libraries are referred
to as Jogl or as the Java Binding for OpenGL. We will be using Jogl version 1.1.1a (although
Jogl 2.0 will be available soon).

In this section, we’ll see how to to create basic two-dimensional scenes using Jogl and
OpenGL. We will draw some simple shapes, change the drawing color, and apply some geometric
transforms. This will already give us enough capabilities to do some hierarchical modeling and
animation.

25
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2.1.1 A Basic Jogl App

To use OpenGL to display an image in a Java program, you need a GUI component in which
you can draw. Java’s standard AWT and Swing components don’t support OpenGL drawing
directly, but the Jogl API defines two new component classes that you can use, GLCanvas and
GLJPanel. These classes, like most of the Jogl classes that we will use in this chapter, are
defined in the package javax.media.opengl. GLCanvas is a subclass of the standard AWT Canvas

class, while GLJPanel is a subclass of Swing’s JPanel class. Both of these classes implement an
interface, GLAutoDrawable, that represents the ability to support OpenGL drawing.

While GLCanvas might offer better performance, it doesn’t fit as easily into Swing applica-
tions as does GLJPanel. For now, we will use GLJPanel.

OpenGL drawing is not done in the paintComponent method of a GLJPanel. Instead, you
should write an event listener object that implements the GLEventListener interface, and you
should register that object to listen for events from the panel. It’s the GLEventListener that
will actually do the drawing, in the GLEventListener method

public void display(GLAutoDrawable drawable)

The GLAutoDrawable will be the GLJPanel (or other OpenGL drawing surface) that needs to
be drawn. This method plays the same role as the paintComponent method of a JPanel. The
GLEventListener class defines three other methods:

public void init(GLAutoDrawable drawable)

public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height)

public void displayChanged(GLAutoDrawable drawable, boolean modeChanged,

boolean deviceChanged)

The init method is called once, when the drawable is first created. It is analogous to a con-
structor. The reshape method is called when the drawable changes shape. The third method
can always be left empty; it has to be there to satisfy the definition of a GLEventListener, but
it will not be called (and in fact will not even exist in Jogl 2.0).

To actually do anything with OpenGL, you need an OpenGL context , which is represented
in Jogl by an object of type GL. You can get a context from a GLAutoDrawable by saying

GL gl = drawable.getGL()

Generally, this statement is the first line of the init method, of the display method, and of the
reshape method in a GLEventListener. An object of type GL includes a huge number of methods,
and the GL class defines a huge number of constants for use as parameters in those methods.
We will spend much of our time in the rest of this course investigating the GL class. In fact,
most of the OpenGL API is contained in this class.

∗ ∗ ∗

We are just about ready to look at our first program! Here is a very simple but functional
Jogl Application:

import java.awt.*;

import javax.swing.*;

import javax.media.opengl.*;

public class BasicJoglApp2D extends JPanel implements GLEventListener {

public static void main(String[] args) {

JFrame window = new JFrame("Basic JOGL App 2D");

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
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window.setContentPane(new BasicJoglApp2D());

window.pack();

window.setVisible(true);

}

public BasicJoglApp2D() {

GLJPanel drawable = new GLJPanel();

drawable.setPreferredSize(new Dimension(600,600));

setLayout(new BorderLayout());

add(drawable, BorderLayout.CENTER);

drawable.addGLEventListener(this); // Set up events for OpenGL drawing!

}

public void init(GLAutoDrawable drawable) {

}

public void display(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

gl.glClear(GL.GL COLOR BUFFER BIT); // Fill with background color.

gl.glBegin(GL.GL POLYGON); // Start drawing a polygon.

gl.glVertex2f(-0.5f,-0.3f); // First vertex of the polygon.

gl.glVertex2f(0.5f,-0.3f); // Second vertex

gl.glVertex2f(0,0.6f); // Third vertex

gl.glEnd(); // Finish the polygon.

}

public void reshape(GLAutoDrawable drawable, int x, int y,

int width, int height) {

}

public void displayChanged(GLAutoDrawable drawable, boolean modeChanged,

boolean deviceChanged) {

}

}

The constructor in this class creates a GLJPanel, drawable, and adds it to the main panel. The
main panel itself acts as a GLEventListener, and registers itself to listen for OpenGL events
from drawable. This is done with the command drawable.addGLEventListener(this). The
display method is then the place where the content of the GLJPanel is drawn.

Let’s look at the display method, since it’s our first example of OpenGL drawing. This
method starts, as discussed above, by getting an OpenGL context, gl. The rest of the method
uses that context for all OpenGL drawing operations. The goal is to draw a triangle. Default
settings are used for the background color (black), the drawing color (white), and the coordinate
system (x coordinates ranging from −1 on the left to 1 on the right; y coordinates, from −1 on
the bottom to 1 at the top).

The first step is to fill the entire component with the background color. This is done with
the command

gl.glClear(GL.GL COLOR BUFFER BIT);

This command “clears” the drawing area to its background color. It’s actually clearing the
color buffer, where the color value for each pixel is stored. There are several buffers that can
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be cleared with this command, and the parameter tells which of them should be cleared. We’ll
see later how to set the background color.

The rest of the display method draws the triangle. Each of the vertices of the triangle is
specified by calling the method gl.glVertex2f. This method just specifies points. To say what is
done with the points, the calls to gl.glVertex2f have to come between gl.glBegin and gl.glEnd.
The parameter to gl.glBegin gives the meaning of the points—in this case the fact that they are
the vertices of a filled polygon. If we were to replace GL.GL POLYGON with GL.GL LINE LOOP in
the glBegin method, then the method would draw the outline of the triangle instead of a filled
triangle.

You are probably thinking that “gl.glVertex2f” is a pretty strange name for a method. The
names of the methods and constants come from the OpenGL API, which was designed with
the C programming language in mind. It would have been possible to simplify the names in
Java (and in particular to leave off the extra “gl”), but it was thought that programmers would
be more comfortable with the more familiar names. The name “glVertex2f” actually has a
very specific format. There is a basic name, “glVertex”. Then the number 2 tells how many
parameters there will be, and the “f” at the end says that the parameters are of type float.
There is a version of the basic method that has two parameters of type double, and its name
is “glVertex2d”. When we move into 3D, the 2 will change to a 3, giving “glVertex3f” and
“glVertex3d”, since one needs three coordinates to specify a point in three dimensions. The
names make sense. A lot of method names in OpenGL work the same way. Unfortunately, you
can’t always predict which possible variations of a name are actually defined.

Now that we have a sample Jogl application, we can use the same outline for other programs.
We just need to change the init, display, and reshape methods.

2.1.2 Color

To set the drawing color in an OpenGL context gl, you can use one of the glColor methods, such
as gl.glColor3f(red,green,blue). For this variation, the parameters are three values of type
float in the range 0 to 1. For example, gl.glColor3f(1,1,0) will set the color for subsequent
drawing operations to yellow. (There is also a version, glColor3d, that takes parameters of type
double.)

Suppose that we want to draw a yellow triangle with a black border. This can be done with
a display method

public void display(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

gl.glClear(GL.GL COLOR BUFFER BIT);

gl.glColor3f(1.0f, 1.0f, 0.0f); // Draw with yellow.

gl.glBegin(GL.GL POLYGON); // Draw a filled triangle.

gl.glVertex2f(-0.5f,-0.3f);

gl.glVertex2f(0.5f,-0.3f);

gl.glVertex2f(0,0.6f);

gl.glEnd();

gl.glColor3f(0,0,0); // Draw with black.

gl.glBegin(GL.GL LINE LOOP); // Draw the outline of the triangle.

gl.glVertex2f(-0.5f,-0.3f);

gl.glVertex2f(0.5f,-0.3f);

gl.glVertex2f(0,0.6f);

gl.glEnd();

}
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That takes care of changing the drawing color. The background color is a little more
complicated. There is no background color as such; there is a “clear color,” which is
used by the glClear method to fill the color buffer. The clear color can be set by calling
gl.glClearColor(red,blue,green,alpha). This method has only one version, and the pa-
rameters must be float values in the range 0 to 1. The parameters specify the color components
of the color that will be used for clearing the color buffer, including an alpha component, which
should ordinarily be set equal to 1. (Alpha components can be used for transparency, but
alphas are a more complicated topic in OpenGL than they are in standard Java graphics, and
we will avoid that topic for now.)

The clear color is often set once and for all, and then does not change between one call of
display and the next. In that case, it is not necessary to set the clear color in display ; it can be
set in init instead. This illustrates the use of the init method for setting the values of OpenGL
state variables that will remain the same throughout the program. Here is an example that
sets the clear color to light blue:

public void init(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

gl.glClearColor(0.8f, 0.8f, 1, 1);

}

Note that this uses an important fact about OpenGL. An OpenGL context keeps many internal
values in state variables. This includes, among many other things, the clear color, the drawing
color, the lighting setup, and the current geometric transform. All these state variables retain

their values between calls to init, display, and reshape. This is different from Java graphics,
where every call to paintComponent starts with a new graphics context, initialized to default
values. In OpenGL, if you are drawing in red at the end of one call to display, then you will
be drawing in red at the beginning of the next call. If you want to be sure of drawing with
some default drawing color at the beginning of display, you have to put in an explicit call to
glColor3f to do so.

2.1.3 Geometric Transforms and Animation

Naturally, we don’t want to spend too much time looking at still images. We need some
action. We can make a simple animation by introducing a frameNumber instance variable to
our program and adding Timer to drive the animation. When the timer fires, we will increment
the frame number and call the repaint method of the GLJPanel. Calling repaint will in turn
trigger a call to the display method where the actual OpenGL drawing is done. If we make
that drawing depend on the frame number, we get an animation.

We can use modeling transforms for animation in OpenGL, just as we did with Graphics2D

in Section 1.3. The main difference is that in OpenGL, transforms are meant to work in three
dimensions rather than two. In three dimensions, there is a z coordinate, in addition to the
usual x and y coordinates. We can still use 3D transforms to operate in 2D, as long as we make
sure to leave the z coordinate unchanged.

For example, translation in OpenGL is done with gl.glTranslatef (dx,dy,dz ) where the pa-
rameters specify the amount of displacement in the x, y, and z directions. By setting the third
parameter, dz, to 0, we get a 2D translation. The parameters are of type float, as indicated by
the “f” at the end of “translatef”. If you want to use parameters of type double, you can use
gl.translated. The names for the other transform methods work in the same way.
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Similarly, scaling can be done with gl.glScalef (sx,sy,sz ), where the parameters specify the
scaling factor in the x, y, and z directions. To avoid changing the scale in the z direction, the
third parameter, sz, should be 1.

Rotation transforms are a little more complicated, since rotation in 3D is more complicated
than rotation in 2D. In two dimensions, rotation is rotation about a point, and by default, the
rotation is about the origin, (0,0). In three dimensions, rotation is about a line called the axis

of rotation . Think of the rotating Earth spinning about its axis. To specify a rotation in
OpenGL, you must specify both an angle of rotation and an axis of rotation. This can be done
with gl.glRotatef (d,x,y,z ), where d is the angle of rotation, measured in degrees, and the axis of
rotation is the line through the origin (0,0,0) and the point (x,y,z ). For a 2D rotation, you can
set (x,y,z ) to (0,0,1). That is, for a rotation of d degrees about the 2D origin (0,0), you should
call gl.glRotatef (d,0,0,1). The direction of rotation is counterclockwise when d is positive.

As with Graphics2D, transforms apply to drawing that is done after the transform is specified,
not to things that have already been drawn. And when there are multiple transforms, then
they are applied to shapes in the reverse of the order in which they are specified in the code.
For example, if we want to scale a 2D object by a factor of 1.8, rotate it 30 degrees, and then
move it 3 units over and 1.5 units up, we could say

gl.glTranslatef( 3, 1.5f, 0 );

gl.glRotatef( 30, 0, 0, 1 );

gl.glScalef( 1.8f, 1.8f, 1 );

... // draw the object

Keep in mind that the transforms apply to all subsequent drawing, not just to the next object
drawn, unless you do something to restore the original transform. In fact, since OpenGL state
persists across calls to display, the transform will still be in effect the next time display is
called, unless you do something to prevent it! To avoid this problem, it’s common to set the
transform at the beginning of the display method to be the identity transform. This can be
done by calling the method gl.glLoadIdentity().

Here, for example, is a display method that draws a rotated triangle:

public void display(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

gl.glClear(GL.GL COLOR BUFFER BIT);

gl.glLoadIdentity(); // Start from the identity transform!

gl.glRotated(frameNumber, 0, 0, 1); // Apply a rotation of frameNumber degrees.

gl.glColor3f(1.0f, 1.0f, 0.0f);

gl.glBegin(GL.GL POLYGON); // Draw a yellow filled triangle.

gl.glVertex2f(-0.5f,-0.3f);

gl.glVertex2f(0.5f,-0.3f);

gl.glVertex2f(0,0.6f);

gl.glEnd();

gl.glColor3f(0,0,0);

gl.glBegin(GL.GL LINE LOOP); // Outline the triangle with black.

gl.glVertex2f(-0.5f,-0.3f);

gl.glVertex2f(0.5f,-0.3f);

gl.glVertex2f(0,0.6f);

gl.glEnd();

}

Since the rotation depends on frameNumber, we can use this method in an animation of a
spinning triangle. You can find the full source code for this simple animation program in
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BasicJoglAnimation2D.java You can find an applet version of the program on-line. Here is one
frame from the animation:

2.1.4 Hierarchical Modeling

When we do geometric modeling, we need a way to limit the effect of a transform to one
object. That is, we should save the current transform before drawing the object, and restore
that transform after the object has been drawn. OpenGL has methods that are meant to do
precisely that. The command gl.glPushMatrix () saves a copy of the current transform. It should
be matched by a later call to gl.glPopMatrix (), which restores the transform that was saved by
gl.glPushMatrix (thus discarding any changes that were made to the current transform between
the two method calls). So, the general scheme for geometric modeling is:

gl.glPushMatrix();

... // Apply the modeling transform of the object.

... // Draw the object.

gl.glPopMatrix();

(“Matrix,” by the way, is really just another name for “transform.” It refers to the way in which
transforms are represented internally.)

As you might suspect from the method names, transforms are actually saved on a stack

of transforms. (Unfortunately, you cannot assume that this stack can grow to arbitrary size.
However, OpenGL implementations must allow at least 32 transforms on the stack, which
should be plenty for most purposes.) glPushMatrix adds a copy of the current transform to the
stack; glPopMatrix removes the transform from the top of the stack and uses it to replace the
current transform in the OpenGL context.

The use of a stack makes it easy to implement hierarchical modeling. You can draw a
scene using glPushMatrix and glPopMatrix when placing each object into the scene, to limit
transforms that are applied to an object to just that object. But each of the objects could itself
be a complex object that uses glPushMatrix and glPopMatrix to draw its sub-objects. As long
as each “push” is matched with a “pop,” drawing a sub-object will not make any permanent
change to the transform stack. In outline, the process would go something like this:

pushMatrix

apply overall object modeling transform

pushMatrix

apply first sub-object modeling transform

draw first sub-object

popMatrix
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pushMatrix

apply second sub-object modeling transform

draw second sub-object

popMatrix

.

.

.

popMatrix

And keep in mind that the sub-objects could themselves be complex objects, with their own
nested calls to glPushMatrix and glPopMatrix.

In HierarchicalModeling2D.java, in Subsection 1.3.2, we did some hierarchical modeling
using Java Graphics2D. We’re now in a position to do the same thing with Jogl. The sample
program JoglHierarchicalModeling2D.java is an almost direct port of the Graphics2D example.
It uses similar subroutines to draw a sun, a wheel, a cart, and a windmill. For example, here is
the cart-drawing subroutine in OpenGL:

private void drawCart(GL gl) {

gl.glPushMatrix(); // Draw the first wheel as a sub-object.

gl.glTranslatef(-1.5f, -0.1f, 0);

gl.glScalef(0.8f,0.8f,1);

drawWheel(gl);

gl.glPopMatrix();

gl.glPushMatrix(); // Draw the second wheel as a sub-object.

gl.glTranslatef(1.5f, -0.1f, 0);

gl.glScalef(0.8f,0.8f,1);

drawWheel(gl);

gl.glPopMatrix();

gl.glColor3f(1,0,0); // Draw a rectangle for the body of the cart

gl.glBegin(GL.GL POLYGON);

gl.glVertex2f(-2.5f,0);

gl.glVertex2f(2.5f,0);

gl.glVertex2f(2.5f,2);

gl.glVertex2f(-2.5f,2);

gl.glEnd();

}

When the display method draws the complete scene, it calls the drawCart method to add a
cart to the scene. The cart requires its own modeling transformation to place it into the scene,
and that transform requires its own calls to glPushMatrix and glPopMatrix :

gl.glPushMatrix();

gl.glTranslated(-3 + 13*(frameNumber % 300) / 300.0, 0, 0);

gl.glScaled(0.3,0.3,1);

drawCart(gl); // does its own pushes and pops internally!

gl.glPopMatrix();

I encourage you to look through the program, even though it does use a few techniques that
we haven’t covered yet.



2.1. BASIC OPENGL 2D PROGRAMS 33

2.1.5 Introduction to Scene Graphs

So far, we have been doing hierarchical modeling using subroutines to draw the objects. This
works well, but there is another approach that goes well with object-oriented programming.
That is, we can represent the graphical objects in a scene with software objects in the program.
Instead of having a cart-drawing subroutine, we might have an object of type Cart, where Cart

is a class that we have written to represent carts in the scene. (Or, as I will do in the actual
example, we could have a cart object belonging to a more general class ComplexObject2D, which
represents objects that are made up of sub-objects.) Note that the cart object would include
references to the cart’s sub-objects, and the scene as a whole would be represented by a linked
collection of software objects. This linked data structure is an example of a scene graph . A
scene graph is a data structure that represents the contents of a scene. When you need to draw
the scene, you can get all the information that you need by traversing the scene graph.

The sample program JoglHMWithSceneGraph2D.java is another version of our hierarchical
modeling animation, this one using a scene graph. In this version, an object in the scene is
represented in the program by an object of type SceneNode2D. SceneNode2D is an abstract
class (defined in scenegraph2D/SceneNode2D.java). It has an abstract method, public void

draw(GL gl), which draws the object in an OpenGL context. A SceneNode2D can have a color,
and it can have a transformation that is specified by separate scaling, rotation, and translation
factors. The color in this case is an example of an attribute of a node in a scene graph.
Attributes contain properties of objects beyond the purely geometric properties.

SceneNode2D has a subclass ComplexObject2D that represents an object that is made up
of sub-objects. Each sub-object is of type SceneNode2D and can itself be a ComplexObject2D.
There is an add method for adding a sub-object to the list of sub-objects in the complex object.
The draw method in the ComplexObject2D class simply draws the sub-objects, with their proper
colors and transformations. Note that the complex object can have its own transformation,
which is applied to the complex object as a whole, on top of the transformations that are
applied to the sub-objects. (The treatment of color for complex objects is also interesting. I
have decided that the color of an object can be null, which is the default value. If the color
of a sub-object is null, then its color will be inherited from the main object in which it is
contained. The general question of how to handle attributes in scene graphs is an important
design issue.)

SceneNode2D also has several subclasses to represent geometric primitives. For example,
there is a class LineNode that represents a single line segment between two points. There is also
PolygonNode and DiskNode. These geometric primitive classes represent the “bottom level” of
the scene graph. They are objects that are not composed of simpler objects, and they are the
fundamental building blocks of complex objects.

In the sample animation program, an instance variable named theWorld of type ComplexOb-

ject2D represents the entire content of the scene. This means that in the display method,
drawing the content of the image requires only one line of code:

theWorld.draw(gl);

Most of the work has been moved into a method, buildTheWorld(), that constructs the scene
graph. This method is called only once, at the beginning of the program. It’s interesting to see
how objects in the scene are constructed. Here, for example, is the code the creates a wheel for
the cart:

ComplexObject2D wheel = new ComplexObject2D();

wheel.setColor(Color.BLACK); // Color for most of the wheel.
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wheel.add( new DiskNode(1) ); // The parameter is the radius of the disk.

DiskNode hubcap = new DiskNode(0.8);

hubcap.setColor(new Color(0.75f, 0.75f, 0.75f)); // Override color of hubcap.

wheel.add(hubcap);

wheel.add( new DiskNode(0.2) );

for (int i = 0; i < 15; i++) { // Add lines representing the wheel’s spokes.

double angle = (2*Math.PI/15) * i;

wheel.add(new LineNode(0,0,Math.cos(angle),Math.sin(angle)));

}

Once this object is created, we can add it to the cart object. In fact, we can add it twice, with
two different transformations. When the scene graph is traversed, the wheel will appear twice.
The two occurrences will be in different locations because of the different transformations
that are applied. To make things like this easier, I made a subclass TransformedObject of
SceneNode2D to represent an object with an extra transform to be applied to that object.
Here, then, is how the cart is created:

ComplexObject2D cart = new ComplexObject2D();

cart.setColor(Color.RED); // Overall color; in fact, will apply only to the body.

cart.add( new TransformedObject(wheel, 0.8, 0, -1.5, -0.1) ); // First wheel.

cart.add( new TransformedObject(wheel, 0.8, 0, 1.5, -0.1) ); // Second wheel.

cart.add( new PolygonNode(

new double[] { -2.5, 0, 2.5, 0, 2.5, 2, -2.5, 2} ) ); // The body.

cart.setScaling(0.3); // Suitable scaling for the overall scene.

We can now add the cart to the scene simply by calling theWorld.add(cart). You can read
the program to see how the rest of the scene graph is created and used. The classes that are
used to build the scene graph can be found in the source directory scenegraph2D.

This leaves open the question of how to do animation when the objects are stored in a
scene graph. For the type of animation that is done in this example, we just have to be able to
change the transforms that are applied to the object. Before drawing each frame, we will set
the correct transforms for that frame.

In the sample program, I store references to the objects representing the wheel, the cart,
and the rotating vanes of the windmill in instance variables wheel, cart, and vanes. To animate
these objects, the display methods includes commands to set the rotation or translation of the
object to a value that depends on the current frame number. This is done just before the world
is drawn:

wheel.setRotation(frameNumber*20);

vanes.setRotation(frameNumber * (180.0/46));

cart.setTranslation(-3 + 13*(frameNumber % 300) / 300.0, 0);

theWorld.draw(gl);

The scene graph framework that is used in this example is highly simplified and is meant as
an example only. More about scene graphs will be coming up later. By the way, a scene graph
is called a “graph” because it’s generally in the form of a data structure known as a “directed
acyclic graph.”

2.1.6 Compiling and Running Jogl Apps

Since Jogl is not a standard part of Java, you can’t run programs that use it unless you make the
Jogl classes available to that program. The classes that you need for Jogl 1.1.1 are distributed
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in two jar files, jogl.jar and gluegen-rt.jar. These jar files must be on the Java classpath when
you compile or run any program that uses Jogl.

Furthermore, Jogl uses “native code libraries.” Native code is code that is written in the
machine language that is appropriate to a particular kind of computer, rather than in Java.
The interface to OpenGL requires some native code, which means that you have to make the
appropriate native code libraries available to Java when you run (but not when you compile) any
program that uses Jogl. Unfortunately, you need different native code libraries for Linux, for
MacOS, and for Windows. That’s why there is a different Jogl download for each platform. The
download for a given platform includes the appropriate native code libraries for that platform.
As I write this, the downloads for Jogl 1.1.1a for various platforms can be found at:

http://download.java.net/media/jogl/builds/archive/jsr-231-1.1.1a/

You will need to get the download for your platform if you want to develop Jogl programs
on the command line or in the Eclipse IDE. However, if you use Netbeans (http://netbeans.org)
as your development environment, you can avoid the whole issue. There is a Netbeans plugin
that adds full support for Jogl/OpenGL development. If you install the plugin, you can develop
and run your programs in Netbeans with no further action. As I write this, the current version
of the plugin supports Jogl 1.1.1a, and information about it can be found at

http://kenai.com/projects/netbeans-opengl-pack/pages/Home

If Eclipse (http://eclipse.org) is your development environment, it’s just a little harder. You
need to get the Jogl 1.1.1a download for your platform. Unzip the zip file and put the directory
in some convenient place. The directory has a lib subdirectory that contains the jar files and
native code libraries that you need. While you are downloading, you might also want to get
the Jogl documentation download, jogl-1.1.1a-docs.zip, and unzip it as well.

Then, when you want to use Jogl in an Eclipse project, you have to do the following setup in
that project: Right-click the name of the project in the “Project Explorer” pane. In the pop-up
menu, go to the “Build Path” submenu and select “Configure Build Path. . . ”. A dialog box
will open. Click on the “Libraries” tab in the “Java Build Path” pane. Add the two required
Jogl jar files to the build path. [Click the button “Add External Jars. . . ”. In the file dialog
box, browse to the lib directory in the Jogl download. Select jogl.jar and click “OK”. Now
do the same thing for gluegen-rt.jar.] Finally, set up the jar files to use the Jogl native code
libraries. [Click the triangle to the left of jogl.jar in the list of libraries. This will reveal a
setting for “Native Library Location”. Click it, then click the “Edit” button. Browse to the
Jogl lib directory, and click OK. Do the same thing for gluegen-rt.jar.] If you downloaded the
Jogl docs, you will also want to set up the “Javadoc Location” under “jogl.jar”. Set it to point
to the unzipped documentation directory.

If you’ve gotten all the steps right, you can then compile and run Jogl programs in your
Eclipse project.

∗ ∗ ∗

If you like to work on the command line, you can still do that with Jogl. When using javac
to compile a class that uses Jogl, you will need to add the Jogl jar file, jogl.jar, to the classpath.
For example:

javac -cp /home/eck/jogl-1.1.1/lib/jogl.jar:. packagename/*.java

Of course, you need to replace /home/eck/jogl-1.1.1/lib with the correct path to the jar file
on your computer. (This example assumes a Linux or Mac OS computer; on Windows, paths
look a little different.) When using the java command for running a program that uses Jogl,
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you need to add both jogl.jar and gluegen-rt.jar to the class path. Furthermore, Java must
be able to find the native library files that are also in the lib directory of the Jogl download.
For Linux, that directory should be added to the LIBRARY PATH environment variable; for Mac
OS, it should be added to DYLD LIBRARY PATH; and for Windows, it should be added to PATH.
Here for example is a sequence of commands that might be used on Linux to run a class,
packagename.MainClass, that uses Jogl:

JOGL LIB DIR="/home/eck/jogl-1.1.1/lib"

JOGL JAR FILES="$JOGL LIB DIR/jogl.jar:$JOGL LIB DIR/gluegen-rt.jar"

export LIBRARY PATH="$JOGL LIB DIR"

java -cp $JOGL JAR FILES:. packagename.MainClass

All that typing would quickly get annoying, so you will want to use scripts to do the compiling
and running. The source code directory for this book contains two simple scripts, gljavac.sh
and gljava.sh, that can be used to compile and run Jogl programs on Mac OS or Linux. You
will just need to edit the scripts to use the correct path to the Jogl lib directory. (Sorry, but I
do not currently have scripts for Windows.)

2.2 Into the Third Dimension

As we move our drawing into the third dimension, we have to deal with the addition of
a third coordinate, a z-axis in addition to an x-axis and a y-axis. There’s quite a bit more to
it than that, however, since our goal is not just to define shapes in 3D. The goal is to make
2D images of 3D scenes that look like pictures of three-dimensional objects. Take a look, for
example, at this picture of a set of three coordinate axes:

It’s not too hard to see this as a picture of three arrows pointing in different directions in space.
If we just drew three straight lines to represent the axes, it would look like nothing more than
three lines on a 2D surface. In the above picture, on the other hand, each axis is actually
built from a long, thin cylinder and a cone. Furthermore, the shapes are shaded in a way that
imitates the way that light would reflect from curved shapes. Without this simulated lighting,
the shapes would just look like flat patches of color instead of curved 3D shapes. (This picture
was drawn with a short OpenGL program. Take a look at the sample program Axes3D.java if
you are interested.)



2.2. INTO THE THIRD DIMENSION 37

In this section and in the rest of the chapter, we will be looking at some of the funda-
mental ideas of working with OpenGL in 3D. Some things will be simplified and maybe even
oversimplified as we try to get the big picture. Later chapters will fill in more details.

2.2.1 Coordinate Systems

Our first task is to understand 3D coordinate systems. In 3D, the x-axis and the y-axis lie in
a plane called the xy-plane. The z-axis is perpendicular to the xy-plane. But you see that we
already have a problem. The origin, (0,0,0), divides the z-axis into two parts. One of these
parts is the positive direction of the z-axis, and we have to decide which one. In fact, either
choice will work.

In OpenGL, the default coordinates system identifies the xy-plane with the computer screen,
with the positive direction of the x-axis pointing to the right and the positive direction of the
y-axis pointing upwards. The z-axis is perpendicular to the screen. The positive direction of
the z-axis points out of the screen, towards the viewer, and the negative z-axis points into the
screen. This is a right-handed coordinate system : If you curl the fingers of your right hand
in the direction from the positive x-axis to the positive y-axis, then your thumb points in the
direction of the positive z-axis. (In a left-handed coordinate system, you would use your left
hand in the same way to select the positive z-axis.)

This is only the default coordinate system. Just as in 2D, you can set up a different
coordinate system for use in drawing. However, OpenGL will transform everything into the
default coordinate system before drawing it. In fact, there are several different coordinate
systems that you should be aware of. These coordinates systems are connected by a series of
transforms from one coordinate system to another.

The coordinates that you actually use for drawing an object are called object coordinates.
The object coordinate system is chosen to be convenient for the object that is being drawn. A
modeling transformation can then be applied to set the size, orientation, and position of the
object in the overall scene (or, in the case of hierarchical modeling, in the object coordinate
system of a larger, more complex object).

The coordinates in which you build the complete scene are called world coordinates.
These are the coordinates for the overall scene, the imaginary 3D world that you are creating.
Once we have this world, we want to produce an image of it.

In the real world, what you see depends on where you are standing and the direction in
which you are looking. That is, you can’t make a picture of the scene until you know the
position of the “viewer” and where the viewer is looking (and, if you think about it, how the
viewer’s head is tilted). For the purposes of OpenGL, we imagine that the viewer is attached to
their own individual coordinate system, which is known as eye coordinates. In this coordinate
system, the viewer is at the origin, (0,0,0), looking in the direction of the negative z-axis (and
the positive direction of the y-axis is pointing straight up). This is a viewer-centric coordinate
system, and it’s important because it determines what exactly is seen in the image. In other
words, eye coordinates are (almost) the coordinates that you actually want to use for drawing
on the screen. The transform from world coordinates to eye coordinates is called the viewing

transform .
If this is confusing, think of it this way: We are free to use any coordinate system that we

want on the world. Eye coordinates are the natural coordinate system for making a picture
of the world as seen by a viewer. If we used a different coordinate system (world coordinates)
when building the world, then we have to transform those coordinates to eye coordinates to
find out what the viewer actually sees. That transformation is the viewing transform.
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Note, by the way, that OpenGL doesn’t keep track of separate modeling and viewing trans-
forms. They are combined into a single modelview transform . In fact, although the dis-
tinction between modeling transforms and viewing transforms is important conceptually, the
distinction is for convenience only. The same transform can be thought of as a modeling trans-
form, placing objects into the world, or a viewing transform, placing the viewer into the world.
In fact, OpenGL doesn’t even use world coordinates internally—it goes directly from object
coordinates to eye coordinates by applying the modelview transformation.

We are not done. The viewer can’t see the entire 3D world, only the part that fits into the
viewport , the rectangular region of the screen or other display device where the image will
be drawn. We say that the scene is clipped by the edges of the viewport. Furthermore, in
OpenGL, the viewer can see only a limited range of z-values. Objects with larger or smaller
z-values are also clipped away and are not rendered into the image. (This is not, of course,
the way that viewing works in the real world, but it’s required by the way that OpenGL works
internally.) The volume of space that is actually rendered into the image is called the view

volume . Things inside the view volume make it into the image; things that are not in the
view volume are clipped and cannot be seen. For purposes of drawing, OpenGL applies a
coordinate transform that maps the view volume onto a cube. The cube is centered at the
origin and extends from −1 to 1 in the x-direction, in the y-direction, and in the z-direction.
The coordinate system on this cube is referred to as normalized device coordinates. The
transformation from eye coordinates to normalized device coordinates is called the projection

transformation . At this point, we haven’t quite projected the 3D scene onto a 2D surface,
but we can now do so simply by discarding the z-coordinate.

We still aren’t done. In the end, when things are actually drawn, there are device co-

ordinates, the 2D coordinate system in which the actual drawing takes place on a physical
display device such as the computer screen. Ordinarily, in device coordinates, the pixel is the
unit of measure. The drawing region is a rectangle of pixels. This is the rectangle that we have
called the viewport. The viewport transformation takes x and y from the normalized device
coordinates and scales them to fit the viewport.

Let’s go through the sequence of transformations one more time. Think of a primitive, such
as a line or polygon, that is part of the world and that might appear in the image that we want
to make of the world. The primitive goes through the following sequence of operations:

1. The points that define the primitive are specified in object coordinates, using methods
such as glVertex3f.

2. The points are first subjected to the modelview transformation, which is a combination of
the modeling transform that places the primitive into the world and the viewing transform
that maps the primitive into eye coordinates.

3. The projection transformation is then applied to map the view volume that is visible to
the viewer onto the normalized device coordinate cube. If the transformed primitive lies
outside that cube, it will not be part of the image, and the processing stops. If part of
the primitive lies inside and part outside, the part that lies outside is clipped away and
discarded, and only the part that remains is processed further.

4. Finally, the viewport transform is applied to produce the device coordinates that will
actually be used to draw the primitive on the display device. After that, it’s just a matter
of deciding how to color individual pixels to draw the primitive on the device.

∗ ∗ ∗
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All this still leaves open the question of how you actually work with this complicated series
of transformations. Remember that you just have to set up the viewport, modelview, and
projection transforms. OpenGL will do all the calculations that are required to implement the
transformations.

With Jogl, the viewport is automatically set to what is usually the correct value, that is, to
use the entire available drawing area as the viewport. This is done just before calling reshape
method of the GLEventListener. It is possible, however, to set up a different viewport by calling
gl.glViewport(x,y,width,height), where (x,y) is the lower left corner of the rectangle that you
want to use for drawing, width is the width of the rectangle, and height is the height. These
values are given in device (pixel) coordinates. Note that in OpenGL device coordinates, the
minimal y value is at the bottom, and y increases as you move up; this is the opposite of the
convention in Java Graphics2D. You might use this, for example, to draw two or more views of
the same scene in different parts of the drawing area, as follows: In your display i> method, you
would use glViewport to set up a viewport in part of the drawing area, and draw the first view
of the scene. You would then use glViewport again to set up a different viewport in another
part of the drawing area, and draw the scene again, from a different point of view.

The modelview transform is a combination of modeling and viewing transforms. Modeling
is done by applying the basic transform methods glScalef, glRotatef, and glTranslatef (or their
double precision equivalents). These methods can also be used for viewing. However, it can
be clumsy to get the exact view that you want using these methods. In the next chapter, we’ll
look at more convenient ways to set up the view. For now, we will just use the default view, in
which the viewer is on the z-axis, looking in the direction of the negative z-axis.

Finally, to work with the projection transform, you need to know a little more about
how OpenGL handles transforms. Internally, transforms are represented as matrices (two-
dimensional arrays of numbers), and OpenGL uses the terms projection matrix and mod-

elview matrix instead of projection transform and modelview transform. OpenGL keeps track
of these two matrices separately, but it only lets you work on one or the other of these matrices
at a time. You select the matrix that you want to work on by setting the value of an OpenGL
state variable. To select the projection matrix, use

gl.glMatrixMode(GL.GL PROJECTION);

To select the modelview matrix, use

gl.glMatrixMode(GL.GL MODELVIEW);

All operations that affect the transform, such as glLoadIdentity, glScalef, and glPushMatrix,
affect only the currently selected matrix. (OpenGL keeps separate stacks of matrices for use
with glPushMatrix and glPopMatrix, one for use with the projection matrix and one for use
with the modelview matrix.)

The projection matrix is used to establish the view volume, the part of the world that is
rendered onto the display. The view volume is expressed in eye coordinates, that is, from the
point of view of the viewer. (Remember that the projection transform is the transform from eye
coordinates onto the standard cube that is used for normalized device coordinates.) OpenGL has
two methods for setting the view volume, glOrtho and glFrustum. These two methods represent
two different kinds of projection, orthographic projection and perspective projection .
Although glFrustum gives more realistic results, it’s harder to understand, and we will put it
aside until the next chapter. For now, we consider a simple version of glOrtho. We assume
that we want to view objects that lie in a cube centered at the origin. We can use glOrtho to



40 CHAPTER 2. BASICS OF OPENGL AND JOGL

establish this cube as the view volume. If the cube stretches from −s to s in the x, y, and z
directions, then the projection can be set up by calling

gl.glOrtho(-s,s,-s,s,-s,s);

In general, though, we want the view volume to have the same aspect ratio as the viewport, so
we need to expand the view volume in either the x or the y direction to match the aspect ratio
of the viewport. This can be done most easily in the reshape method, where we know the aspect
ratio of the viewport. Remember that we must call glMartixMode to switch to the projection
matrix. Then, after setting up the projection, we call glMatrixMode again to switch back to the
modelview matrix, so that all further transform operations will affect the modelview transform.
Putting this all together, we get the following reshape method:

public void reshape(GLAutoDrawable drawable,

int x, int y, int width, int height) {

GL gl = drawable.getGL();

double s = 1.5; // limits of cube that we want to view go from -s to s.

gl.glMatrixMode(GL.GL PROJECTION);

gl.glLoadIdentity(); // Start with the identity transform.

if (width > height) { // Expand x limits to match viewport aspect ratio.

double ratio = (double)width/height;

gl.glOrtho(-s*ratio, s*ratio, -s, s, -s, s);

}

else { // Expand y limits to match viewport aspect ratio.

double ratio = (double)height/width;

gl.glOrtho(-s, s, -s*ratio, s*ratio, -s, s);

}

gl.glMatrixMode(GL.GL MODELVIEW);

}

This method is used in the sample program Axes3D.java. Still, it would be nice to have a
better way to set up the view, and so I’ve written a helper class that you can use without
really understanding how it works. The class is Camera, and you can find it in the source
package glutil along with several other utility classes that I’ve written. A Camera object takes
responsibility for setting up both the projection transform and the view transform. By default,
it uses a perspective projection, and the region with x, y, and z limits from −5 to 5 is in view. If
camera is a Camera, you can change the limits on the view volume by calling camera.setScale(s).
This will change the x, y, and z limits to range from −s to s. To use the camera, you should
call camera.apply(gl) at the beginning of the display method to set up the projection and view.
In this case, there is no need to define the reshape method. Cameras are used in the remaining
sample programs in this chapter.

Note that even when drawing in 2D, you need to set up a projection transform. Otherwise,
you can only use coordinates between −1 and 1. When setting up the projection matrix for 2D
drawing, you can use glOrtho to specify the range of x and y coordinates that you want to use.
The range of z coordinates is not important, as long as it includes 0. For example:

gl.glMatrixMode(GL.GL PROJECTION);

gl.glLoadIdentity();

gl.glOrtho(xmin, xmax, ymin, ymax, -1, 1);

gl.glMatrixMode(GL.GL MODELVIEW);
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2.2.2 Essential Settings

Making a realistic picture in 3D requires a lot of computation. Certain features of this com-
putation are turned off by default, since they are not always needed and certainly not for 2D
drawing. When working in 3D, there are a few essential features that you will almost always
want to enable. Often, you will do this in the init method.

Perhaps the most essential feature for 3D drawing is the depth test . When one object lies
behind another, only one of the objects can be seen, and which is seen depends on which one
is closer to the viewer, and not on the order in which the objects are drawn. Now, OpenGL
always draws objects in the order in which they are generated in the code. However, for each
pixel that it draws in an object, it firsts tests whether there is already another object at that
pixel that is closer to the viewer than the object that is being drawn. In that case, it leaves
the pixel unchanged, since the object that is being drawn is hidden from sight by the object
that is already there. This is the depth test. “Depth” here really means distance from the user,
and it is essentially the z-coordinate of the object, expressed in eye coordinates. In order to
implement the depth test, OpenGL uses a depth buffer . This buffer stores one value for each
pixel, which represents the eye-coordinate z-value of the object that is drawn at that pixel, if
any. (There is a particular value that represents “no object here yet.”) By default, the depth
test is disabled. If you don’t enable it, then things might appear in your picture that should
really be hidden behind other objects. The depth test is enabled by calling

gl.glEnable(GL.GL DEPTH TEST);

This is usually done in the init method. You can disable the depth test by calling

gl.glDisable(GL.GL DEPTH TEST);

and you might even want to do so in some cases. (Note that any feature that can be enabled
can also be disabled. In the future, I won’t mention this explicitly.)

To use the depth test correctly, it’s not enough to enable it. Before you draw anything, the
depth buffer must be set up to record the fact that no objects have been drawn yet. This is
called clearing the depth buffer. You can do this by calling glClear with a flag that indicates
that it’s the depth buffer that you want to clear:

gl.glClear(GL.GL DEPTH BUFFER BIT);

This should be done at the beginning of the display method, before drawing anything, at the
same time that you clear the color buffer. In fact, the two opererations can be combined into
one method call, by “or-ing” together the flags for the two buffers:

gl.glClear(GL.GL COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT);

This might be faster than clearing the two buffers separately, depending on how the clear
operations are implemented by the graphics hardware.

There is one issue with the depth test that you should be aware of. What happens when
two objects are actually at the same distance from the user? Suppose, for example, that you
draw one square inside another, lying in the same plane. Does the second square appear or not?
You might expect that the second square that is drawn might appear, as it would if the depth
test were disabled. The truth is stranger. Because of the inevitable inexactness of real-number
computations, the computed z-values for the two squares at a given pixel might be different—
and which one is greater might be different for different pixels. Here is a real example in which
a black square is drawn inside a white square which is inside a gray square. The whole picture
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is rotated a bit to force OpenGL to do some real-number computations. The picture on the
left is drawn with the depth test enabled, while it is disabled for the picture on the right:

When the depth test is applied, there is no telling which square will end up on top at a given
pixel. A possible solution would be to move the white square a little bit forward and the black
square forward a little bit more—not so much that the change will be visible, but enough to
clear up the ambiguity about which square is in front. This will enable the depth test to produce
the correct result for each pixel, in spite of small computational errors.

∗ ∗ ∗

The depth test ensures that the right object is visible at each pixel, but it’s not enough to
make a 3D scene look realistic. For that, you usually need to simulate lighting of the scene.
Lighting is disabled by default. It can be enabled by calling

gl.glEnable(GL.GL LIGHTING);

This is possibly the single most significant command in OpenGL. Turning on lighting
changes the rendering algorithm in fundamental ways. For one thing, if you turn on light-
ing and do nothing else, you won’t see much of anything! This is because, by default, no lights
are turned on, so there is no light to illuminate the objects in the scene. You need to turn on
at least one light:

gl.glEnable(GL.GL LIGHT0);

This command turns on light number zero, which by default is a white light that shines on
the scene from the direction of the viewer. It is sufficient to give decent, basic illumination for
many scenes. It’s possible to add other lights and to set properties of lights such as color and
position. However, we will leave that for Chapter 4.

Turning on lighting has another major effect: If lighting is on, then the current drawing
color, as set for example with glColor3f, is not used in the rendering process. Instead, the
current material is used. Material is more complicated than color, and there are special
commands for setting material properties. The default material is a rather ugly light gray. We
will consider material properties in Chapter 4.

To get the best effect from lighting, you will also want to use the following command:

gl.glShadeModel(GL.GL SMOOTH);

This has to do with the way that interiors of polygons are filled in. When drawing a polygon,
OpenGL does many calculations, including lighting calculations, only at the vertices of the
polygons. The results of these calculations are then interpolated to the pixels inside the polygon.
This can be much faster than doing the full calculation for each pixel. OpenGL computes a
color for each vertex, taking lighting into account if lighting is enabled. It then has to decide
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how to use the color information from the vertices to color the pixels in the polygon. (OpenGL
does the same thing for lines, interpolating values calculated for the endpoints to the rest of
the line.) The default, which is called flat shading , is to simply copy the color from the first
vertex of the polygon to every other pixel. This results in a polygon that is a uniform color,
with no shading at all. A better solution, called smooth shading smoothly varies the colors
from the vertices across the face of the polygon. Setting the shade model to GL SMOOTH tells
OpenGL to use smooth shading. You can return to flat shading by calling

gl.glShadeModel(GL.GL FLAT);

Putting all the essential settings that we have talked about here, we get the following init
method for 3D drawing with basic lighting:

public void init(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

gl.glClearColor(0,0,0,1); // Set background color.

gl.glEnable(GL.GL LIGHTING); // Turn on lighting.

gl.glEnable(GL.GL LIGHT0); // Turn on light number 0.

gl.glEnable(GL.GL DEPTH TEST); // Turn on the depth test.

gl.glShadeModel(GL.GL SMOOTH); // Use smooth shading.

}

Let’s look at a picture that shows some of the effects of these commands. OpenGL has
no sphere-drawing command, but we can approximate a sphere with polygons. In this case, a
rather small number of polygons is used, giving only a rough approximation of a sphere. Four
spheres are shown, rendered with different settings:

In the sphere on the left, only the outlines of the polygons are drawn. This is called a wireframe

model . Lighting doesn’t work well for lines, so the wireframe model is drawn with lighting
turned off. The color of the lines is the current drawing color, which has been set to white using
glColor3f.

The second sphere from the left is drawn using filled polygons, but with lighting turned
off. Since no lighting or shading calculations are done, the polygons are simply filled with the
current drawing color, white. Nothing here looks like a 3D sphere; we just see a flat patch of
color.

The third and fourth spheres are drawn with lighting turned on, using the default light
gray material color. The difference between the two spheres is that flat shading is used for the
third sphere, while smooth shading is used for the fourth. You can see that drawing the sphere
using lighting and smooth shading gives the most realistic appearance. The realism could be
increased even more by using a larger number of polygons to draw the sphere.

∗ ∗ ∗

There are several other common, but not quite so essential, settings that you might use for
3D drawing. As noted above, when lighting is turned on, the color of an object is determined by
its material properties. However, if you want to avoid the complications of materials and still



44 CHAPTER 2. BASICS OF OPENGL AND JOGL

be able to use different colors, you can turn a feature that causes OpenGL to use the current
drawing color for the material:

gl.glEnbable(GL.GL MATERIAL COLOR);

This causes the basic material color to be taken from the color set by glColor3f or similar
commands. (Materials have other aspects besides this basic color, but setting the basic color
is often sufficient.) Examples in this chapter and the next will use this feature.

Another useful feature is two-sided lighting . OpenGL distinguishes the two sides of a
polygon. One side is the front side, and one is the back side. Which is the front side and which
is the back is determined by the order in which the vertices of the polygon are specified when
it is drawn. (By default, the order is counterclockwise if you are looking at the front face and
is clockwise if you are looking at the back face.) In the default lighting model, the back faces
are not properly lit. This is because in many 3D scenes, the back faces of polygons face the
insides of objects and will not be visible in the scene; the calculation that is required to light
them would be wasted. However, if the back sides of some polygons might be visible in your
scene, then you can turn on two-sided lighting, at least when you are drawing those polygons.
This forces the usual lighting calculations to be done for the back sides of polygons. To turn
on two-sided lighting, use the command:

gl.glLightModeli(GL.GL LIGHT MODEL TWO SIDE, GL.GL TRUE);

You can turn it off using the same command with parameter GL.GL FALSE in place of
GL.GL TRUE.

Finally, I will mention the GL NORMALIZE option, which can be enabled with

gl.glEnable(GL.GL NORMALIZE);

This has to do with the “normal vectors” that will be discussed in Section 2.4. (For now,
just think of a vector as an arrow that has a length and a direction.) This option should be
enabled in two circumstances: if you supply normal vectors that do not have length equal to
1, or if you apply scaling transforms. (Rotation and translation are OK without it.) Correct
lighting calculations require normal vectors of length 1, but nothing forces you to supply vectors
of proper length. Furthermore, scaling transforms are applied to normal vectors as well as to
geometry, and they can increase or decrease the lengths of the vectors. GL NORMALIZE forces
OpenGL to adjust the length of all normal vectors to length 1 before using them in lighting
calculations. This adds some significant computational overhead to the rendering process, so
this feature is turned off by default. However, if you fail to turn it on when it is needed, the
lighting calculations for your image will be incorrect.

2.3 Drawing in 3D

Finally, we are ready to create some three-dimensional scenes. We will look first at how to
create three-dimensional objects and how to place them into the world. This is geometric
modeling in 3D, and is not so different from modeling in 2D. You just have to deal with the
extra coordinate.

2.3.1 Geometric Modeling

We have already seen how to use glBegin/glEnd to draw primitives such as lines and polygons
in two dimensions. These commands can be used in the same way to draw primitives in
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three dimensions. To specify a vertex in three dimensions, you can call gl.glVertex3f(x,y,z) (or
gl.glVertex3d(x,y,z)). You can also continue to use glVertex2f and glVertex2d to specify points
with z-coordinate equal to zero. You can use glPushMatrix and glPopMatrix to implement
hierarchical modeling, just as in 2D.

Modeling transformations are an essential part of geometric modeling. Scaling and transla-
tion are pretty much the same in 3D as in 2D. Rotation is more complicated. Recall that the
OpenGL command for rotation is gl.glRotatef(d,x,y,z) (or glRotated), where d is the measure
of the angle of rotation in degrees and x, y, and z specify the axis of rotation. The axis passes
through (0,0,0) and the point (x,y,z ). However, this does not fully determine the rotation, since
it does not specify the direction of rotation. Is it clockwise? Counterclockwise? What would
that even mean in 3D?

The direction of rotation in 3D follows the right-hand rule (assuming that you are using a
right-handed coordinate system). To determine the direction of rotation for gl.glRotatef(d,x,y,z),
place your right hand at (0,0,0), with your thumb pointing at (x,y,z ). The direction in which
your fingers curl will be the direction of a positive angle of rotation; a negative angle of rotation
will produce a rotation in the opposite direction. (If you happen to use a left-handed coordinate
system, you would use your left hand in the same way to determine the positive direction of
rotation.) When you want to apply a rotation in 3D, you will probably find yourself literally
using your right hand to figure out the direction of rotation.

Let’s do a simple 3D modeling example. Think of a paddle wheel, with a bunch of flat flaps
that rotate around a central axis. For this example, we will just draw the flaps, with nothing
physical to support them. Three paddle wheels, with different numbers of flaps, are drawn in
the following picture:

To produce a model of a paddle wheel, we can start with one flap, drawn as a trapezoid
lying in the xy-plane above the origin:

gl.glBegin(GL.GL POLYGON);

gl.glVertex2d(-0.7,1);

gl.glVertex2d(0.7,1);

gl.glVertex2d(1,2);

gl.glVertex2d(-1,2);

gl.glEnd();

We can make the complete wheel by making copies of this flap, rotated by various amounts
around the x-axis. If paddles is an integer giving the number of flaps that we want, then the
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angle between each pair of flaps will be 360/paddles. Recalling that successive transforms are
multiplied together, we can draw the whole set of paddles with a for loop:

for (int i = 0; i < paddles; i++) {

gl.glRotated(360.0/paddles, 1, 0, 0);

gl.glBegin(GL.GL POLYGON);

gl.glVertex2d(-0.7,1);

gl.glVertex2d(0.7,1);

gl.glVertex2d(1,2);

gl.glVertex2d(-1,2);

gl.glEnd();

}

The first paddle is rotated by 360/paddles degrees. By the time the second paddle is drawn,
two such rotations have been applied, so the second paddle is rotated by 2*(360/(paddles). As
we continue, the paddles are spread out to cover a full circle. If we want to make an animation
in which the paddle wheel rotates, we can apply an additional rotation, depending on the
frameNumber, to the wheel as a whole.

To draw the set of three paddle wheels, we can write a method to draw a single wheel and
then call that method three times, with different colors and translations in effect for each call.
You can see how this is done in the source code for the program that produced the above image,
PaddleWheels.java. By the way, in this sample program, you can use mouse to rotate the view.
The mouse is enabled by an object of type TrackBall, another of the classes defined in the glutil
source directory. You can find an applet version of the program in the on-line version of this
section.

2.3.2 Some Complex Shapes

Complex shapes can be built up out of large numbers of polygons, but it’s not always easy
to see how to do so. OpenGL has no built-in complex shapes, but there are utility libraries
that provide subroutines for drawing certain shapes. One of the most basic libraries is GLUT ,
the OpenGL Utilities Toolkit. Jogl includes a partial implementation of GLUT in the class
com.sun.opengl.util.GLUT. GLUT includes methods for drawing spheres, cylinders, cones, and
regular polyhedra such as cubes and dodecahedra. The curved shapes are actually just approx-
imations made out of polygons. To use the drawing subroutines, you should create an object,
glut, of type GLUT. You will only need one such object for your entire program, and you can
create it in the init method. Then, you can draw various shapes by calling methods such as

glut.glutSolidSphere(0.5, 40, 20);

This draws a polyhedral approximation of a sphere. The sphere is centered at the origin, with
its axis lying along the z-axis. The first parameter gives the radius of the sphere. The second
gives the number of “slices” (like lines of longitude or the slices of an orange), and the third
gives the number of “stacks” (divisions perpendicular to the axis of the sphere, like lines of
latitude). Forty slices and twenty stacks give quite a good approximation for a sphere. You can
check the GLUT API documentation for more information.

Because of some limitations to the GLUT drawing routines (notably the fact that they
don’t support textures), I have written a few shape classes of my own. Three shapes—sphere,
cylinder, and cone—are defined by the classes UVSphere, UVCylinder, and UVCone in the
sample source package glutil. To draw a sphere, for example, you should create an object of
type UVSphere. For example,
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sphere = new UVSphere(0.5, 40, 20);

Similarly to the GLUT version, this represents a sphere with radius 0.5, 40 slices, and 20 stacks,
centered at the origin and with its axis along the z-axis. Once you have the object, you can
draw the sphere in an OpenGL context gl by saying

sphere.render(gl);

Cones and cylinders are used in a similar way, except that they have a height in addition to a
radius:

cylinder = new UVCylinder(0.5,1.5,15,10); // radius, height, slices, stacks

The cylinder is drawn with its base in the xy-plane, centered at the origin, and with its
axis along the positive z-axis. By default, both the top and bottom ends of the cylinder
are drawn, but you can turn this behavior off by calling cylinder.setDrawTop(false) and/or
cylinder.setDrawBottom(false). Using a UVCone is very similar, except that a cone doesn’t
have a top, only a bottom.

I will use these three shape classes in several examples throughout the rest of this chapter.

2.3.3 Optimization and Display Lists

The drawing commands that we have been using work fine, but they have a problem with
efficiency. To understand why, you need to understand something of how OpenGL works. The
calculations involved in computing and displaying an image of a three-dimensional scene can be
immense. Modern desktop computers have graphics cards—dedicated, specialized hardware
that can do these calculations at very high speed. In fact, the graphics cards that come even
in inexpensive computers today would have qualified as supercomputers a decade or so ago.

It is possible, by the way, to implement OpenGL on a computer without any graphics card
at all. The computations and drawing can be done, if necessary, by the computer’s main CPU.
When this is done, however, graphics operations are much slower—slow enough to make many
3D programs unusable. Using a graphics card to perform 3D graphics operations at high speed
is referred to as 3D hardware acceleration .

OpenGL is built into almost all modern graphics cards, and most OpenGL commands are
executed on the card’s specialized hardware. Although the commands can be executed very
quickly once they get to the graphics card, there is a problem: The commands, along with all
the data that they require, have to transmitted from your computer’s CPU to the graphics card.
This can be a significant bottleneck, and the time that it takes to transmit all that information
can be a real drag on graphics performance. Newer versions of OpenGL have introduced various
techniques that can help to overcome the bottleneck. In this section, we will look at one of
these optimization strategies, display lists. Display lists have been part of OpenGL from the
beginning.

Display lists are useful when the same sequence of OpenGL commands will be used several
times. A display list is a list of graphics commands that can be stored on a graphics card
(though there is no guarantee that they actually will be). The contents of the display list only
have to be transmitted once from the CPU to the card. Once a list has been created, it can
be “called,” very much like a subroutine. The key point is that calling a list requires only one
OpenGL command. Although the same list of commands still has to be executed, only one
command has to be transmitted from the CPU to the graphics card, and the full power of
hardware acceleration can be used to execute the commands at the highest possible speed.
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One difference between display lists and subroutines is that display lists don’t have param-
eters. This limits their usefulness, since its not possible to customize their behavior by calling
them with different parameter values. However, calling a display list twice can result in two
different effects, since the effect can depend on the OpenGL state at the time the display list is
called. For example, a display list that generates the geometry for a sphere can draw spheres
in different locations, as long as different modeling transforms are in effect each time the list
is called. The list can also produce spheres of different colors, as long as the drawing color is
changed between calls to the list.

Here, for example is an image that shows 1331 spheres, arranged in a cube that has eleven
spheres along each edge.

Each sphere in the picture is a different color and is in a different location. Exactly the same
OpenGL commands are used to draw each sphere, but before drawing each sphere, the transform
and color are changed. This is a natural place to use a display list. We can store the commands
for drawing one sphere in a display list, and call that list once for each sphere that we want to
draw. The graphics commands that draw the sphere only have to be sent to the card once. Then
each of the 1331 spheres can be drawn by sending a single command to the card to call the list
(plus a few commands to change the color and transform). Note that we are also saving some
significant time on the main CPU, since it only has to generate the sphere-drawing commands
once instead of 1331 times.

In the program that drew the image, you can rotate the cube of spheres by dragging the
mouse over the image. You can turn the use of display lists on and off using a checkbox below
the image. You are likely to see a significant change in the time that it takes to render the
image, depending on whether or not display lists are used. However, the exact results will
depend very much on the OpenGL implementation that you are using. On my computer, with
a good graphics card and hardware acceleration, the rendering with display lists is fast enough
to produce very smooth rotation. Without display lists, the rendering is about five times slower,
and the rotation is a bit jerky but still usable. Without hardware acceleration, the rendering
might take so long that you get no feeling at all of natural rotation. You can try the applet in
the on-line version of these notes.

∗ ∗ ∗

I hope that this has convinced you that display lists can be very worthwhile. Fortunately,
they are also fairly easy to use.
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Remember that display lists are meant to be stored on the graphics card, so it is the graphics
card that has to manage the collection of display lists that have been created. Display lists are
identified by integer code numbers. If you want to use a display list, you first have to ask the
graphics card for an integer to identify the list. (You can’t just make one up, since the one that
you pick might already be in use.) This is done with a command such as

listID = gl.glGenLists(1);

The return value is an int which will be the identifier for the list. The parameter to glGenLists
is also an int. You can actually ask for several list IDs at once; the parameter tells how many
you want. The list IDs will be consecutive integers, so that if listA is the return value from
gl.glGenLists(3), then the identifiers for the three lists will be listA, listA + 1, and listA + 2.

Once you’ve allocated a list in this way, you can store commands into it. If listID is the ID
for the list, you would do this with code of the form:

gl.glNewList(listID, GL.GL COMPILE);

... // Generate OpenGL commands to store in the list.

gl.glEndList();

Note that the previous contents of the list, if any, will be deleted and relaced. The parameter
GL.GL COMPILE means that you only want to store commands into the list, not execute them.
If you use the alternative parameter GL.GL COMPILE AND EXECUTE, then the commands
will be executed immediately as well as stored in the list for later reuse.

Most, but not all, OpenGL commands can be placed into a display list. In particular,
commands for generating geometry, applying transforms, changing the color, and enabling and
disabling various features can be placed into lists. You can even add commands for calling other
lists. In addition to OpenGL commands, you can have other Java code between glNewList and
glEndList. For example, you can use a for loop to generate a large number of vertices. But
remember that the list only stores OpenGL commands, not the Java code that generates them
For example, if you use a for loop to call glVertex3f 10,000 times, then the display list will
contain 10,000 individual glVertex3f commands, not a for loop. Furthermore, as the parameters
to these commands, the list only stores numerical values, not references to variables. So if you
call

gl.glVertex3d(x,y,z);

between glNewList and glEndList, only the values of x, y, and z at the time glVertex3d is called
are stored into the list. If you change the values of the variables later, the change has no effect
on the list or what it does.

Once you have a list, you can call the list with the command

gl.glCallList(listID);

The effect of this command, remember, is to tell the graphics card to execute a list that it has
already stored.

If you are going to reuse a list many times, it can make sense to create it in the init method
and keep it around as long as your program will run. You can also, of course, make them on
the fly, as needed, in the display method. However, a graphics card has only a limited amount
of memory for storing display lists, so you shouldn’t keep a list around longer than you need
it. You can tell the graphics card that a list is no longer needed by calling

gl.glDeleteLists(listID, 1);
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The second parameter in this method call plays the same role as the parameter in glGenLists;
that is, it allows you delete several sequentially numbered lists; deleting one list at a time is
probably the most likely use. Deleting a list when you are through with it allows the graphics
card to reuse the memory used by that list.

∗ ∗ ∗

As an example of using display lists, you can look at the source code for the program that
draws the “cube of spheres,” ColorCubeOfSpheres.java. That program is complicated somewhat
by the option to use or not use the display list. Let’s look at some slightly modified code that
always uses lists.

The program uses an object of type UVSphere to draw a sphere. The display list is created
in the init method, and the UVSphere object is used to generate the commands that go into
the list. The integer identifier for the list is displayList :

UVSphere sphere = new UVSphere(0.4); // For drawing a sphere of radius 0.4.

displayList = gl.glGenLists(1); // Allocate the list ID.

gl.glNewList(displayList, GL.GL COMPILE);

sphere.render(gl);

gl.glEndList();

When sphere.render(gl) is called, all the OpenGL commands that it generates are channeled
into the list, instead of being executed immediately. In the display method, the display list is
called 1331 times in a set of triply nested for loops:

for (int i = 0; i <= 10; i++) {

float r = i/10.0f; // Red component of sphere color.

for (int j = 0; j <= 10; j++) {

float g = j/10.0f; // Green component of sphere color.

for (int k = 0; k <= 10; k++) {

float b = k/10.0f; // Blue component of sphere color.

gl.glColor3f(r,g,b); // Set the color for the sphere.

gl.glPushMatrix();

gl.glTranslatef(i-5,j-5,k-5); // Translate the sphere.

gl.glCallList(displayList); // Call display list to draw sphere.

gl.glPopMatrix();

}

}

}

The glCallList in this code replaces a call to sphere.render that would otherwise be used to
draw the sphere directly.

2.4 Normals and Textures

OpenGL associates several quantities with every vertex that is generated. These quan-
tities are called attributes of the vertex. One attribute is color. It is possible to assign a
different color to every vertex in a polygon. The color that is assigned to a vertex is the current
drawing color at the time the vertex is generated, which can be set, for example, with glColor3f.
(This color is used only if lighting is off or if the GL COLOR MATERIAL option is on.) The
drawing color can be changed between calls to glBegin and glEnd. For example:
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gl.glBegin(GL.GL POLYGON);

gl.glColor3f(1,0,0);

gl.glVertex(-0.5,-0.5); // The color associated with this vertex is red.

gl.glColor3f(0,1,0);

gl.glVertex(0.5,-0.5); // The color associated with this vertex is green.

gl.glColor3f(0,0,1);

gl.glVertex(0,1); // The color associated with this vertex is blue.

gl.glEnd();

Assuming that the shade model has been set to GL SMOOTH, each vertex of this triangle will
be a different color, and the colors will be smoothly interpolated to the interior of the triangle.

In this section, we will look at two other important attributes that can be associated with
a vertex. One of them, the normal vector, is an essential of lighting calculations. Another, the
texture coordinates, is used when applying texture images to surfaces.

2.4.1 Introduction to Normal Vectors

The visual effect of a light shining on a surface depends on the properties of the surface and
of the light. But it also depends to a great extent on the angle at which the light strikes the
surface. That’s why a curved, lit surface looks different at different points, even if its surface
is a uniform color. To calculate this angle, OpenGL needs to know the direction in which the
surface is facing. That direction can be specified by a vector that is perpendicular to the
surface. A vector can be visualized as an arrow. It has a direction and a length. It doesn’t
have a particular location, so you can visualize the arrow as being positioned anywhere you
like, such as sticking out of a particular point on a surface. A vector in three dimensions is
given by three numbers that specify the change in x, the change in y, and the change in z along
the vector. If you position the vector (x,y,z ) with its start point at the origin, (0,0,0), then the
end point of the vector is at the point with coordinates (x,y,z ).

Another word for “perpendicular” is “normal,” and a vector that is perpendicular to a
surface at a given point is called a normal to that surface. When used in lighting calculations,
a normal vector must have length equal to one. A normal vector of length one is called a
unit normal . For proper lighting calculations in OpenGL, a unit normal must be specified
for each vertex. (Actually, if you turn on the option GL NORMALIZE, then you can specify
normal vectors of any length, and OpenGL will convert them to unit normals for you; see
Subsection 2.2.2.)

Just as OpenGL keeps track of a current drawing color, it keeps track of a current normal
vector, which is part of the OpenGL state. When a vertex is generated, the value of the current
normal vector is copied and is associated to that vertex as an attribute. The current normal
vector can be set by calling gl.glNormal3f (x,y,z ) or gl.glNormal3d(x,y,z ). This can be done
at any time, including between calls to glBegin and glEnd. This means that it’s possible for
different vertices of a polygon to have different associated normal vectors.

Now, you might be asking yourself, “Don’t all the normal vectors to a polygon point in the
same direction?” After all, a polygon is flat; the perpendicular direction to the polygon doesn’t
change from point to point. This is true, and if your objective is to display a polyhedral object
whose sides are flat polygons, then in fact, all the normals of one of those polygons should
point in the same direction. On the other hand, polyhedra are often used to approximate
curved surfaces such as spheres. If your real objective is to make something that looks like
a curved surface, then you want to use normal vectors that are perpendicular to the actual
surface, not to the polyhedron that approximates it. Take a look at this example:
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The two objects in this picture are made up of bands of rectangles. The two objects have exactly
the same geometry, yet they look quite different. This is because different normal vectors are
used in each case. For the top object, I was using the band of rectangles to approximate a
smooth surface (part of a cylinder, in fact). The vertices of the rectangles are points on that
surface, and I really didn’t want to see the rectangles at all—I wanted to see the curved surface,
or at least a good approximation. So for the top object, when I specified a normal vector at one
of the vertices, I used a vector that is perpendicular to the surface rather than one perpendicular
to the rectangle. For the object on the bottom, on the other hand, I was thinking of an object
that really is a band of rectangles, and I used normal vectors that were actually perpendicular
to the rectangles. Here’s a two-dimensional illustration that shows the normal vectors:

The thick blue lines represent the rectangles. Imagine that you are looking at them edge-on.
The arrows represent the normal vectors. Two normal vectors are shown for each rectangle,
one on each end.

In the bottom half of this illustration, the vectors are actually perpendicular to the rectan-
gles. There is an abrupt change in direction as you move from one rectangle to the next, so
where one rectangle meets the next, the normal vectors to the two rectangles are different. The
visual effect on the rendered image is an abrupt change in shading that is perceived as a corner
or edge between the two rectangles.

In the top half, on the other hand, the vectors are perpendicular to a curved surface that
passes through the endpoints of the rectangles. When two rectangles share a vertex, they also
share the same normal at that vertex. Visually, this eliminates the abrupt change in shading,
resulting in something that looks more like a smoothly curving surface.
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The upshot of this is that in OpenGL, a normal vector at a vertex is whatever you say it
is, and it does not have to be literally perpendicular to your polygons. The normal vector that
you choose should depend on the object that you are trying to model.

There is one other issue in choosing normal vectors: There are always two possible unit
normal vectors at a vertex, pointing in opposite directions. Recall that a polygon has two faces,
a front face and a back face, which are distinguished by the order in which the vertices are
generated. (See Section 2.2.) A normal vector should point out of the front face of the polygon.
That is, when you are looking at the front face of a polygon, the normal vector should be
pointing towards you. If you are looking at the back face, the normal vector should be pointing
away from you.

Unfortunately, it’s not always easy to compute normal vectors, and it can involve some
non-trivial math. I’ll have more to say about that in Chapter 4. For now, you should at least
understand that the solid surfaces that are defined in the GLUT library come with the correct
normal vectors already built-in. So do the shape classes in my glutil package.

We can look at one simple case of supplying normal vectors by hand: drawing a cube. Let’s
say that we want to draw a cube centered at the origin, where the length of each side of the
cube is one. Let’s start with a method to draw the face of the cube that is perpendicular to the
z-axis with center at (0,0,0.5). The unit normal to that face is (0,0,1), which points directly
out of the screen along the z-axis.:

private static void drawFace1(GL gl) {

gl.glBegin(GL.GL POLYGON);

gl.glNormal3d(0,0,1); // Unit normal vector, which applies to all vertices.

gl.glVertex3d(-0.5, -0.5, 0.5); // The vertices, in counterclockwise order.

gl.glVertex3d(0.5, -0.5, 0.5);

gl.glVertex3d(0.5, 0.5, 0.5);

gl.glVertex3d(-0.5, 0.5, 0.5);

gl.glEnd();

}

We could draw the other faces similarly. For example, the bottom face, which has normal vector
(0,−1,0), could be created with

gl.glBegin(GL.GL POLYGON);

gl.glNormal3d(0, -1, 0);

gl.glVertex3d(-0.5, -0.5, 0.5);

gl.glVertex3d(0.5, -0.5, 0.5);

gl.glVertex3d(0.5, -0.5, -0.5);

gl.glVertex3d(-0.5, -0.5, -0.5);

gl.glEnd();

However, getting all the vertices correct and in the right order is by no means trivial. An-
other approach is to use the method for drawing the front face for each of the six faces, with
appropriate rotations to move the front face into the desired position:

public static void drawUnitCube(GL gl) {

drawFace1(gl); // the front face

gl.glPushMatrix(); // the bottom face

gl.glRotated( 90, 1, 0, 0); // rotate 90 degrees about the x-axis

drawFace1(gl);
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gl.glPopMatrix();

gl.glPushMatrix(); // the back face

gl.glRotated( 180, 1, 0, 0); // rotate 180 degrees about the x-axis

drawFace1(gl);

gl.glPopMatrix();

gl.glPushMatrix(); // the top face

gl.glRotated( -90, 1, 0, 0); // rotate -90 degrees about the x-axis

drawFace1(gl);

gl.glPopMatrix();

gl.glPushMatrix(); // the right face

gl.glRotated( 90, 0, 1, 0); // rotate 90 degrees about the y-axis

drawFace1(gl);

gl.glPopMatrix();

gl.glPushMatrix(); // the left face

gl.glRotated( -90, 0, 1, 0); // rotate -90 degrees about the y-axis

drawFace1(gl);

gl.glPopMatrix();

}

Whether this looks easier to you might depend on how comfortable you are with transforma-
tions, but it really does require a lot less work!

2.4.2 Introduction to Textures

The 3D objects that we have created so far look nice enough, but they are a little bland.
Their uniform colors don’t have the visual appeal of, say, a brick wall or a plaid couch. Three-
dimensional objects can be made to look more interesting and more realistic by adding a texture

to their surfaces. A texture—or at least the kind of texture that we consider here—is a 2D
image that can be applied to the surface of a 3D object. Here is a picture that shows six objects
with various textures:
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(Topographical Earth image, courtesy NASA/JPL-Caltech, http://maps.jpl.nasa.gov/. Brick
and metal textures from http://www.grsites.com/archive/textures/. EarthAtNight image taken
from the Astronomy Picture of the Day web site, http://apod.nasa.gov/apod/ap001127.html;
it is also a NASA/JPL image. Some nicer planetary images for use on a sphere can be found
at http://evildrganymede.net/art/maps.htm and http://planetpixelemporium.com/earth.html;
they are free for you to use, but I can’t distribute them on my web site. The textures used in
this program are in the folder named textures in the source directory.)

This picture comes from the sample program TextureDemo.java. You can try the applet
version on-line. In the applet version, you can rotate each individual object by dragging the
mouse on it. The rotation makes it look even more realistic.

Textures are one of the more complex areas in the OpenGL API, both because of the number
of options involved and the new features that have been introduced in various versions. The
Jogl API has a few classes that make textures easier to use. For now, we will work mostly with
the Jogl classes, and we will cover only a few of the many options. You should understand that
the Jogl texture classes are not themselves part of the OpenGL API.

To use a texture in OpenGL, you first of all need an image. In Jogl, the Texture class
represents 2D images that can be used as textures. (This class and other texture-related classes
are defined in the package com.sun.opengl.util.texture.) To create a Texture object, you can
use the helper class TextureIO, which contains several static methods for reading images from
various sources. For example, if img is a BufferedImage object, you can create a Texture from
that image with

Texture texture = TextureIO.newTexture( img, true );

The second parameter is a boolean value that you don’t need to understand just now. (It has
to do with optimizing the texture to work on objects of different sizes.)

This means that you can create a BufferedImage any way you like, even by creating the
image from scratch using Java’s drawing commands, and then use that image as a texture in
OpenGL. More likely, you will want to read the image from a file or from a program resource.
TextureIO has methods that can do that automatically. For example, if file is of type java.io.File

and represents a file that contains an image, you can create a texture from that image with

Texture texture = Texture.newTexture( file, true );

The case of reading an image from a resource is probably more common. A resource is, more
or less, a file that is part of your program. It might be packaged into the same jar file as the
rest of your program, for example. I can’t give you a full tutorial on using resources here, but
the idea is to place the image files that you want to include as resources in some package (that
is, folder) in your project. Let’s say that you store the images in a package named textures,
and let’s say that “brick001.jpg” is the name of one of the image files in that package. Then, to
retrieve and use the image as a texture, you can use the following code in any instance method
in your program:

Texture texture; // Most likely, an instance variable.

try {

URL textureURL; // URL class from package java.net.

textureURL = getClass().getClassLoader().getResource("texture/brick001.jpg");

texture = TextureIO.newTexture(textureURL, true, "jpg");

// The third param above is the extension from the file name;

// "jpg", "png", and probably "gif" files should be OK.

}

catch (Exception e) {
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// Won’t get here if the file is properly packaged with the program!

e.printStackTrace();

}

All this makes it reasonably easy to prepare images for use as textures. But there are a
couple of issues. First of all, in the original versions of OpenGL, the width and height of texture
images had to be powers of two, such as 128, 256, 512, or 1024. Although this limitation has
been eliminated in more recent versions, it’s probably still a good idea to resize your texture
images, if necessary, so that their dimensions are powers of two. Another issue is that Java
and OpenGL have different ideas about where the origin of an image should be. Java puts
it at the top right corner, while OpenGL puts it at the bottom left. This means that images
loaded by Java might be upside down when used as textures in OpenGL. The Texture class has
a way of dealing with this, but it complicates things. For now, it’s easy enough to flip an image
vertically if necessary. Jogl even provides a way of doing this for a BufferedImage. Here’s some
alternative code that you can use to load an image resource as a texture, if you want to flip the
image:

Texture texture;

try {

URL textureURL;

textureURL = getClass().getClassLoader().getResource(textureFileName);

BufferedImage img = ImageIO.read(textureURL); // read file into BufferedImage

ImageUtil.flipImageVertically(img);

texture = TextureIO.newTexture(img, true);

}

catch (Exception e) {

e.printStackTrace();

}

∗ ∗ ∗

We move on now to the question of how to actually use textures in a program. First, note
that textures work best if the material of the textured object is pure white, since the colors
from the texture are actually multiplied by the material color, and if the color is not white then
the texture will be “tinted” with the material color. To get white-colored objects, you can use
use glColor3f and the GL MATERIAL COLOR option, as discussed in Subsection 2.2.2.

Once you have a Texture object, three things are necessary to apply that texture to an
object: The object must have texture coordinates that determine how the image will be
mapped onto the object. You must enable texturing, or else textures are simply ignored. And
you have to specify which texture is to be used.

Two of these are easy. To enable texturing with a 2D image, you just have to call the
method

texture.enable();

where texture is any object of type Texture. It’s important to understand that this is not
selecting that particular texture for use; it’s just turning on texturing in general. (This is true
at least as long as you stick to texture images whose dimensions are powers of two. In that
case, it doesn’t even matter which Texture object you use to call the enable method.) To turn
texturing off, call texture.disable(). If you are planning to texture all the objects in your scene,
you could enable texturing method once, in the init method, and leave it on. Otherwise, you
can enable and disable texturing as needed.
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To get texturing to work, you must also specify that some particular texture is to be used.
This is called binding the texture, and you can do it by calling

texture.bind()

where texture is the Texture object that you want to use. That texture will be used until you
bind a different texture, but of course only when texturing is enabled. If you’re just using one
texture, you could bind it in the init method. It will be used whenever texturing is enabled. If
you are using several textures, you can bind different textures in different parts of the display
method.

Just remember: Call texture.enable() and texture.bind() before drawing the object that you
want to texture. Call texture.disable() to turn texturing off. Call texture2.bind(), if you want
to switch to using a different texture, texture2.

That leaves us with the problem of texture coordinates for objects to which you want to
apply textures. A texture image comes with its own 2D coordinate system. Traditionally, s
used for the horizontal coordinate on the image and t is used for the vertical coordinate. s is
a real-number coordinate that ranges from 0 on the left of the image to 1 on the right, while t
ranges from 0 at the bottom to 1 at the top. Values of s or t outside of the range 0 to 1 are
not inside the image.

To apply a texture to a polygon, you have to say which point in the texture should corre-
spond to each vertex of the polygon. For example, suppose that we want to apply part of the
EarthAtNight image to a triangle. Here’s the area in the image that I want to map onto the
triangle, shown outlined in thick orange lines:

The vertices of this area have (s,t) coordinates (0.3,0.05), (0.45,0.6), and (0.25,0.7). These
coordinates in the image, expressed in terms of s and t are called texture coordinates. When
I generate the vertices of the triangle that I want to draw, I have to specify the corresponding
texture coordinate in the image. This is done by calling gl.glTexCoord2d(s,t). (Or you can
use glTexCoord2f.) You can call this method just before generating the vertex. Usually, every
vertex of a polygon will have different texture coordinates. To draw the triangle in this case, I
could say:

gl.glBegin(GL.GL POLYGON);

gl.glNormal3d(0,0,1);

gl.glTexCoord2d(0.3,0.05); // Texture coords for vertex (0,0)

gl.glVertex2d(0,0);

gl.glTexCoord2d(0.45,0.6); // Texture coords for vertex (0,1)



58 CHAPTER 2. BASICS OF OPENGL AND JOGL

gl.glVertex2d(0,1);

gl.glTexCoord2d(0.25,0.7); // Texture coords for vertex (1,0)

gl.glVertex2d(1,0);

gl.glEnd();

Note that there is no particular relationship between the (x,y) coordinates of a vertex, which
give its position in space, and the (s,t) texture coordinate associated with the vertex. which
tell what point in the image is mapped to the vertex. In fact, in this case, the triangle that I
am drawing has a different shape from the triangular area in the image, and that piece of the
image will have to be stretched and distorted to fit.

Note that texture coordinates are attributes of vertices. Like other vertex attributes, values
are only specified at the vetex. OpenGL will interpolate the values between vertices to calculate
texture coordinates for points inside the polygon.

Sometimes, it’s difficult to decide what texture coordinates to use. One case where it’s easy
is applying a complete texture to a rectangle. Here is a method from Cube.java that draws a
square in the xy-plane, with appropriate texture coordinates to map the entire image onto the
square:

/**

* Draws a square in the xy-plane, with given radius,

* where radius is half the length of the side.

*/

private void square(GL gl, double radius) {

gl.glBegin(GL.GL POLYGON);

gl.glNormal3f(0,0,1);

gl.glTexCoord2d(0,0);

gl.glVertex2d(-radius,-radius);

gl.glTexCoord2d(1,0);

gl.glVertex2d(radius,-radius);

gl.glTexCoord2d(1,1);

gl.glVertex2d(radius,radius);

gl.glTexCoord2d(0,1);

gl.glVertex2d(-radius,radius);

gl.glEnd();

}

At this point, you will probably be happy to know that the shapes in the package glutil come
with reasonable texture coordinates already defined. To use textures on these objects, you just
have to create a Texture object, enable it, and bind it. For Cube.java, for example, a copy of the
texture is mapped onto each face. For UVCylinder.java the entire texture wraps once around
the cylinder, and circular cutouts from the texture are applied to the top and bottom. For a
UVCSphere.java, the texture is wrapped once around the sphere. The flat texture has to be
distorted to fit onto the sphere, but some textures, using what is called a cylindrical projection,
are made to work precisely with this type of texture mapping. The textures that are used on
the spheres in the TextureDemo example are of this type.

One last question: What happens if you supply texture coordinates that are not in the range
from 0 to 1? It turns out that such values are legal, but exactly what they mean depends on
the setting of two parameters in the Texture object. The most desirable outcome is probably
that the texture is copied over and over to fill the entire plane, so that using s and t values
outside the usual range will simply cause the texture to be repeated. In that case, for example,
if you supply texture coordinates (0,0), (0,2), (2,2), and (2,0) for the four vertices of a square,
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then the square will be covered with four copies of the texture. For a repeating texture, such as
a brick wall image, this can be much more effective than stretching a single copy of the image
to cover the entire square. This behavior is not the default. To get this behavior for a Texture

object tex, you can use the following code:

tex.setTexParameteri(GL.GL TEXTURE WRAP S, GL.GL REPEAT);

tex.setTexParameteri(GL.GL TEXTURE WRAP T, GL.GL REPEAT);

There are two parameters to control this behavior because you can enable the behavior sep-
arately for the horizontal and the vertical directions. OpenGL, as I have said, has many
parameters to control how textures are used. This is an example of how these parameters are
set using the Texture class.

∗ ∗ ∗
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Chapter 3

Geometry

In the previous chapter, we surveyed some of the basic features of OpenGL. This chapter
will fill in details about the geometric aspects of OpenGL. It will cover the full range of geometric
primitives and the various ways of specifying them, and it will cover geometric transformations
in more depth, including some of the mathematics behind them.

So far, everything that we have covered is part of OpenGL 1.1, and so should be universally
available. This chapter will introduce some features that were introduced in later versions. It
will explain why you might want to use those features and how you can test for their presence
before you use them.

3.1 Vectors, Matrices, and Homogeneous Coordinates

Before moving on with OpenGL, we look at the mathematical background in a little more
depth. The mathematics of computer graphics is primarily linear algebra , which is the study
of vectors and linear transformations. A vector, as we have seen, is a quantity that has a length
and a direction. A vector can be visualized as an arrow, as long as you remember that it is the
length and direction of the arrow that are relevant, and that its specific location is irrelevant.
If we visualize a vector V as starting at the origin and ending at a point P, then we can to a
certain extent identify V with P—at least to the extent that both V and P have coordinates,
and their coordinates are the same. For example, the 3D point (x,y,z ) = (3,4,5) has the same
coordinates as the vector (dx,dy,dz ) = (3,4,5). For the point, the coordinates (3,4,5) specify a
position in space in the xyz coordinate system. For the vector, the coordinates (3,4,5) specify
the change in the x, y, and z coordinates along the vector. If we represent the vector with an
arrow that starts at the origin (0,0,0), then the head of the arrow will be at (3,4,5).

The distinction between a point and a vector is subtle. For some purposes, the distinction
can be ignored; for other purposes, it is important. Often, all that we have is a sequence of
numbers, which we can treat as the coordinates of either a vector or a point at will.

Matrices are rectangular arrays of numbers. A matrix can be used to apply a transformation
to a vector (or to a point). The geometric transformations that are so important in computer
graphics are represented as matrices.

In this section, we will look at vectors and matrices and at some of the ways that they
can be used. The treatment is not very mathematical. The goal is to familiarize you with the
properties of vectors and matrices that are most relevant to OpenGL.

61
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3.1.1 Vector Operations

We assume for now that we are talking about vectors in three dimensions. A 3D vector can be
specified by a triple of numbers, such as (0,1,0) or (3.7,−12.88,0.02). Most of the discussion,
except for the “cross product,” carries over easily into other dimensions.

One of the basic properties of a vector is its length . In terms of its coordinates, the length
of a vector (x,y,z ) is given by sqrt(x 2+y2+z 2). (This is just the Pythagorean theorem in three
dimensions.) If v is a vector, its length can be denoted by |v|. The length of a vector is also
called its norm .

Vectors of length 1 are particularly important. They are called unit vectors. If v = (x,y,z )
is any vector other than (0,0,0), then there is exactly one unit vector that points in the same
direction as v. That vector is given by

( x/length, y/length, z/length )

where length is the length of v. Dividing a vector by its length is said to normalize the vector:
The result is a unit vector that points in the same direction as the original vector.

Given two vectors v1 = (x1,y1,z1 ) and v2 = (x2,y2,z2 ), the dot product of v1 and v2 is
denoted by v1 ·v2 and is defined by

v1·v2 = x1*x2 + x2*y2 + z1*z2

Note that the dot product is a number, not a vector. The dot product has several very important
geometric meanings. First of all, note that the length of a vector v is just the square root of
v ·v. Furthermore, the dot product of two non-zero vectors v1 and v2 has the property that

cos(angle) = v1·v2 / (|v1|*|v2|)

where angle is the measure of the angle from v1 to v2. In particular, in the case of unit
vectors, whose lengths are 1, the dot product of two unit vectors is simply the cosine

of the angle between them. Furthermore, since the cosine of a 90-degree angle is zero, two
non-zero vectors are perpendicular if and only if their dot product is zero. Because of these
properties, the dot product is particularly important in lighting calculations, where the effect
of light shining on a surface depends on the angle that the light makes with the surface.

The dot product is defined in any dimension. For vectors in 3D, there is another type of
product called the cross product , which also has an important geometric meaning. For vectors
v1 = (x1,y1,z1 ) and v2 = (x2,y2,z2 ), the cross product of v1 and v2 is denoted v1×v2 and is
the vector defined by

v1×v2 = ( y1*z2 - z1*y2, z1*x2 - x1*z2, x1*y2 - y1*x2 )

If v1 and v2 are non-zero vectors, then v1×v2 is zero if and only if v1 and v2 point in the same
direction or in exactly opposite directions. Assuming v1×v2 is non-zero, then it is perpendicular
both to v1 and to v2 ; furthermore, the vectors v1, v2, v1×v2 follow the right-hand rule; that is,
if you curl the fingers of your right hand from v1 to v2, then your thumb points in the direction
of v1×v2. If v1 and v2 are unit vectors, then the cross product v1×v2 is also a unit vector,
which is perpendicular both to v1 and to v2.

Finally, I will note that given two points P1 = (x1,y1,z1 ) and P2 = (x2,y2,z2 ), the differ-

ence P2−P1 which is defined by

P2 − P1 = ( x2 − x1, y2 − y1, z2 − z1 )

is a vector that can be visualized as an arrow that starts at P1 and ends at P2. Now, suppose
that P1, P2, and P3 are vertices of a polygon. Then the vectors P1−P2 and P3−P2 lie in the
plane of the polygon, and so the cross product
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(P3−P2) × (P1−P2)

is either zero or is a vector that is perpendicular to the polygon. This fact allows us to use the
vertices of a polygon to produce a normal vector to the polygon. Once we have that, we can
normalize the vector to produce a unit normal. (It’s possible for the cross product to be zero.
This will happen if P1, P2, and P3 lie on a line. In that case, another set of three vertices might
work. Note that if all the vertices of a polygon lie on a line, then the polygon degenerates to a
line segment and has no interior points at all. We don’t need unit normals for such polygons.)

3.1.2 Matrices and Transformations

A matrix is just a two-dimensional array of numbers. Suppose that a matrix M has r rows and
c columns. Let v be a c-dimensional vector, that is, a vector of c numbers. Then it is possible
to multiply M by v to yield another vector, which will have dimension r. For a programmer,
it’s probably easiest to define this type of multiplication with code. Suppose that we represent
M and v by the arrays

double[][] M = new double[r][c];

double[] v = new double[c];

Then we can define the product w = M *v as follows:

double w = new double[r];

for (int i = 0; i < r; i++) {

w[i] = 0;

for (int j = 0; j < c; j++) {

w[i] = w[i] + M[i][j] * v[j];

}

}

If you think of a row, M [i ], of M as being a c-dimensional vector, then w [i ] is simply the dot
product M [i ]·v.

Using this definition of the multiplication of a vector by a matrix, a matrix defines a trans-

formation that can be applied to one vector to yield another vector. Transformations that
are defined in this way are called linear transformations, and they are the main object of
study in the field of mathematics known as linear algebra.

Rotation, scaling, and shear are linear transformations, but translation is not. To include
translations, we have to widen our view to include affine transformations. An affine trans-
formation can be defined, roughly, as a linear transformation followed by a translation. For
computer graphics, we are interested in affine transformations in three dimensions. However—
by what seems at first to be a very odd trick—we can narrow our view back to the linear by
moving into the fourth dimension.

Note first of all that an affine transformation in three dimensions transforms a vector
(x1,y1,z1 ) into a vector (x2,y2,z2 ) given by formulas

x2 = a1*x1 + a2*y1 + a3*z1 + t1

y2 = b1*x1 + b2*y1 + b3*z1 + t2

z2 = c1*x1 + c2*y1 + c3*z1 + t3

These formulas express a linear transformation given by multiplication by the 3-by-3 matrix

a1 a2 a3

b1 b2 b3

c1 c2 c3
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followed by translation by t1 in the x direction, t2 in the y direction and t3 in the z direction.
The trick is to replace each three-dimensional vector (x,y,z ) with the four-dimensional vector
(x,y,z,1), adding a “1” as the fourth coordinate. And instead of the 3-by-3 matrix, we use the
4-by-4 matrix

a1 a2 a3 t1

b1 b2 b3 t2

c1 c2 c3 t3

0 0 0 1

If the vector (x1,y1,z1,1) is multiplied by this 4-by-4 matrix, the result is the precisely the vector
(x2,y2,z2,1). That is, instead of applying the affine transformation to the 3D vector (x1,y1,z1 ),
we can apply a linear transformation to the 4D vector (x1,y1,z1,1).

This might seem pointless to you, but nevertheless, that is what OpenGL does: It represents
affine transformations as 4-by-4 matrices, in which the bottom row is (0,0,0,1), and it converts
three-dimensional vectors into four dimensional vectors by adding a 1 as the final coordinate.
The result is that all the affine transformations that are so important in computer graphics can
be implemented as matrix multiplication.

One advantage of using matrices to represent transforms is that matrices can be multiplied.
In particular, if A and B are 4-by-4 matrices, then their matrix product A*B is another 4-by-4
matrix. Each of the matrices A, B, and A*B represents a linear transformation. The important
fact is that applying the single transformation A*B to a vector v has the same effect as first
applying B to v and then applying A to the result. Mathematically, this can be said very
simply: (A*B)*v = A*(B*v). For computer graphics, it means that the operation of following
one transform by another simply means multiplying their matrices. This allows OpenGL to keep
track of a single modelview matrix, rather than a sequence of individual transforms. Transform
commands such as glRotatef and glTranslated are implemented as matrix multiplication—the
current modelview matrix is multiplied by a matrix representing the transform that is being
applied, yielding a matrix that represents the combined transform. You might compose your
modelview transform as a long sequence of modeling and viewing transforms, but when the
transform is actually applied to a vertex, only a single matrix multiplication is necessary. The
matrix that is used represents the entire sequence of transforms, all multiplied together. It’s
really a very neat system.

3.1.3 Homogeneous Coordinates

There is one transformation in computer graphics that is not an affine transformation: In the
case of a perspective projection, the projection transformation is not affine. In a perspective
projection, an object will appear to get smaller as it moves farther away from the viewer, and
that is a property that no affine transformation can express.

Surprisingly, we can still represent a perspective projection as a 4-by-4 matrix, provided
we are willing to stretch our use of coordinates even further than we have already. We have
already represented 3D vectors by 4D vectors in which the fourth coordinate is 1. We now
allow the fourth coordinate to be anything at all. When the fourth coordinate, w, is non-zero,
we consider the coordinates (x,y,z,w) to represent the three-dimensional vector (x/w,y/w,z/w).
Note that this is consistent with our previous usage, since it considers (x,y,z,1 ) to represent
(x,y,z ), as before. When the fourth coordinate is zero, there is no corresponding 3D vector, but
it is possible to think of (x,y,z,0) as representing a 3D “point at infinity” in the direction of
(x,y,z ).
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Coordinates (x,y,z,w) used in this way are referred to as homogeneous coordinates. If
we use homogeneous coordinates, then any 4-by-4 matrix can be used to transform three-
dimensional vectors, and among the transformations that can be represented in this way is the
projection transformation for a perspective projection. And in fact, this is what OpenGL does
internally. It represents three-dimensional points and vectors using homogeneous coordinates,
and it represents all transformations as 4-by-4 matrices. You can even specify vertices using
homogeneous coordinates. For example, the command

gl.glVertex4d(x,y,z,w);

generates the 3D point (x/w,y/w,z/w). Fortunately, you will almost never have to deal with
homogeneous coordinates directly. The only real exception to this is that homogeneous coordi-
nates are required when setting the position of a light, as we’ll see in the next chapter.

3.1.4 Vector Forms of OpenGL Commands

Some OpenGL commands take parameters that are vectors (or points, if you want to look at
it that way) given in the form of arrays of numbers. For some commands, such glVertex and
glColor, vector parameters are an option. Others, such as the commands for setting material
properties, only work with vectors.

Commands that take parameters in array form have names that end in “v”. For example,
you can use the command gl.glVertex3fv(A,offset) to generate a vertex that is given by three
numbers in an array A of type float[]. The second parameter is an integer offset value that
specifies the starting index of the vector in the array. For example, you might use an array to
store the coordinates of the three vertices of a triangle—say (1,0,0), (−1,2,2), and (1,1,−3)—and
use that array to draw the triangle:

float[] vert = new float[] { 1, 0, 0, -1, 2, 2, 1, 1, -3};

gl.glBegin(GL.GL POLYGON);

gl.glVertex3fv(vert, 0); // Equivalent to gl.glVertex3f(vert[0],vert[1],vert[2]).

gl.glVertex3fv(vert, 3); // Equivalent to gl.glVertex3f(vert[3],vert[4],vert[5]).

gl.glVertex3fv(vert, 6); // Equivalent to gl.glVertex3f(vert[6],vert[7],vert[8]).

gl.glEnd();

(This will make a lot more sense if you already have the vertex data in an array for some
reason.)

Similarly, there are methods such as glVertex2dv and glColor3fv. The color command
can be useful when working with Java Color objects, since a color object c has a method
c.getColorComponents(null), that returns an array containing the red, green, blue, and alpha
components of the color as float values in the range 0.0 to 1.0. (The null parameter tells the
method to create and return a new array; the parameter could also be an array into which the
method would place the data.) You can use this method and the command gl.glColor3fv or
gl.glColor4fv to set OpenGL’s color from the Java Color object c:

gl.glColor3fv( c.getColorComponents(null), 0);

(I should note that the versions of these commands in the OpenGL API for the C pro-
gramming language do not have a second parameter. In C, the only parameter is a pointer,
and you can pass a pointer to any array element. If vert is an array of floats, you can call
glVertex3fv(vert) when the vertex is given by the first three elements of the array. You can
call glVertex3fv(&vert [3]), or equivalently glVertex3fv(vert+3), when the vertex is given by the
next three array elements, and so on. I should also mention that Java has alternative forms for
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these methods that use things called “buffers” instead of arrays; these forms will be covered
later in the chapter.)

OpenGL has a number of methods for reading the current values of OpenGL state variables.
Many of these values can be retrieved using four generic methods that take an array as a
parameter:

gl.glGetFloatv( propertyCodeNumber, destinationArray, offset );

gl.glGetDoublev( propertyCodeNumber, destinationArray, offset );

gl.glGetIntegerv( propertyCodeNumber, destinationArray, offset );

gl.glGetBooleanv( propertyCodeNumber, destinationArray, offset);

In these methods, the first parameter is an integer constant such as GL.GL CURRENT COLOR
or GL.GL MODELVIEW MATRIX that specifies which state variable you want to read. The
second parameter is an array of appropriate type into which the retrieved value of the state
variable will be placed. And offset tells the starting index in the array where the data should
be placed; it will probably be 0 in most cases. (For glGetBooleanv, the array type is byte[], and
the numbers 0 and 1 are used to represent the boolean values false and true.) For example, to
retrieve the current color, you could say

float[] saveColor = new float[4]; // Space for red,blue,green, and alpha.

gl.glGetFloatv( GL.GL CURRENT COLOR, saveColor, 0 );

You might use this to save the current color while you do some drawing that requires changing
to another color. Later, you could restore the current color to its previous state by saying

gl.glColor4fv( saveColor, 0 );

You could use glGetDoublev instead of glGetFloatv, if you prefer. OpenGL will convert the data
to the type that you request. However, as usual, float values might be the most efficient. There
are many, many state variables that you can read in this way. I will mention just a few more
as examples. You can read the current viewport with

int[] viewport = new int[4]; // Space for x, y, width, height.

gl.glGetIntegerv( GL.GL VIEWPORT, viewport, 0 );

For boolean state variables such as whether lighting is currently enabled, you can call glGet-
Booleanv with an array of length 1:

byte[] lit = new byte[1]; // Space for the single return value

gl.glGetBooleanv( GL.GL LIGHTING, lit );

I might mention that if you want to retrieve and save a value so that you can restore it later,
there are better ways to do so, which will be covered later in the chapter.

Perhaps most interesting for us now, you can retrieve the current transformation matrices.
A transformation matrix is represented by a one-dimensional array of length 16. The 4-by-4
transformation matrix is stored in the array in column-major order, that is, the entries in the
first column from top to bottom, followed by the entries in the second column, and so on. You
could retrieve the current modelview transformation with

float[] transform = new float[16];

gl.glGetFloatv( GL.GL MODELVIEW, transform, 0 );

It is possible to set the transformation matrix to a value given in the same form, using the
glLoadMatrixf method. For example, you could restore the modelview matrix to the value that
was retrieved by the previous command using
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gl.glLoadMatrixf( transform, 0 );

But again, if you just want to save a transform so that you can restore it later, there is a better
way to do it—in this case by using glPushMatrix and glPopMatrix.

Just as you can multiply the current transform matrix by a rotation matrix by calling glRo-
tatef or by a translation matrix by calling glTranslatef, you can multiply the current transform
matrix by an arbitrary matrix using gl.glMultMatrixf (matrix,offset). As with the other matrix
methods, the matrix is given by a one-dimensional array of 16 floats. One situation in which
this can be useful is to do shear transformations. For example, consider a shear that transforms
the vector (x1,y1,z1 ) to the vector (x2,y2,z2 ) given by

x2 = x1 + s * z1

y2 = y1

z2 = z1

where s is a constant shear amount. The 4-by-4 matrix for this transformation is hard to
construct from scaling, rotation, and translation, but it is very simple:

1 0 s 0

0 1 0 0

0 0 1 0

0 0 0 1

To use this shear transformation as a modeling transform, you can use glMultMatrixf as follows:

float[] shear = new float[] { 1,0,0,0, 0,1,0,0, s,0,1,0, 0,0,0,1 };

gl.glMultMatrixf( shear, 0 );

3.2 Primitives

The term “primitive” in computer graphics refers to a geometry element that is not
made up of simpler elements. In OpenGL, the primitives are points, lines (meaning line seg-
ments), and polygons. Other graphics systems might have additional primitives such as Bezier
curves, circles, or spheres, but in OpenGL, such shapes have to be approximated by lines or
polygons.

Primitives can be generated using glBegin/glEnd or by more efficient methods that we will
cover in Section 3.3. In any case, though, the type of primitive that you are generating is
indicated by a constant such as GL.GL POLYGON that could be passed as a parameter to
gl.glBegin. There are ten such constants, which are said to define ten different primitive types

in OpenGL. (For most of these primitive types, a single use of glBegin/glEnd can produce
several basic primitives, that is, several points, lines, or polygons.)

In this section, we’ll look at the ten primitive type constants and how they are used to
generate primitives. We’ll also cover some of the attributes that can be applied to primitives
to modify their appearance.

3.2.1 Points

Individual points can be generated by using the primitive type GL.GL POINTS. With this
primitive type, each vertex that is specified generates an individual point. For example, the
following code generates 10 points lying along the circumference of a circle of radius 1 in the
xy-plane:



68 CHAPTER 3. GEOMETRY

gl.glBegin(GL.GL POINTS);

for (int i = 0; i < 10; i++){

double angle = (2*Math.PI/10)*i; // Angle in radians, for Java’s functions.

gl.glVertex3d( Math.cos(angle), Math.sin(angle), 0);

}

gl.glEnd();

By default, a point is drawn as a single pixel. If lighting is off, the pixel takes its color
from the current drawing color as set by one of the glColor methods. If lighting is on, then the
same lighting calculations are done for the point as would be done for the vertex of a polygon,
using the current material, normal vector, and so on; this can have some interesting effects, but
generally it makes more sense to draw points with lighting disabled.

An individual pixel is just barely visible. The size of a point can be increased by calling
gl.glPointSize(size). The parameter is a float that specifies the diameter of the point, in pixels.
The range of sizes that is supported depends on the implementation.

A point that has size larger than 1 appears by default as a square, which might be a surprise.
To get circular points, you have to turn on point smoothing by calling

gl.glEnable(GL.GL POINT SMOOTH);

Just turning on this option will leave the edges of the point looking a little jagged. You can get
nicely antialiased points by also using blending . Recall that antialiasing can be implemented
by using partial transparency for pixels that are only partially covered by the object that is
being drawn. When a partially transparent pixel is drawn, its color is blended with the previous
color of the pixel, rather than replacing it. Unfortunately, blending and transparency are fairly
complicated topics in OpenGL. We will discuss them in more detail in the next chapter. For
now, I will just note that you can generally get good results for antialiased points by setting
the following options, in addition to GL POINT SMOOTH :

gl.glEnable(GL.GL BLEND);

gl.glBlendFunc(GL.GL SRC ALPHA, GL.GL ONE MINUS SRC ALPHA);

However, you should remember to turn off the GL BLEND option when drawing polygons.

3.2.2 Lines

There are three primitive types for generating lines: GL.GL LINES, GL.GL LINE STRIP, and
GL.GL LINE LOOP. With GL LINES, the vertices that are specified are paired off, and each
pair is joined to produce a line segment. If the number of vertices is odd, the last vertex is
ignored. When GL LINE STRIP is used, a line is drawn from the first specified vertex to the
second, from the second to the third, from the third to the fourth, and so on. GL LINE LOOP
is similar, except that one additional line segment is drawn from the final vertex back to the
first. This illustration shows the line segments that would be drawn if you specified the points
A, B, C, D, E, and F, in that order, using the three primitive types:
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When a line segment is drawn, a color is first assigned to each vertex, as usual, just as if it
were a vertex in a polygon, including all lighting calculations when lighting is enabled. If the
current shade model is GL SMOOTH, then the vertex colors are interpolated between the two
vertices to assign colors to the points along the line. If the shade model is GL FLAT, then the
color of the second vertex is used for the entire segment.

By default, the width of a line is one pixel. The width can be changed by calling
gl.glLineWidth(width), where width is a value of type float that specifies the line width in
pixels. To get antialiased lines, you should call

gl.glEnable(GL.GL LINE SMOOTH);

and you should set up blending with the same two commands that were given above for an-
tialiased points.

A line can also have an attribute called a stipple pattern which can be used to produce
dotted and dashed lines. The stipple pattern is set by calling

gl.glLineStipple( multiplier, pattern );

where pattern is a value of type short and multiplier is an integer. The 16 bits in pattern specify
how drawing is turned on and off along the line, with 0 turning drawing off and 1 turning it
on. For example, the value (short)0x0F33 represents the binary number 0000111100110011,
and drawing is tuned off for four steps along the line, on for four steps, off for two, on for two,
off for two, and finally on for the final two steps along the line. The pattern then repeats. The
multiplier tells the size of the steps. When multiplier is one, each bit in pattern corresponds
to one pixel-length along the line; when multiplier is two, each bit in pattern corresponds to
two pixel-lengths; and so on. The pattern value (short)0x0F33 would draw the line with a
long-dash / short-dash / short-dash stippling, and the multiplier value would determine the
length of the dashes. (Exactly the same stippling could be produced by using pattern equal to
(short)0x3535 and doubling the multiplier.)

The line stipple pattern is only applied if the GL LINE STIPPLE option is enabled by
calling

gl.glEnable(GL.GL LINE STIPPLE);

3.2.3 Polygons

The remaining six primitive types are for drawing polygons. The familiar GL.GL POLYGON,
which we used almost exclusively before this section, is used to draw a single polygon with any
number of sides. The other five polygon primitives are for drawing triangles and quadrilaterals
and will be covered later in this section.

Up until now, I haven’t bothered to mention an important fact about polygons in OpenGL:
It is correct to draw a polygon in OpenGL only if the polygon satisfies certain requirements.
OpenGL will attempt to draw a polygon using any sequence of vertices that you give it, by fol-
lowing its usual rendering algorithms. However, for polygons that don’t meet the requirements,
there is no reason to expect that the results will be geometrically correct or meaningful, and
they might vary from one OpenGL implementation to another.

First of all, very reasonably, any polygon drawn by OpenGL should be planar ; that is,
all of its vertices should lie in the same plane. It is not even clear what a non-planar polygon
would mean. But you should be aware that OpenGL will not report an error if you specify a
non-planar polygon. It will just draw whatever its algorithms produce from the data you give
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them. (Note that polygons that are very close to being planar will come out OK, so you don’t
have to be too obsessive about it.)

The other requirement is less reasonable: Polygons drawn by OpenGL must be convex .
The technical definition of convex is that whenever two points lie in the polygon, then the entire
line segment between the two points also lies in the polygon. Informally, convexity means that
the polygon does not have any indentations along its edge. Note that a convex polygon can
never be self-intersecting, like the non-convex polygon on the lower right in the illustration
below.

In order to draw a non-convex polygon with OpenGL, you have to sub-divide it into several
smaller convex polygons and draw each of those smaller polygons.

When drawing polygons, you should keep in mind that a polygon has a front side and
a back side, and that OpenGL determines which side is the front by the order in which the
vertices of the polygon are generated. In the default setup, the vertices have to be specified
in counterclockwise order when viewed from the front (and therefore in clockwise order when
viewed from the back). You can reverse this behavior by calling gl.glFrontFace(GL.GL CW ).
You might do this, for example, if you read your polygon data from a file that lists vertices in
clockwise order as seen from the front.

The front/back distinction is used in two cases. First, as we will see in the next chapter,
it is possible to assign different material properties to the front faces and to the back faces of
polygons, so that they will have different colors. Second, OpenGL has an option to do back-

face culling . This option can be turned on with gl.glEnable(GL.GL CULL FACE ). It tells
OpenGL to ignore a polygon when the user is looking at the back face of that polygon. This
can be done for efficiency when the polygon is part of a solid object, and the back faces of the
objects that make up the object are all facing the interior of the object. In that case, the back
faces will not be visible in the final image, so any time spent rendering them would be wasted.

When drawing polygons, whether with GL POLYGON or with the more specialized primi-
tive types discussed below, the default is to to draw the interior of the polygons. Sometimes, it
is useful just to draw the edges of the polygon. For example, you might want to draw a “wire-
frame” representation of a solid object, showing just the polygon edges. Or you might want to
fill a polygon with one color and then outline it with another color. You can use glPolygonMode
to determine how polygons are rendered. You can actually apply different settings to front
faces and back faces at the same time. Assuming that you want to treat both faces the same,
the three possible settings are:

gl.glPolygonMode( GL.GL FRONT AND BACK, GL.GL FILL )

gl.glPolygonMode( GL.GL FRONT AND BACK, GL.GL LINE )

gl.glPolygonMode( GL.GL FRONT AND BACK, GL.GL POINT )

The default mode is GL FILL, where the interior of the polygon is drawn. The GL LINE
mode produces an outline of the polygon. And the GL POINT mode just places a point at
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each vertex of the polygon.

To draw both the interior and the outline, you have to draw the polygon twice, once using
the GL FILL polygon mode and once using GL LINE. When you do this, however, you run
into a problem with the depth test that was discussed in Subsection 2.2.2: Along an edge of
the polygon, the interior and the outline of the polygon are at the same depth, and because of
computational inaccuracy, the depth test can give erratic results when comparing objects that
have the same depth values. At some points, you see the edge; at others, you see the interior
color. OpenGL has a fix for this problem, called “polygon offset.” Here are two pictures of the
same surface. The surface is rendered by drawing a large number of triangles. The picture on
the top left does not use polygon offset; the one on the bottom right does:

Polygon offset can be used to add a small amount to the depth of the pixels that make
up the polygon. In this case, I applied polygon offset while filling the triangles but not while
drawing their outlines. This eliminated the problem with drawing things that have the same
depths, since the depth values for the polygon and its outline are no longer exactly the same.

Here is some code for drawing the above picture with polygon offset, assuming that the
method drawSurface generates the polygons that make up the surface.

gl.glEnable(GL.GL LIGHTING); // Draw polygon interiors with lighting enabled.

gl.glPolygonMode(GL.GL FRONT AND BACK, GL.GL FILL); // Draw polygon interiors.

gl.glEnable(GL.GL POLYGON OFFSET FILL); // Turn on offset for filled polygons.

gl.glPolygonOffset(1,1); // Set polygon offset amount.

drawSurface(gl); // Fill the triangles that make up the surface.

gl.glDisable(GL.GL LIGHTING); // Draw polygon outlines with lighting disabled.

gl.glPolygonMode(GL.GL FRONT AND BACK, GL.GL LINE); // Draw polygon outlines.

gl.glColor3f(0,0,0); // Draw the outlines in black.

drawSurface(gl); // Outline the triangles that make up the surface again.

Polygon offset can be enabled separately for the FILL, LINE, and POINT polygon modes.
Here, it is enabled only for the FILL mode, so it does not apply when the outlines are drawn.
The glPolygonOffset method specifies the amount of the offset. The parameters used here,
(1,1), produce a minimal change in depth, just enough to make the offset work. (The first
parameter, which I don’t completely understand, compensates for the fact that a polygon that
is tilted relative to the screen will require a bigger change in depth to be effective.)
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3.2.4 Triangles

Triangles are particularly common in OpenGL. When you build geometry out of triangles,
you don’t have to worry about planarity or convexity, since every triangle is both planar
and convex. OpenGL has three primitive types for drawing triangles: GL.GL TRIANGLES,
GL.GL TRIANGLE STRIP, and GL.GL TRIANGLE FAN.

With GL TRIANGLES, the vertices that you specify are grouped into sets of three, and
every set of three generates a triangle. If the number of vertices is not a multiple of three, then
the one or two extra vertices are ignored. You can, of course, use GL TRIANGLES to specify
a single triangle by providing exactly three vertices.

With GL TRIANGLE STRIP, the first three vertices specify a triangle, and each additional
vertex adds another triangle, which is formed from the new vertex and the two previous vertices.
The triangles form a “strip” or “band” with the vertices alternating from one side of the strip
to the other.

This illustration shows the triangles produced using GL TRIANGLES and GL TRIANGLE STRIP
with the same set of vertices A, B, . . . , I, specified in that order:

Note that the vertices of triangle DEF in the picture on the left are specified in clockwise order,
which means that you are looking at the back face of this triangle. On the other hand, you
are looking at the front face of triangles ABC and GHI. When using GL TRIANGLES, each
triangle is treated as a separate polygon, and the usual rule for determining the front face apply.

In the picture that is made by GL TRIANGLE STRIP, on the other hand, you are looking
at the front faces of all the triangles. To make this true, the orientation of every second triangle
is reversed; that is, the order of the vertices is considered to be the reverse of the order in which
they are specified. So, in the first triangle, the ordering is ABC; in the second, the order is
DCB; in the third, CDE; in the fourth, FED, and so on. This might look complicated, but you
rarely have to think about it, since it’s the natural order to ensure that the front faces of all
the triangles are on the same side of the strip.

The third primitive for drawing triangles is GL TRIANGLE FAN. It is less commonly used
than the other two. In a triangle fan, the first vertex that is specified becomes one of the
vertices of every triangle that is generated, and those triangles form a “fan” around that initial
vertex. This illustration shows typical uses of GL TRIANGLE FAN :
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3.2.5 Quadrilaterals

Finally, OpenGL has two primitives for drawing quadrilaterals: GL.GL QUADS and
GL.GL QUAD STRIP. A quadrilateral is a four-sided polygon. As with any polygon in
OpenGL, to be valid, a quadrilateral must be planar and convex. Because of this restric-
tion, it’s more common to use triangles than quads. However, there are many common objects
for which quads are appropriate, including all the shape classes in my glutil package.

GL QUADS, as you can probably guess, draws a sequence of independent quadrilaterals,
using groups of four vertices. GL QUAD STRIP draws a strip or band made up of quadri-
laterals. Here is an illustration showing the quadrilaterals produced by GL QUADS and
GL QUAD STRIP, using the same set of vertices—although not generated in the same or-
der:

For GL QUADS, the vertices of each quadrilateral should be specified in counterclock-
wise order, as seen from the front. For GL QUAD STRIP, the vertices should alternate
from one side of the strip to the other, just as they do for GL TRIANGLE STRIP. In fact,
GL TRIANGLE STRIP can always be used in place of GL QUAD STRIP, with the same ver-
tices in the same order. (The reverse is not true, since the quads that are produced when
GL QUAD STRIP is substituted for GL TRIANGLE STRIP might not be planar.)

As an example, let’s approximate a cylinder—without a top or bottom—using a quad
strip. Assume that the cylinder has radius r and height h and that its base is in the xy-
plane, centered at (0,0). If we use a strip of 32 quads, then the vertices along the bottom
of the cylinder have coordinates (r*cos(d*i),r*sin(d*i),0), for i = 0, . . . ,31, where d is 1/32
of a complete circle. Similarly, the vertices along the top edge of the cylinder have coordi-
nates (r*cos(d*i),r*sin(d*i),h). Furthermore, the unit normal to the cylinder at the point
(r*cos(d*i),r*sin(d*i),z ) is (cos(d*i),sin(d*i),0) for both z = 0 and z = h. So, we can use
the following code to generate the quad strip:



74 CHAPTER 3. GEOMETRY

double d = (1.0/32) * (2*Math.PI); // 1/32 of a circle, for Java’s functions.

gl.glBegin(GL.GL QUAD STRIP);

for (int i = 0; i <= 32; i++) {

// Generate a pair of points, on top and bottom of the strip.

gl.glNormal3d( Math.cos(d*i), Math.sin(d*i, 0); // Normal for BOTH points.

gl.glVertex3d( r*Math.cos(d*i), r*Math.sin(d*i), h ); // Top point.

gl.glVertex3d( r*Math.cos(d*i), r*Math.sin(d*i), 0 ); // Bottom point.

}

gl.glEnd();

The order of the points, with the top point before the bottom point, is chosen to put the front
faces of the quads on the outside of the cylinder. Note that if GL TRIANGLE STRIP were
substituted for GL QUAD STRIP in this example, the results would be identical as long as
the usual GL FILL polygon mode is selected. If the polygon mode is set to GL LINE, then
GL TRIANGLE STRIP would produce an extra edge across the center of each quad.

∗ ∗ ∗

In the on-line version of this section, you will find an applet that lets you experiment with
the ten primitive types and a variety of options that affect the way they are drawn.

3.3 Polygonal Meshes

When creating objects that are made up of more than just a few polygons, we need some
way to organize the data and some strategy for using it effectively. The problem is how to
represent polygonal meshes for efficient processing. A polygonal mesh is just a collection
of connected polygons used to model a two-dimensional surface. The term includes polyhedra
such as a cube or a dodecahdron, as well as meshes used to approximate smooth surfaces such as
the geometry produced by my UVSphere class. In these cases, the mesh represents the surface
of a solid object. However, the term is also used to refer to open surfaces with no interior, such
as a mesh representing the graph of a function z = f (x,y).

There are many data structures that can be used to represent polygonal meshes. We will
look at one general data structure, the indexed face set, that is often used in computer graphics.
We will also consider the special case of a polygonal grid.

3.3.1 Indexed Face Sets

The polygons in a polygonal mesh are also referred to as “faces” (as in the faces of a polyhedron),
and one of the primary means for representing a polygonal mesh is as an indexed face set ,
or IFS.

The data for an IFS includes a list of all the vertices that appear in the mesh, giving the
coordinates of each vertex. A vertex can then be identified by an integer that specifies its index,
or position, in the list. As an example, consider this pyramid, a simple five-sided polyhedron:



3.3. POLYGONAL MESHES 75

The vertex list for this polyhedron has the form

Vertex #0. (1,0,1)

Vertex #1. (1,0,-1)

Vertex #2. (-1,0,-1)

Vertex #3. (-1,0,1)

Vertex #4. (0,1,0)

The order of the vertices is completely arbitrary. The purpose is simply to allow each vertex to
be identified by an integer.

To describe a polygon, we have to give its vertices, being careful to enumerate them in
counterclockwise order as seen from the front of the polygon. In this case, the fronts of the
polygonal faces of the pyramid should be on the outside of the pyramid. Now for an IFS, we
can specify a vertex by giving its index in the list. For example, we can say that one of the faces
of the pyramid is the polygon formed by vertex #4, vertex #3, and vertex #0. To complete
the data for our IFS, we just give the indexes of the vertices for each face:

Face #1: 4 3 0

Face #2: 4 0 1

Face #3: 4 1 2

Face #4: 4 2 3

Face #5: 0 3 2 1

In Java, we can store this data effectively in two two-dimensional arrays:

float[][] vertexList = { {1,0,1}, {1,0,-1}, {-1,0,-1}, {-1,0,1}, {0,1,0} };

int[][] faceList = { {4,3,0}, {4,0,1}, {4,1,2}, {4,2,3}, {0,3,2,1} };

Note that each vertex is repeated three or four times in the face-list array. With the IFS
representation, a vertex is represented in the face list by a single integer, giving an index
into the vertex list array. This representation uses significantly less memory space than the
alternative, which would be to write out the vertex in full each time it occurs in the face list.
For this example, the IFS representation uses 31 numbers to represent the polygonal mesh. as
opposed to 48 numbers for the alternative.

IFSs have another advantage. Suppose that we want to modify the shape of the polygon
mesh by moving its vertices. We might do this in each frame of an animation, as a way of
“morphing” the shape from one form to another. Since only the positions of the vertices are
changing, and not the way that they are connected together, it will only be necessary to update
the 15 numbers in the vertex list. The values in the face list will remain unchanged. So, in this
example, we would only be modifying 15 numbers, instead of 48.

Suppose that we want to use the IFS data to draw the pyramid. It’s easy to generate the
OpenGL commands that are needed to generate the vertices. But to get a correct rendering, we
also need to specify normal vectors. When the IFS represents an actual polyhedron, with flat
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faces, as it does in this case, we can compute a normal vector for each polygon, as discussed in
Subsection 3.1.1. (In fact, if P1, P2, and P3 are the first three vertices of the polygon, then the
cross product (P3−P2 )×(P1−P2 ) is the desired normal as long as the three points do not lie
on a line.) Let’s suppose that we have a method, computeUnitNormalForPolygon, to compute
the normal for us. Then the object represented by an IFS can be generated from the vertexList
and faceList data with the following simple method:

static void drawIFS(GL gl, float[][] vertexList, int[][] faceList) {

for (int i = 0; i < faceList.length; i++) {

gl.glBegin(GL.GL POLYGON);

int[] faceData = faceList[i]; // List of vertex indices for this face.

float[] normal = computeUnitNormalForPolygon(vertexList, faceData);

gl.glNormal3fv( normal, 0 );

for (int j = 0; j < faceData.length; j++) {

int vertexIndex = faceData[j]; // Location of j-th vertex in list.

float[] vertex = vertexList[ vertexIndex ];

gl.glVertex3fv( vertex, 0 );

}

gl.glEnd();

}

}

This leaves open the question of what to do about normals for an indexed face set that
is meant to approximate a smooth surface. In that case, we want to use normals that are
perpendicular to the surface, not to the polygons. One possibility is to expand our data structure
to store a normal vector for each vertex, as we will do in the next subsection. Another possibility,
which can give nice-looking results, is to calculate an approximate normal for each vertex from
the data that we have. To do this for a particular vertex v, consider all the polygons in which
v is a vertex. Compute vectors perpendicular to each of those polygons, and then use the
average of all those vectors as the normal vector at v. Although that vector is probably not
exactly perpendicular to the surface at v, it is usually good enough to pass visual inspection of
the resulting image.

∗ ∗ ∗

Before moving on, lets think about making a minor change to the way that we have stored
the data for the vertex list. It is common in OpenGL to store this type of data in a one-
dimensional array, instead of a two dimensional array. Store the first vertex in the first three
array elements, the second vertex in the next three, and so on:

float[] vertexList = { 1,0,1, 1,0,-1, -1,0,-1, -1,0,1, 0,1,0 };

In general, the data for vertex number n will be stored starting at position 3*n in the array.
Recall that the second parameter to gl.glVertex3fv gives the position in the array where the
data for the vertex is stored. So, to use our modified data, we can now draw the IFS as follows:

static void drawIFS(GL gl, float[] vertexList, int[][] faceList) {

for (int i = 0; i < faceList.length; i++) {

gl.glBegin(GL.GL POLYGON);

int[] faceData = faceList[i]; // List of vertex indices for this face.

float[] normal = computeUnitNormalForPolygon(vertexList, faceData);

gl.glNormal3fv( normal, 0 );

for (int j = 0; j < faceData.length; j++) {

int vertexIndex = faceData[j];

gl.glVertex3fv( vertexList, 3*vertexIndex );
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}

gl.glEnd();

}

}

This representation will be convenient when we look at new methods for drawing OpenGL
primitives in the next section.

3.3.2 OBJ Files

For complex shapes that are not described by any simple mathematical formula, it’s not feasible
to generate the shape using Java code. We need a way to import shape data into our programs
from other sources. The data might be generated by physical measurement, for example, or by
an interactive 3D modeling program such as Blender (http://www.blender.org). To make this
possible, one program must write data in a format that can be read by another program. The
two programs need to use the same graphics file format. One of the most common file formats
for the exchange of polygonal mesh data is the Wavefront OBJ file format. Although the
official file format can store other types of geometric data, such as Bezier curves, it is mostly
used for polygons, and that’s the only use that we will consider here.

An OBJ file (with file extension “.obj”) can store the data for an indexed face set, plus
normal vectors and texture coordinates for each vertex. The data is stored as plain, human-
readable text, using a simple format. Lines that begin with “v”, “vn”, “vt”, or “f”, followed
by a space, contain data for one vertex, one normal vector, one set of texture coordinates, or
one face, respectively. For our purposes here, other lines can be ignored.

A line that specifies a vertex has the form v x y z, where x, y, and z are numeric constants
giving the coordinates of the vertex. For example:

v 0.707 -0.707 1

Four numbers, specifying homogeneous coordinates, are also legal but, I believe, rarely used.
All the “v” lines in the file are considered to be part of one big list of vertices, and the vertices
are assigned indices based on their position in the list. The indices start at one not zero, so
vertex 1 is the vertex specified by the first “v” line in the file, vertex 2 is specified by the second
“v” line, and so on. Note that there can be other types of lines interspersed among the “v”
lines—those extra lines are not counted when computing the index of a vertex.

Lines starting with “vn” or “vt” work very similarly. Each “vn” line specifies a normal
vector, given by three numbers. Normal vectors are not required to be unit vectors. All the
“vn” lines in the file are considered to be part of one list of normal vectors, and normal vectors
are assigned indices based on their order in the list. A “vt” line defines texture coordinates
with one, two, or three numbers. (Two numbers would be used for 2D image textures.) All
the “vt” lines in the file create a list of texture coordinates, which can be referenced by their
indices in the list.

Faces are more complicated. Each “f” line defines one face, that is, one polygon. The data
on the “f” line must give the list of vertices for the face. The data can also assign a normal
vector and texture coordinates to each vertex. Vertices, texture coordinates, and normals are
referred to by giving their indices in the respective lists. (Remember that the numbering starts
from one, not from zero; if you’ve stored the data in Java arrays, you have to subtract 1 from
the numbers given in the “f” line to get the correct array indices. There reference numbers can
be negative. A negative index in an “f” line means to count backwards from the position of
the “f” line in the file. For example, a vertex index of −1 refers to the “v” line that was seen
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most recently in the file, before encountering the “f” line; a vertex index of −2 refers the “v”
line that precedes that one, an so on. If you are reading the file sequentially and storing data
in arrays as you go, then −1 simply refers to the last item that is currently in the array, −2
refers to the next-to-last item, and so on.)

In the simple case, where there are no normals or texture coordinates, an “f” line can simply
list the vertex indices in order. For example, an OBJ file for the pyramid example from the
previous subsection could look like this:

v 1 0 1

v 1 0 -1

v -1 0 -1

v -1 0 1

v 0 1 0

f 5 4 1

f 5 1 2

f 5 2 3

f 5 3 4

f 1 4 3 2

When texture coordinate or normal data is included, a single vertex index such as “5” is
replaced by a data element in the format v/t/n, where v is a vertex index, t is a texture
coordinates index, and n is a normal coordinate index. The texture coordinates index can
be left out, but the two slash characters must still be there. For example, “5/3/7” specifies
vertex number 5, with texture coordinates number 3, and normal vector number 7. And “2//1”
specifies vertex 2 with normal vector 7. As an example, here is complete OBJ file representing
a cube, with its normal vectors, exactly as exported from Blender. Note that it contains
additional data lines, which we want to ignore:

# Blender3D v248 OBJ File:

# www.blender3d.org

mtllib stage.mtl

v 1.000000 -1.000000 -1.000000

v 1.000000 -1.000000 1.000000

v -1.000000 -1.000000 1.000000

v -1.000000 -1.000000 -1.000000

v 1.000000 1.000000 -1.000000

v 0.999999 1.000000 1.000001

v -1.000000 1.000000 1.000000

v -1.000000 1.000000 -1.000000

vn -0.000000 -1.000000 0.000000

vn 0.000000 1.000000 -0.000000

vn 1.000000 0.000000 0.000000

vn -0.000000 -0.000000 1.000000

vn -1.000000 -0.000000 -0.000000

vn 0.000000 0.000000 -1.000000

usemtl Material

s off

f 1//1 2//1 3//1 4//1

f 5//2 8//2 7//2 6//2

f 1//3 5//3 6//3 2//3

f 2//4 6//4 7//4 3//4

f 3//5 7//5 8//5 4//5

f 5//6 1//6 4//6 8//6
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Once you have read a geometric object from an OBJ file and stored the data in arrays, it is
easy enough to use the arrays to draw the object with OpenGL.

3.3.3 Terraine and Grids

We look at one more common type of polygonal mesh, which occurs when the vertices in
the mesh form a grid or net. A typical example in computer graphics programs would be to
represent the ground or terrain by specifying the height of the ground at each point in a grid.
That is, for example, we could use a two-dimensional array height [i ][j ], for 0 <= i <= N and
0 <= j <= N, to give the height of the ground over each of the points (i/N,j/N ). (This defines
the ground height only over a square that is one unit on a side, but we can easily scale to extend
the terrain over a larger square.) The ground would then be approximated by a polygonal mesh
containing the points (i/N,height [i ][j ],j/N ), with the points joined by line segments. The result
might look something like this (although certainly a larger value of N would be desirable):

Imagine looking down from above at the original grid of points and at the same grid connected
by lines:

You can see that the geometry consists of N horizontal “strips.” Each of these strips can
be drawn using the GL TRIANGLE STRIP primitive. Again, we have to worry about normal
vectors, but let’s assume again that we have a way to compute them (although the computation
in this case is more difficult than for indexed face sets). If we have a texture that we want to
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apply to the terrain, we can do so easily. As we have set things up, all the original grid points
have xz-coordinates in the unit square, and we can simply use those coordinates as texture
coordinates. We can then use the following method to draw the terrain

static void drawTerrain(GL gl, float[][] height, int N) {

for (int row = 0; row < N; row++) {

gl.glBegin(GL.GL TRIANGLE STRIP);

// Draw strip number row.

for (int col = 0; col <= N; col++) {

// Generate one pair of points on the strip, at horizontal position col.

float x1 = (float)col/N; // Upper point on strip.

float y1 = height[row+1][col];

float z1 = (float)(row+1)/N;

float[] normal1 = computeTerrainUnitNormal(height,N,row+1,col);

gl.glNormal3fv( normal1, 0 );

gl.glTexCoord2f( x1, z1 );

gl.glVertex3f( x1, y1, z1 );

float x2 = (float)col/N; // Lower point on strip.

float y2 = height[row][col];

float z2 = (float)row/N;

float[] normal2 = computeTerrainUnitNormal(height,N,row,col);

gl.glNormal3fv( normal2, 0 );

gl.glTexCoord2f( x2, z2 );

gl.glVertex3f( x2, y2, z2 );

}

gl.glEnd();

}

}

∗ ∗ ∗

For readers with some background in calculus, this example is actually just a special case
of drawing the graph of a mathematical function of two variables by plotting some points on
the surface and connecting them to form lines and triangles. In that case, thinking of the
function as giving y = f (x,z ), we would use the points (x,f (x,z ),z ) for a grid of points (x,z ) in
the xz-plane.

The graph of the function is a surface, which will be smooth if f is a differentiable function.
We are approximating the smooth surface by a polygonal mesh, so we would like to use normal
vectors that are perpendicular to the surface. The normal vectors can be calculated from the
partial derivatives of f.

More generally, we can easily draw a polygonal approximation of a parametric surface

given by a set of three functions of two variables, x (u,v), y(u,v), and z (u,v). Points on the
surface are given by (x,y,z ) = (x (u,v), y(u,v), z (u,v)). The surface defined by a rectangular
area in the uv-plane can be approximated by plotting points on the surface for a grid of uv-
points in that rectangle and using the resulting points to draw a sequence of triangle strips.
The normal at a point on the surface can be computed from partial derivatives. In fact, if we
use the notation Du to mean the partial derivative with respect to u and Dv for the partial
derivative with respect to v, then a normal at the point (x (u,v), y(u,v), z (u,v)) is given by the
cross product

(Dux (u,v), Duy(u,v), Duz (u,v)) × (Dvx (u,v), Dvy(u,v), Dvz (u,v))
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In fact, it’s not even necessary to compute exact formulas for the partial derivatives. A rough
numerical approximation, using the difference quotient, is good enough to produce nice-looking
surfaces.

3.4 Drawing Primitives

We have been exclusively using glBegin/glEnd for drawing primitives, but that is just
one of the approaches to drawing that OpenGL makes available. In fact, the glBegin/glEnd
paradigm is considered to be a little old-fashioned and it has even been deprecated in the latest
versions of OpenGL. This section will discuss alternative approaches.

The alternative approaches are more efficient, because they make many fewer calls to
OpenGL commands and because they offer the possibility of storing data in the graphics card’s
memory instead of retransmitting the data every time it is used. Unfortunately, the alternative
drawing methods are more complicated than glBegin/glEnd. This is especially true in Java (as
opposed to C), because the implementation of arrays in Java makes Java arrays unsuitable for
use in certain OpenGL methods that have array parameters in C. Jogl’s solution to the array
problem is to use “nio buffers” instead of arrays in those cases were Java arrays are not suitable.
The first subsection, below, discusses nio buffers.

To give us something to draw in this section, we’ll look at ways to produce the following
image. It shows a dark red cylinder inside a kind of cloud of points. The points are randomly
selected points on a sphere. The sphere points are lit, with normal vectors and texture coor-
dinates appropriate for the unit sphere. The texture that is used is a topological map of the
Earth’s surface. The on-line version of this section has an applet that animates the image and
allows you to rotate it.

The source code for the program can be found in VertexArrayDemo.java.
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3.4.1 Java’s Data Buffers

The term “buffer” was already overused in OpenGL. Jogl’s use of nio buffers makes it even
harder to know exactly what type of buffer is being discussed in any particular case. The term
buffer ends up meaning, basically, no more than a place where data can be stored—usually a
place where data can be stored by one entity and retrieved by another entity.

A Java nio buffer is an object belonging to the class java.nio.Buffer or one of its subclasses.
The package java.nio defines input/output facilities that supplement those in the older java.io

package. Buffers in this package are used for efficient transfer of data between a Java program
and an I/O device such as a hard drive. When used in Jogl, this type of buffer offers the
possibility of efficient data transfer between a Java program and a graphics card.

Subclasses of Buffer such as FloatBuffer and IntBuffer represent buffers capable of holding
data items of a given primitive type. There is one such subclass for each primitive type except
boolean.

To make working with nio buffers a little easier, Jogl defines a set of utility methods for
creating buffers. They can be found as static methods in class BufferUtil, from the package
com.sun.opengl.util. We will be using BufferUtil.newFloatBuffer(n), which creates a buffer that
can hold n floating point values, and BufferUtil.newIntBuffer(n), which creates a buffer that
can hold n integers. (The buffers created by these methods are so-called “direct” buffers, which
are required for the Jogl methods that we will be using. It is also possible to create a Buffer

object that stores its data in a standard Java array, but buffers of that type have the same
problems for OpenGL as plain Java arrays. They could be used with some Jogl methods, but
not others. We will avoid them.)

A nio Buffer, like an array, is simply a linear sequence of elements of a given type. In fact,
just as for an array, it is possible to refer to items in a buffer by their index or position in that
sequence. Suppose that buffer is a variable of type FloatBuffer, i is an int and x is a float.
Then

buffer.put(i,x);

copies the value of x into position number i in the buffer. Similarly, buffer.get(i) can be used
to retrieve the value at index i in the buffer.

A buffer differs from an array in that a buffer has an internal position pointer that indicates
a “current position” within the buffer. A buffer has relative put and get methods that work
on the item at the current position, and then advance the position pointer to the next position.
That is,

buffer.put(x);

stores the value of x at the current position, and advances the position pointer to the next
element in the buffer. Similarly, buffer.get() returns the item at the buffer’s current position
and advances the pointer.

There are also methods for transferring an entire array of values to or from a buffer. These
methods can be much more efficient than transferring values one at a time. For example,

buffer.put(data, start, count);

copies count values from an array, data, starting from position start in the array. The data is
stored in the buffer, starting at the buffer’s current position. The buffer’s position pointer is
moved to the first index following the block of transferred data.
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The method buffer.position(i) can be used to set the buffer’s current position pointer to
i. To return the position pointer to the start of the buffer, you can use buffer.position(0) or
buffer.rewind().

As an example, suppose that we want to store the vertices of a triangle in a FloatBuffer, buf.
Say the vertices are (1.5,0,0), (0,1.5,0), and (0.5,0.5,−1). Here are three ways to do it:

(1) Absolute put, starting at position 0:

buf.put(0,1.5f); buf.put(1,0); buf.put(2,0); // first vertex

buf.put(3,0); buf.put(4,1.5f); buf.put(5,0); // second vertex

buf.put(6,0.5f); buf.put(7,0.5f); buf.put(8,-1); // third vertex

(2) Relative put; starts at current position; no need to specify indices:

buf.put(1.5f); buf.put(0); buf.put(0); // first vertex

buf.put(0); buf.put(1.5f); buf.put(0); // second vertex

buf.put(0.5f); buf.put(0.5f); buf.put(-1); // third vertex

(3) Bulk put, copying the data from an array:

float[] vert = { 1.5,0,0, 0,1.5,0, 0.5,0.5,-1 };

buf.put(vert,0,9);

You should note that the absolute put methods used in case (1) do not move the buffer’s
internal pointer. The relative puts in cases (2) and (3) advance the pointer nine positions in
each case—and when you use them, you might need to reset the buffer’s position pointer later.

3.4.2 Drawing With Vertex Arrays

As an alternative to using glBegin/glEnd, you can place your data into nio buffers and let
OpenGL read the data from the buffers as it renders the primitives. (In C or C++, you would
use arrays rather than buffers.) We start with a version of this technique that has been available
since OpenGL 1.1, and so can be used on all current systems. The technique is referred to as
using vertex arrays, although nio buffers, not arrays, are used in Jogl, and you can store
other data such as normal vectors in the buffers, not just vertices.

To use vertex arrays, you must store vertices in a buffer, and you have to tell OpenGL that
you are using that buffer with the following method from the class GL:

public void glVertexPointer(int size, int type, int stride, Buffer buffer)

The size here is the number of coordinates per vertex, which can be 2, 3, or 4. (You have
to provide the same number of coordinates for each vertex.) The stride is usually 0, meaning
that the data values are stored in consecutive locations in the buffer; if that is not the case,
then stride gives the distance in bytes between the location of one value and the location
of the next value. The type is a constant that tells the data type of each of the numbers in
the buffer. The possible values are GL.GL FLOAT, GL.GL INT, and GL.GL DOUBLE. The
constant that you provide here must match the type of the buffer. For example, if you want
to use float values for the vertex coordinates, specify GL.GL FLOAT as the type and use a
buffer of type FloatBuffer. The vertex data is assumed to start at the buffer’s current position.
Usually, that will be at the beginning of the buffer. (In particular, note that you might need
to set the buffer’s position pointer to the appropriate value by calling buffer.position() before
calling gl.glVertexPointer(); this will certainly be true if you use relative put commands to put
data into the buffer.)

In addition to calling glVertexPointer, you must enable the use of the buffer by calling
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gl.glEnableClientState(GL.GL VERTEX ARRAY);

Use gl.glDisableClientState(GL.GL VERTEX ARRAY ) to disable the use of the array.
OpenGL ignores the vertex pointer except when this state is enabled.

Finally, in order to actually use the vertex data from the buffer, use the following method
from class GL:

void glDrawArrays(int mode, int first, int count);

This method call corresponds to one use of glBegin/glEnd. The mode tells which primitive
type is being drawn, such as GL.GL POLYGON or GL.GL TRIANGLE STRIP. The same ten
primitive types that can be used with glBegin can be used here. first is the index in the buffer
of the first vertex that is to used for drawing the primitive. Note that the position is given
in terms of vertex number, not number of floating point values. The count is the number of
vertices to be used, just as if glVertex were called count times.

Let’s see how this could be used to draw the rectangle in the xy-plane with corners at
(−1,−1) and (1,1). We need a variable of type FloatBuffer, which would probably be an instance
variable:

private FloatBuffer rectVertices;

The buffer itself has to be allocated and filled with data, perhaps in the init() method:

rectVertices = BufferUtil.newFloatBuffer(8);

float[] data = { -1,-1, 1,-1, 1,1, -1,1 };

rectVertices.put(data,0,8);

rectVertices.rewind();

The last line, which moves the buffer’s position pointer back to zero, is essential, since positions
of data in the buffer are specified relative to that pointer. With this setup, we can draw the
rectangle in the display() method like this:

gl.glVertexPointer(2, GL.GL FLOAT, 0, rectVertices);

gl.glEnableClientState(GL.GL VERTEX ARRAY);

gl.glNormal3f(0,0,1);

gl.glDrawArrays(GL.GL POLYGON, 0, 4); // Generate the polygon using 4 vertices.

gl.glDisableClientState(GL.GL VERTEX ARRAY);

The “2” that is used as the first parameter to glVertexPointer says that each vertex consists
of two floating point values, giving the coordinates of a vertex that lies in the xy-plane, just as
for glVertex2f.

In this example, one normal vector will work for all the vertices, and there are no texture
coordinates. In general, we will need a different normal vector and possibly texture coordinates
for each vertex. We just have to store these data in their own arrays, in much the same way
that we did the vertex data.

The following methods are used in the same way as glVertexPointer, to specify the buffers
that hold normal vector and texture coordinate data:

public void glNormalPointer(int type, int stride, Buffer buffer)

public void glTexCoordPointer(int size, int type, int stride, Buffer buffer)

Note that glNormalPointer does not have a size parameter. For normal vectors, you must
always give three numbers for each vector, so the size would always be 3 in any case.

To tell OpenGL to use the data from the buffers, you have to enable the appropriate client
state, using the method calls



3.4. DRAWING PRIMITIVES 85

gl.glEnableClientState(GL.GL NORMAL ARRAY);

gl.glEnableClientState(GL.GL TEXTURE COORD ARRAY);

When you call glDrawArrays, if GL NORMAL ARRAY is enabled, then normal vectors will be
retrieved from the buffer specified by glNormalPointer. One normal vector will be retrieved for
each vertex, and the normals in the normal buffer must correspond one-to-one with the vertices
in the vertex buffer. The texture coordinate buffer works in the same way.

∗ ∗ ∗

For a more extended example, we will look at how to draw the cylinder and sphere in the
picture at the beginning of this section.

The sphere consists of thousands of randomly generated points on the unit sphere (that is,
the sphere of radius 1 centered at the origin), with appropriate texture coordinates and normal
vectors. The entire set of points can be drawn with one call to glDrawArrays, using GL POINTS
as the primitive type. (This example emphasizes the fact that points are essentially free-floating
vertices that can have their own normals and texture coordinates.) We need buffers to hold
vertices, normals, and texture coordinates. However, in this particular case, the normal to the
unit sphere at a given point has the same coordinates as the point itself, so in fact I use the same
set of data for the normals as for the vertices, stored in the same buffer. Here is the method
that is used to create the data, where sphereVertices and sphereTexCoords are FloatBuffers and
spherePointCount is the number of points to be generated:

private void createPointSphere() {

spherePointCloud = BufferUtil.newFloatBuffer(spherePointCount*3);

sphereTexCoords = BufferUtil.newFloatBuffer(spherePointCount*2);

for (int i = 0; i < spherePointCount; i++) {

double s = Math.random();

double t = Math.random();

sphereTexCoords.put(2*i,(float)s);

sphereTexCoords.put(2*i+1,(float)t);

double u = s * Math.PI * 2;

double z = t * 2 - 1;

double r = Math.sqrt(1-z*z);

double x = r * Math.cos(u);

double y = r * Math.sin(u);

spherePointCloud.put(3*i,(float)x);

spherePointCloud.put(3*i+1,(float)y);

spherePointCloud.put(3*i+2,(float)z);

}

}

You don’t need to understand the math, but note that each vertex requires three floats while
each set of texture coordinates requires two. Here, I’ve used indexed put commands to store
the data into the buffers. In the method for creating the data for the cylinder, I used relative
put, which has the advantage that I don’t need to computer the correct index for each number
that I put in the buffer. I don’t present that method here, but you can find it in the source
code.

Once the data has been stored in the buffers, it’s easy to draw the sphere. We have to set
up pointers to the data, enable the appropriate client states, and call glDrawArrays to generate
the points from the data. In this case, the normals and the vertices are identical, and the data
for them are taken from the same buffer.
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// Tell OpenGL where to find the data:

gl.glVertexPointer(3, GL.GL FLOAT, 0, sphereVertices);

gl.glNormalPointer(GL.GL FLOAT, 0, sphereVertices);

gl.glTexCoordPointer(2, GL.GL FLOAT, 0, sphereTexCoords);

// Tell OpenGL which arrays are being used:

gl.glEnableClientState(GL.GL VERTEX ARRAY);

gl.glEnableClientState(GL.GL NORMAL ARRAY);

gl.glEnableClientState(GL.GL TEXTURE COORD ARRAY);

// Turn on texturing, and draw the sphere:

sphereTexture.enable();

gl.glDrawArrays(GL.GL POINTS, 0, spherePointCount); // Generate the points!

// At this point, texturing and client states could be disabled.

Things are just a little more complicated for the cylinder, since it requires three calls to
glDrawArrays, one for the side of the cylinder, one for the top, and one for the bottom. We
can, however, store the vertices for all three parts in the same buffer, as long as we remember
the starting point for each part. The data is stored in a FloatBuffer named cylinderPoints. The
vertices for the side of the cylinder start at position 0, for the top at position cylinderTopStart,
and for the bottom at cylinderBottomStart. (That is, the side used cylinderTopStart vertices,
and the first vertex for the top is at index cylinderTopStart in the list of vertices.) The normals
for the side of the cylinder are stored in a FloatBuffer named cylinderSideNormals. For the
top and bottom, the normal vector can be set by a single call to glNormal3f, since the same
normal is used for each vertex. This means that GL NORMAL ARRAY has to be enabled
while drawing the side but not while drawing the top and bottom of the cylinder. Putting all
this together, the cylinder can be drawn as follows:

gl.glVertexPointer(3,GL.GL FLOAT,0,cylinderPoints);

gl.glNormalPointer(GL.GL FLOAT,0,cylinderSideNormals);

// Draw the side, using data from the vertex buffer and from the normal buffer.

gl.glEnableClientState(GL.GL VERTEX ARRAY);

gl.glEnableClientState(GL.GL NORMAL ARRAY);

gl.glDrawArrays(GL.GL QUAD STRIP, 0, (cylinderVertexCount+1)*2);

gl.glDisableClientState(GL.GL NORMAL ARRAY); // Turn off normal array.

// Leave vertex array enabled.

// Draw the top and bottom, using data from vertex buffer only.

gl.glNormal3f(0,0,1); // Normal for all vertices for the top.

gl.glDrawArrays(GL.GL TRIANGLE FAN, cylinderTopStart, cylinderVertexCount+2);

gl.glNormal3f(0,0,-1); // Normal for all vertices for the bottom.

gl.glDrawArrays(GL.GL TRIANGLE FAN, cylinderBottomStart, cylinderVertexCount+2);

gl.glDisableClientState(GL.GL VERTEX ARRAY); // Turn off vertex array.

In addition to vertex, normal, and texture coordinate arrays, glDrawArrays can use several
other arrays, including a color array that holds color values and generic vertex attribute arrays
that hold data for use in GLSL programs.
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3.4.3 Vertex Buffer Objects

Vertex arrays speed up drawing by greatly reducing the number of calls to OpenGL routines.
However, the data for the routines still has to be transferred to the graphics card each time
it is used, and this can still be a bottleneck on performance. OpenGL Version 1.5 introduced
another technique that offers the possibility of reducing and in some cases eliminating this
bottleneck. The technique is referred to as vertex buffer objects or VBOs.

A vertex buffer object is a region of memory managed by OpenGL that can store the
data from vertex arrays. Note that these buffers are not the same sort of thing as Java nio
buffers. When VBOs are used, the data from the Java nio buffers specified by methods such as
glVertexPointer and glNormalPointer is (at least potentially) copied into a VBO which can
reside in memory inside the graphics card or in system memory that is more easily accessible
to the graphics card.

Before using VBOs, you should be sure that the version of OpenGL is 1.5 or higher. It is
a good idea to test this and store the answer in a boolean variable. In Jogl, you can do this
with:

version 1 5 = gl.isExtensionAvailable("GL VERSION 1 5");

VBOs are allocated by the glGenBuffers method, which creates one or more VBOs and
returns an integer ID number for each buffer created. The ID numbers are stored in an array.
For example, four VBOs can be created like this:

int[] bufferID = new int[4]; // Get 4 buffer IDs.

gl.glGenBuffers(4,bufferID,0);

The third parameter is an offset that tells the starting index in the array where the IDs should
be stored; it is usually 0 (and is absent in the C API).

Now, most of the OpenGL routines that work with VBOs do not mention a VBO index.
Instead, they work with the “current VBO.” For use with vertex arrays, the current VBO is
set by calling

gl.glBindBuffer(GL.GL ARRAY BUFFER, vboID);

where vboID is the ID number of the VBO that is being made current. Later, we’ll see another
possible value for the first parameter of this method. It’s important to understand that this
method does nothing except to say, “OK, from now on anything I do with VBOs that is relevant
to vertex arrays should be applied to VBO number vboID.” It is a switch that directs future
commands to a particular VBO. You can also call gl.glBindBuffer(GL.GL ARRAY BUFFER,0)
to direct commands away from VBOs altogether; this can be important because the meaning
of some commands changes when they are used with VBOs.

To specify the data that is to be stored in a VBO, use the glBufferData method from the
GL class. Note that this method supplies data for the VBO whose ID has been selected using
glBindBuffer :

public void glBufferData(int target, int size, Buffer data, int usage)

The target, for now, should be GL.GL ARRAY BUFFER (and in general should match the
first parameter in glBindBuffer). size is the size of the data in bytes, and the data is stored
in data, which is a Java nio Buffer. (Note that the data should already be there; even though
the data will be used by future commands, this method specifies the data itself, not just the
location of the data.) The usage parameter is particularly interesting. It is a “hint” that tells
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OpenGL how the data will be used. OpenGL will try to store the data in the optimal location
for its intended use. For our purposes in this section, the possible values are

• GL.GL STATIC DRAW – the data is expected to be used many times, without further
modification. It would be optimal to store the data in the graphics card, where OpenGL
has direct access to it. This is the appropriate usage for this section’s VertexArrayDemo
application.

• GL.GL STREAM DRAW – the data will be used once or at most a few times. It is not
so important to save it on the graphics card.

• GL.GL DYNAMIC DRAW – the data will be changed many times. The data is ideally
stored in memory that can be quickly accessed by both the CPU and the graphics card.
This usage would be appropriate for an animation in which the vertex data can change
from one frame to the next.

The VertexArrayDemo application actually uses VBOs when the OpenGL version is 1.5 or
higher. VBOs are used to store the vertex, normal, and texture coordinate data for the sphere
and cylinder. Four VBOs are used. Here is the code that creates the VBO’s and provides them
with data:

if (version 1 5) {

int[] bufferID = new int[4]; // Get 4 buffer IDs for the data.

gl.glGenBuffers(4,bufferID,0);

spherePointBufferID = bufferID[0]; // VBO for sphere vertices/normals.

sphereTexCoordID = bufferID[1]; // VBO for sphere texture coords.

cylinderPointBufferID = bufferID[2]; // VBO for cylinder vertices.

cylinderNormalBufferID = bufferID[3]; // VBO for cylinder normals.

gl.glBindBuffer(GL.GL ARRAY BUFFER, spherePointBufferID);

gl.glBufferData(GL.GL ARRAY BUFFER, spherePointCount*3*4,

sphereVertices, GL.GL STATIC DRAW);

gl.glBindBuffer(GL.GL ARRAY BUFFER, sphereTexCoordID);

gl.glBufferData(GL.GL ARRAY BUFFER, spherePointCount*2*4,

sphereTexCoords, GL.GL STATIC DRAW);

gl.glBindBuffer(GL.GL ARRAY BUFFER, cylinderPointBufferID);

gl.glBufferData(GL.GL ARRAY BUFFER, ((cylinderVertexCount+1)*4+2)*3*4,

cylinderPoints, GL.GL STATIC DRAW);

gl.glBindBuffer(GL.GL ARRAY BUFFER, cylinderNormalBufferID);

gl.glBufferData(GL.GL ARRAY BUFFER, (cylinderVertexCount+1)*2*3*4,

cylinderSideNormals, GL.GL STATIC DRAW);

gl.glBindBuffer(GL.GL ARRAY BUFFER, 0); // Leave no buffer ID bound.

}

The if statement tests whether the version of OpenGL is high enough to support vertex buffer
objects, using the variable version 1 5 which was discussed above. Note how glBindBuffer is
used to select the VBO to which the following glBufferData method will apply. Also, note that
the size specified in the second parameter to glBufferData is given in bytes. Since a float value
takes up four bytes, the size is obtained by multiplying the number of floats by 4.

∗ ∗ ∗
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Of course, we also have to use the data from the VBOs! The VBOs are holding vertex array
data. The glDrawArrays and glEnableClientState commands are used in exactly the same way
whether or not we are using VBOs. However, the command for telling OpenGL where to find
that data is a little different when using VBOs. When the data is stored in VBOs, alternative
forms of the glVertexPointer, glNormalPointer, and glTexCoordPointer methods are used:

public void glVertexPointer(int size, int type, int stride, long vboOffset)

public void glNormalPointer(int type, int stride, long vboOffset)

public void glTexCoordPointer(int size, int type, int stride, long vboOffset)

The difference is the last parameter, which is now an integer instead of a Buffer. (In the C
API, there is only one version of each command, with a pointer as the fourth parameter, but
that parameter is interpreted differently depending on whether VBOs are being used or not.)
The vboOffset gives the starting position of the data within the VBO. This offset is given as
the number of bytes from the beginning of the VBO; the value is often zero. The VBO in
question is not mentioned. As usual, it is the VBO that has been most recently specified by a
call to gl.glBindBuffer(GL.GL ARRAY BUFFER,vboID).

We can now look at the complete sphere-drawing method from VertexArrayDemo, which
uses VBOs when the OpenGL version is 1.5 or higher. Note that this only makes a difference
when telling OpenGL the location of the data. Once that’s done, the code for drawing the
sphere is identical whether VBOs are used or not:

private void drawPointSphere(GL gl, int pointCt) {

if (version 1 5) {

// Use glBindBuffer to say what VBO to work on, then use

// glVertexPointer to set the position where the data starts

// in the buffer (in this case, at the start of the buffer).

gl.glBindBuffer(GL.GL ARRAY BUFFER, spherePointBufferID);

gl.glVertexPointer(3, GL.GL FLOAT, 0, 0);

// Use the same buffer for the normal vectors.

gl.glNormalPointer(GL.GL FLOAT, 0, 0);

// Now, set up the texture coordinate pointer in the same way.

gl.glBindBuffer(GL.GL ARRAY BUFFER, sphereTexCoordID);

gl.glTexCoordPointer(2, GL.GL FLOAT, 0, 0);

gl.glBindBuffer(GL.GL ARRAY BUFFER,0); // Leave no VBO bound.

}

else {

// Use glVertexPointer, etc., to set the buffers from which

// the various kinds of data will be read.

gl.glVertexPointer(3,GL.GL FLOAT,0,sphereVertices);

gl.glNormalPointer(GL.GL FLOAT,0,sphereVertices);

gl.glTexCoordPointer(2, GL.GL FLOAT, 0, sphereTexCoords);

}

gl.glEnableClientState(GL.GL VERTEX ARRAY);

gl.glEnableClientState(GL.GL NORMAL ARRAY);

gl.glEnableClientState(GL.GL TEXTURE COORD ARRAY);

sphereTexture.enable();

gl.glDrawArrays(GL.GL POINTS, 0, spherePointCount); // Generate the points!

gl.glDisableClientState(GL.GL VERTEX ARRAY);

gl.glDisableClientState(GL.GL NORMAL ARRAY);

gl.glDisableClientState(GL.GL TEXTURE COORD ARRAY);

sphereTexture.disable();

}
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Obviously, vertex buffer arrays are non-trivial to use. The reward is the possibility of better
performance when rendering complex scenes.

3.4.4 Drawing with Array Indices

The glDrawArrays method is great for drawing primitives given as a list of vertex coordinates.
However, it can’t be used for data in indexed face set (IFS) format. For that, there is the
glDrawElements method. For an indexed face set, a face is specified by a sequence of integers
representing indices into a list of vertices. glDrawElements can work directly with data in
this format. To give us an example to work with, we consider an “icosphere,” a polygonal
approximation of a sphere that is obtained by subdividing the faces of an icosahedron. You get
a better approximation by subdividing the faces more times. Here is a picture of an icosphere
created by one subdivision:

You can find an applet that draws icospheres in the on-line version of these notes. The source
code for the program can be found in IcosphereIFS.java.

For use with glDrawElements, you can set up buffers to hold vertex coordinates, normal
coordinates, and texture coordinates, exactly as you would for glDrawArrays (including the
use of vertex buffer objects, if desired). Now, however, the elements in the arrays are stored
in arbitrary order, not the order in which they will be used to generate primitives. The order
needed for generating primitives will be specified by a separate list of indices into the arrays.
Note, however, that the order of elements in the various arrays must correspond. That is, the
first vector in the normal array and the first set of texture coordinates in the texture array must
correspond to the first vertex in the vertex array, the second item in the normal and texture
arrays must correspond to the second vertex, and so on.

For the icosphere example, the geometry consists of a large nubmer of triangles, and the
whole thing can be drawn with a single use of the GL TRIANGLES primitive. Let’s assume that
the vertex coordinates have been stored in a Java nio FloatBuffer named icosphereVertexBuffer.
Because the points are points on the unit sphere, we can use the same set of coordinates as unit
normal vectors. And let’s say that the face data (the list of vertex indices for each triangle)
is in an IntBuffer named icosphereIndexBuffer. We could actually draw the icosphere directly
using glBegin/glEnd: Assuming indexCount is the number of integers in icosphereIndexBuffer,
the following code would work:

gl.glBegin(GL.GL TRIANGLES);

for (int i = 0; i < indexCount; i++) {

int vertexIndex = icosphereIndexBuffer.get(i); // Index of i-th vertex.

float vx = icosphereVertexBuffer.get(vertexIndex); // Get vertex coords.
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float vy = icosphereVertexBuffer.get(vertexIndex);

float vz = icosphereVertexBuffer.get(vertexIndex);

gl.glNormal3f(vx,vy,vz); // Use vertex coords as normal vector.

gl.glVertex3f(vx,vy,vz); // Generate the i-th vertex.

}

gl.glEnd();

But glDrawElements is meant to replace precisely this sort of code. Before using it, we must
use glVertexPointer and glNormalPointer to set up a vertex pointer and normal pointer, as for
glDrawArrays. How we do this depends on whether we are using vertex buffer objects, but it
is done exactly as above.

VBOs can also be used to store the face index data for use with glDrawElements, and
how we use glDrawElements also depends on whether or not a vertex buffer object is used.
Unfortunately, the use of VBOs for this purpose is not exactly parallel to their use for vertex
and normal data. If we do not use a VBO for the face data, then the face data is passed
directly to glDrawArrays, as follows:

gl.glDrawElements(GL.GL TRIANGLES, indexCount,

GL.GL UNSIGNED INT, icosphereIndexBuffer);

The first parameter is the type of primitive that is being drawn. The second is the number
of vertices that will be generated. The third is the type of data in the buffer. And the fourth
is the nio Buffer that holds the face data. The face data consists of one integer for each vertex,
giving an index into the data that has already been set up by glVertexPointer and related
methods. Note that there is no indication of the position within the buffer where the data
begins. The data begins at the buffer’s current internal position pointer. If necessary, you can
set that pointer by calling the buffer’s position method before calling glDrawElements. (This
is one place where are are forced to work with the internal buffer pointer, if you want to store
data for more than one call to glDrawElements in the same buffer.)

Now, let’s look at what happens when a VBO is used to hold the face data. In this case,
the data must be loaded into the VBO before it can be used. For this application, the first
parameter to glBindBuffer and glBufferData must be GL.GL ELEMENT ARRAY BUFFER:

gl.glBindBuffer(GL.GL ELEMENT ARRAY BUFFER, icopsphereIndexID);

gl.glBufferData(GL.GL ELEMENT ARRAY BUFFER, indexCount*4,

icosphereIndexBuffer, GL.GL STATIC DRAW);

At the time when glDrawElements is called, the same buffer ID must be bound, and the fourth
parameter to glDrawElements is replaced by an integer giving the position of the data within
the VBO, given as the number of bytes from the start of the VBO:

gl.glBindBuffer(GL.GL ELEMENT ARRAY BUFFER, icopsphereIndexID);

gl.glDrawElements(GL.GL TRIANGLES, indexCount, GL.GL UNSIGNED INT, 0);

See the source code, IcosphereIFS.java, to see how all this is used in the context of a full
program.

∗ ∗ ∗

This has been an admittedly short introduction to glDrawElements, but hopefully it is
similar enough to glDrawArrays that the information given here is enough to get you started
using it. Let’s look at another, simpler, example that shows how you might use glDrawElements
to draw an IFS representing a simple polyhedron. We will use the data for the same pyramid
that was used as an example in the previous section:
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float[][] vertexList = { {1,0,1}, {1,0,-1}, {-1,0,-1}, {-1,0,1}, {0,1,0} };

int[][] faceList = { {4,3,0}, {4,0,1}, {4,1,2}, {4,2,3}, {0,3,2,1} };

Since this is such a small object, we will not attempt to use vertex buffer objects. We will
draw one face at a time, using a single normal vector for the face; I will specify the appropriate
normal directly. Here is the code for drawing the pyramid (which would actually be scattered
in several parts of a program):

// Declare variables to hold the data, probably as instance variables:

FloatBuffer vertexBuffer;

IntBuffer faceBuffer;

// Create the Java nio buffers, and fill them with data, perhaps in init():

vertexBuffer = BufferUtil.newFloatBuffer(15);

faceBuffer = BufferUtil.newIntBuffer(16);

float[] vertexList = { 1,0,1, 1,0,-1, -1,0,-1, -1,0,1, 0,1,0 };

int[] faceList = { 4,3,0, 4,0,1, 4,1,2, 4,2,3, 0,3,2,1 };

vertexBuffer.put(vertexList, 0, 15);

vertexBuffer.rewind();

faceBuffer.put(faceList, 0, 16); // No need to rewind; position is set later.

// Set up for using a vertex array, in init() or display():

gl.glEnableClientState(GL.GL VERTEX ARRAY);

gl.glVertexPointer(3, GL.GL FLOAT, 0, vertexBuffer);

// Do the actual drawing, one face at a time. Set the position in

// the faceBuffer to indicate the start of the data in each case:

faceBuffer.position(0);

gl.glNormal3f(0, 0.707f, 0.707f);

gl.glDrawElements(GL.GL POLYGON, 3, GL.GL UNSIGNED INT, faceBuffer);

faceBuffer.position(3);

gl.glNormal3f(0.707f, 0.707f, 0);

gl.glDrawElements(GL.GL POLYGON, 3, GL.GL UNSIGNED INT, faceBuffer);

faceBuffer.position(6);

gl.glNormal3f(0, 0.707f, -0.707f);

gl.glDrawElements(GL.GL POLYGON, 3, GL.GL UNSIGNED INT, faceBuffer);

faceBuffer.position(9);

gl.glNormal3f(-0.707f, 0.707f, 0);

gl.glDrawElements(GL.GL POLYGON, 3, GL.GL UNSIGNED INT, faceBuffer);

faceBuffer.position(12);

gl.glNormal3f(0, -1, 0);

gl.glDrawElements(GL.GL POLYGON, 4, GL.GL UNSIGNED INT, faceBuffer);

∗ ∗ ∗

This has not been a complete survey of the OpenGL routines that can be used for drawing
primitives. For example, there is a glDrawRangeElements routine, introduced in OpenGL ver-
sion 1.2, that is similar to glDrawElements but can be more efficient. And glMultiDrawArrays,
from version 1.4, can be used to do the job of multiple calls to glDrawArrays at once. Interested
readers can consult an OpenGL reference.
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3.5 Viewing and Projection

This chapter on geometry finishes with a more complete discussion of projection and
viewing transformations.

3.5.1 Perspective Projection

There are two general types of projection, perspective projection and orthographic pro-

jection . Perspective projection gives a realistic view. That is, it shows what you would see if
the OpenGL display rectangle on your computer screen were a window into an actual 3D world
(one that could extend in front of the screen as well as behind it). It shows a view that you
could get by taking a picture of a 3D world with a camera. In a perspective view, the apparent
size of an object depends on how far it is away from the viewer. Only things that are in front
of the viewer can be seen. In fact, the part of the world that is in view is an infinite pyramid,
with the viewer at the apex of the pyramid, and with the sides of the pyramid passing through
the sides of the viewport rectangle.

However, OpenGL can’t actually show everything in this pyramid, because of its use of the
depth buffer to solve the hidden surface problem. Since the depth buffer can only store a finite
range of depth values, it can’t represent the entire range of depth values for the infinite pyramid
that is theoretically in view. Only objects in a certain range of distances from the viewer are
shown in the image that OpenGL produces. That range of distances is specified by two values,
near and far . Both of these values must be positive numbers, and far must be greater than
near. Anything that is closer to the viewer than the near distance or farther away than the far
distance is discarded and does not appear in the rendered image. The volume of space that is
represented in the image is thus a “truncated pyramid.” This pyramid is the view volume :

The view volume is bounded by six planes—the sides, top, and bottom of the pyramid. These
planes are called clipping planes because anything that lies on the wrong side of each plane
is clipped away.

In OpenGL, setting up the projection transformation is equivalent to defining the view
volume. For a perspective transformation, you have to set up a view volume that is a truncated
pyramid. A rather obscure term for this shape is a frustum , and a perspective transformation
can be set up with the glFrustum command

gl.glFrustum(xmin,xmax,ymin,ymax,near,far)

The last two parameters specify the near and far distances from the viewer, as already discussed.
The viewer is assumed to be at the origin, (0,0,0), facing in the direction of the negative z-axis.



94 CHAPTER 3. GEOMETRY

(These are “eye coordinates” in OpenGL.) So, the near clipping plane is at z = −near, and the
far clipping plane is at z = −far. The first four parameters specify the sides of the pyramid:
xmin, xmax, ymin, and ymax specify the horizontal and vertical limits of the view volume at

the near clipping plane. For example, the coordinates of the upper-left corner of the small
end of the pyramid are (xmin,ymax,−near). Note that although xmin is usually equal to the
negative of xmax and ymin is usually equal to the negative of ymax, this is not required. It is
possible to have asymmetrical view volumes where the z-axis does not point directly down the
center of the view.

When the glFrustum method is used to set up the projection transform, the matrix mode
should be set to GL PROJECTION. Furthermore, the identity matrix should be loaded before
calling glFrustum (since glFrustum modifies the existing projection matrix rather than replacing
it, and you don’t even want to try to think about what would happen if you combine several
projection matrices into one). So, a use of glFrustum generally looks like this, leaving the matrix
mode set to GL MODELVIEW at the end:

gl.glMatrixMode(GL.GL PROJECTION);

gl.glLoadIdentity();

gl.glFrustum(xmin,xmax,ymin,ymax,near,far);

gl.glMatrixMode(GL.GL MODELVIEW);

This might be used in the init() method, at the beginning of the display() method, or possibly
in the reshape() method, if you want to take the aspect ratio of the viewport into account.

The glFrustum method is not particularly easy to use. The GLU library includes the method
gluPerspective as an easier way to set up a perspective projection. If glu is an object of type
GLU then

glu.gluPerspective(fieldOfViewAngle, aspect, near, far);

can be used instead of glFrustum. The fieldOfViewAngle is the vertical angle between the top
of the view volume pyramid and the bottom. The aspect is the aspect ratio of the view, that is,
the width of the pyramid at a given distance from the eye, divided by the height at the same
distance. The value of aspect should generally be set to the aspect ratio of the viewport. The
near and far parameters have the same meaning as for glFrustum.

3.5.2 Orthographic Projection

Orthographic projections are comparatively easy to understand: A 3D world is projected onto a
2D image by discarding the z-coordinate of the eye-coordinate system. This type of projection
is unrealistic in that it is not what a viewer would see. For example, the apparent size of an
object does not depend on its distance from the viewer. Objects in back of the viewer as well
as in front of the viewer are visible in the image. In fact, it’s not really clear what it means to
say that there is a viewer in the case of orthographic projection. Orthographic projections are
still useful, however, especially in interactive modeling programs where it is useful to see true
sizes and angles, unmodified by perspective.

Nevertheless, in OpenGL there is a viewer, which is located at the eye-coordinate origin,
facing in the direction of the negative z-axis. Theoretically, a rectangular corridor extending
infinitely in both directions, in front of the viewer and in back, would be in view. However, as
with perspective projection, only a finite segment of this infinite corridor can actually be shown
in an OpenGL image. This finite view volume is a parallelepiped—a rectangular solid—that is
cut out of the infinite corridor by a near clipping plane and a far clipping plane. The value of
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far must be greater than near, but for an orthographic projection, the value of near is allowed
to be negative, putting the “near” clipping plane behind the viewer, as it is in this illustration:

Note that a negative value for near puts the near clipping plane on the positive z-axis, which
is behind the viewer.

An orthographic projection can be set up in OpenGL using the glOrtho method, which is
generally called like this:

gl.glMatrixMode(GL.GL PROJECTION);

gl.glLoadIdentity();

gl.glOrtho(xmin,xmax,ymin,ymax,near,far);

gl.glMatrixMode(GL.GL MODELVIEW);

The first four parameters specify the x- and y-coordinates of the left, right, bottom, and top
of the view volume. Note that the last two parameters are near and far, not zmin and zmax.
In fact, the minimum z-value for the view volume is −far and the maximum z-value is −near.
However, it is often the case that near = −far, and if that is true then the minimum and
maximum z-values turn out to be near and far after all!

3.5.3 The Viewing Transform

To determine what a viewer will actually see in a 3D world, you have to do more than specify
the projection. You also have to position the viewer in the world. That is done with the viewing
transformation. Remember that the projection transformation is specified in eye coordinates,
which have the viewer at the origin, facing down the negative direction of the z-axis. The viewing
transformation says where the viewer really is, in terms of the world coordinate system, and
where the viewer is really facing. The projection transformation can be compared to choosing
which camera and lens to use to take a picture. The viewing transformation places the camera
in the world and points it.

Recall that OpenGL has no viewing transformation as such. It has a modelview transforma-
tion, which combines the viewing transform with the modeling transform. While the viewing
transformation moves the viewer, the modeling transformation moves the objects in the 3D
world. The point here is that these are really equivalent operations, if not logically, then at
least in terms of the image that is produced when the camera finally snaps a picture.

Suppose, for example, that we would like to move the camera from its default location at
the origin back along the positive z-axis from the origin to the point (0,0,20). This operation
has exactly the same effect as moving the world, and the objects that it contains, 20 units
in the negative direction along the z-axis—whichever operation is performed, the camera ends
up in exactly the same position relative to the objects. It follows that both operations are
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implemented by the same OpenGL command, gl.glTranslatef (0,0,-20). More generally, applying
any transformation to the camera is equivalent to applying the inverse , or opposite, of the
transformation to the world. Rotating the camera to left has the same effect as rotating the
world to the right. This even works for scaling: Imagine yourself sitting inside the camera
looking out. If the camera shrinks (and you along with it) it will look to you like the world
outside is growing—and what you see doesn’t tell which is really happening. Suppose that we
use the commands

gl.glRotatef(90,0,1,0);

gl.glTranslatef(10,0,0);

to establish the viewing transformation. As a modeling transform, these commands would first
translate an object 10 units in the positive x-direction, then rotate the object 90 degrees about
the y-axis. An object that was originally at the origin ends up on the negative z-axis; the
object is then directly in front of the viewer, at a distance of ten units. If we consider the same
transformation as a viewing transform, the effect on the viewer is the inverse of the effect on
the world. That is, the transform commands first rotate the viewer −90 degrees about the
y-axis, then translate the viewer 10 units in the negative x-direction. This leaves the viewer
on the negative x-axis at (−10,0,0), looking at the origin. An object at the origin will then
be directly in front of the viewer, at a distance of 10 units. Under both interpretations of the
transformation, the relationship of the viewer to the object is the same in the end.

Since this can be confusing, the GLU library provides a convenient method for setting up
the viewing transformation:

glu.gluLookAt( eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ );

This method places the camera at the point (eyeX,eyeY,eyeZ ), looking in the direction of the
point (refX,refY,refZ ). The camera is oriented so that the vector (upX,upY,upZ ) points upwards
in the camera’s view. This method is meant to be called at the beginning of the display() method
to establish the viewing transformation, and any further transformations that are applied after
that are considered to be part of the modeling transformation.

∗ ∗ ∗

The Camera class that I wrote for the glutil package combines the functions of the projection
and viewing transformations. For an object of type Camera, the method

camera.apply(gl);

is meant to be called at the beginning of the display method to set both the projection and the
view. The viewing transform will be established with a call to glu.gluLookAt, and the projection
will be set with a call to either glOrtho or glFrustum, depending on whether the camera is set to
use orthographic or perspective projection. The parameters that will be used in these methods
must be set before the call to camera.apply by calling other methods in the Camera object. The
method

camera.setView(eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ );

sets the parameters that will be used in a call to glu.gluLookAt. In the default settings, the
eye is at (0,0,30), the reference point is the origin (0,0,0), and the up vector is the y-axis. The
method

camera.setLimits(xmin,xmax,ymin,ymax,zmin,zmax)
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is used to specify the projection. The parameters do not correspond directly to the parameters to
glOrtho or glFrustum. They are specified relative to a coordinate system in which the reference
point (refX,refY,refZ ) has been moved to the origin, the up vector (upX,upY,upZ ) has been
rotated onto the positive y-axis, and the viewer has been placed on the positive z-axis, at a
distance from the origin equal to the distance between (eyeX,eyeY,eyeZ ) and (refX,refY,refZ ).
(These are almost standard eye coordinates, except that the viewer has been moved some
distance backwards along the positive z-axis.) In these coordinates, zmin and zmax specify
the minimum and maximum z-values for the view volume, and xmin, xmax, ymin, and ymax
specify the left-to-right and bottom-to-top limits of the view volume on the xy-plane, that is, at
z = 0. (The x and y limits might be adjusted, depending on the configuration of the camera, to
match the aspect ratio of the viewport.) Basically, you use the camera.setLimits command to
establish a box around the reference point (refX,refY,refZ ) that you would like to be in view.

3.5.4 A Simple Avatar

In all of our sample programs so far, the viewer has stood apart from the world, observing it
from a distance. In many applications, such as 3D games, the viewer is a part of the world and
gets to move around in it. With the right viewing transformation and the right user controls,
this is not hard to implement. The sample program WalkThroughDemo.java is a simple example
where the world consists of some random shapes scattered around a plane, and the user can
move among them using the keyboard’s arrow keys. You can find an applet version of the
program in the on-line version of this section. Here is a snapshot:

The viewer in this program is represented by an object of the class SimpleAvatar, which I
have added to the glutil package. A SimpleAvatar represents a point of view that can be rotated
and moved. The rotation is about the viewer’s vertical axis and is controlled in the applet by
the left and right arrow keys. Pressing the left-arrow key rotates the viewer through a positive
angle, which the viewer perceives as turning towards the left. Similarly, the right-arrow key
rotates the viewer towards the right. The up-arrow and down-arrow keys move the viewer
forward or backward in the direction that the viewer is currently facing. The motion is parallel
to the xz-plane; the viewer’s height above this plane does not change.

In terms of the programming, the viewer is subject to a rotation about the y-axis and a
translation. These transformations are applied to the viewer in that order (not the reverse—a
rotation following a translation to the point (x,y,z ) would move the viewer away from that
point). However, this viewing transform is equivalent to applying the inverse transform to the
world and is implemented in the code as
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gl.glLoadIdentity();

gl.glRotated(-angle,0,1,0);

gl.glTranslated(-x,-y,-z);

where angle is the rotation applied to the viewer and (x,y,z ) is the point to which the viewer is
translated. This code can be found in the apply() method in the SimpleAvatar class, and that
method is meant to be called in the display method, before anything is drawn, to establish the
appropriate projection and viewing transformations to show the world as seen from the avatar’s
point of view.

3.5.5 Viewer Nodes in Scene Graphs

For another example of the same idea, we can return to the idea of scene graphs, which were
introduced in Subsection 2.1.5. A scene graph is a data structure that represents the contents
of a scene. But if we truly want to make our viewer part of the scene, then there should be a
way for the viewer to be part of the data for the scene, that is part of the scene graph. We
would like to be able to represent the viewer as a node in a scene graph, in the same way that
a cube or sphere can be represented by a node. This would mean that the viewer could be
subjected to transformations just like any other node in the scene graph. And it means that
a viewer can be part of a complex, hierarchical model. The viewer might be the driver in a
moving car or a rider on an amusement park ride.

A scene is a hierarchical structure in which complex objects can be built up out of simpler
objects, and transformations can be applied to objects on any level of the hierarchy. The
overall transformation that is finally applied to an object consists of the product of all the
transformations from the root of the scene graph to the object. If we place a viewer into a
scene graph, then the viewer should be subject to transformation in exactly the same way. For
example, if the viewer is part of a complex object representing a car, then the viewer should be
subject to exactly the same transformation as the car and this should allow the viewer to turn
and move along with the car.

However, the viewer is not quite the same as other objects in the scene graph. First of all, the
viewer is not a visible object. It could be “attached” to a visible object, but the viewer we are
talking about is really a point of view, represented by a projection and viewing transformation.
A second point, which is crucial, is that the viewer’s projection and viewing transformation
have to be established before anything is drawn. This means that we can’t simply traverse the
scene graph and implement the viewer node when we come to it—the viewer node has to be
applied before we even start traversing the scene graph. And while there can be several viewer
nodes in a scene graph, there can only be one view at a time. There has to be one active

viewer whose view is shown in the rendered image. Of course, it’s possible to switch from one
viewer to another and to redraw the image from the new point of view.

The package simplescenegraph3d contains a very simple implementation of scene graphs for
3D worlds. One of the classes in this package is AvatarNode, which represents exactly the type
of viewer node that I have been discussing. An AvatarNode can be added to a scene graph and
transformed just like any other node. It can be part of a complex object, and it will be carried
along with that object when the object is transformed.

Remember that to apply a transformation to a viewer, you have to apply the inverse of that
transformation to the world. When the viewer is represented by an AvatarNode in a scene graph,
the transformation that we want to apply to the viewer is the product of all the transformations
applied to nodes along a path from the root of the scene graph to the AvatarNode. To apply
the inverse of this transformation, we need to apply the inverses of these transformations, in
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the opposite order. To do this, we can start at the AvatarNode and walk up the path in the
scene graph, from child node to parent node until we reach the top. Along the way, we apply
the inverse of the transformation for each node. To make it possible to navigate a scene graph
in this way, each node has a parent pointer that points from a child node to its parent node.
There is also a method applyInverseTransform that applies the inverse of the transform in the
node. So, the code in the AvatarNode class for setting up the viewing transformation is:

SceneNode3D node = this;

while (node != null) {

node.applyInverseTransform(gl);

node = node.parent;

}

An AvatarNode has an apply method that should be called at the beginning of the display
method to set up the projection and viewing transformations that are needed to show the world
from the point of view of that avatar. The code for setting up the viewing transformation is in
the apply method.

In the on-line version of this section, you will find an applet that uses this technique to show
you a moving scene from several possible viewpoints. A pop-up menu below the scene allows
the user to select one of three possible points of view, including two views that are represented
by objects of type AvatarNode in a scene graph. (The third view is the familiar global view
in which the user can rotate the scene using the mouse.) The source code for the program is
MovingCameraDemo.java.
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Chapter 4

Light and Material

In order to create realistic scenes, we need to simulate the way that lights interacts
with objects in the world, and we need to consider how that world is perceived by people’s visual
systems. OpenGL uses a model of light and vision that is a rather crude approximation for
reality. It is far from good enough to fool anyone into thinking that they are looking at reality,
or even at a photograph, but when used well, it is good enough to let the viewer understand
the 3D world that is being represented.

Much more realism is possible in computer graphics, but the techniques that are required
to achieve such realism are not built into standard OpenGL. Some of them can be added to
OpenGL using the GL Shading Language, which makes it possible to reprogram parts of the
OpenGL processing pipeline. But some of them require more more computational power than
is currently available in a desktop computer. The goal of OpenGL is to produce a good-enough
approximation of realism in a reasonable amount of time—preferably fast enough for interactive
graphics at 30 to 60 frames per second.

This chapter will look at the OpenGL approach to simulating light and materials. So far, we
have used only the default setup for lighting, and we have used only simple color for materials.
It’s time to look at the full range of options and at a bit of the theory behind them.

4.1 Vision and Color

Most people are familiar with some basic facts about the human visual system. They
know that the full spectrum of colors can be made from varying amounts red, blue, and green.
And they might know that this is because the human eye has three different kinds of “cone
cells” for color vision, one kind that sees red light, one that sees green, and one that sees blue.
These facts are mostly wrong. Or, at least, they are only approximations.

The detailed physics of light is not part of our story here, but for our purposes, light
is electromagnetic radiation, a kind of wave that propagates thorough space. The physical
property of light that corresponds to the perception of color is wavelength . Electromagnetic
radiation that can be detected by the human visual system has a wavelength between about 400
and 700 nanometers. All the colors of the rainbow, from red to violet, are found in this range.
This is a very narrow band of wavelengths; outside this band are other kinds of electromagnetic
radiation including ultraviolet and infrared, just next to the visible band, as well as X-rays,
gamma rays, microwave, and radio waves.

To fully describe a light source, we have to say how much of each visible wavelength it
contains. Light from the sun is a combination of all of the visible wavelengths of light (as well
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as wavelengths outside the visible range), with a characteristic amount of each wavelength.
Light from other sources will have a different distribution of wavelengths. When light from
some source strikes a surface, some of it is absorbed and some is reflected (and some might pass
into and through the object). The appearance of an object depends on the nature of the light
that illuminates it and on how the surface of the object interacts with different wavelengths of
light. An object that reflects most of the red light that hits it and absorbs most of the other
colors will appear red—if the light that illuminates it includes some red for it to reflect.

The visual system in most people does indeed have three kinds of cone cells that are used
for color vision (as well as “rod cells” that do not see in color). However, the three types of
cone cell do not detect exclusively red, green, and blue light. Each type of cell responds to a
range of wavelengths, and the wavelength bands for the three types of cell have a large overlap.
It is true that red, green, and blue light can be combined to duplicate many of the colors that
can be seen. That is, to the extent that our experience of a color boils down to a certain
level of excitation of each of the three types of cone cells, it is possible in many cases to find a
combination of red, green, and blue that will produce the same levels of excitation.

Many but not all. “Red”, “green”, and “blue” here are inexact terms, but they can be taken
to mean three wavelengths or combination of wavelengths that are used as primary colors.
But no matter what three primary colors are used, it is impossible to duplicate all visible colors
with combinations of the three primary colors. Display devices such as computer screens and
projectors do, in fact, produce color by combining three primary colors. The range of colors
that can be shown by a given device is called the color gamut of that device. No device has
a color gamut that includes all possible colors.

We have been discussing an RGB (red/green/blue) color system, which is appropriate for
devices that make color by combining light of different wavelengths. Not all devices do this. A
printer, for example, combines differently colored dyes or inks, and the light that will produce
the perceived color has to come from an outside source. In this case, the color depends on which
colors are absorbed by the ink and which are reflected by the inks. For example, a yellow ink
absorbs blue light and reflects red and green. A magenta ink absorbs green while reflecting red
and blue. A combination of yellow ink and magenta ink will absorb both blue and green to some
extent, leaving mostly red light to be reflected. So in this system, red is a combination of yellow
and magenta. By adding cyan ink to the yellow and magenta, a wide range of colors can be
produced. Cyan, magenta, and yellow make up the CMY color system. This is a “subtractive”
color system, since each color of ink subtracts some wavelengths from the light that strikes the
ink. In practice, black ink is often added to the mix, giving the CMYK color system, where the
“K” stands for black. The color gamut of a CMYK printer is different from and smaller than
the color gamut of a computer screen. The color gamut of a printer can be improved by using
additional inks, but it is difficult to match the colors from a printer to the colors on the screen
(let alone to those in real life).

RGB and CMYK are only two of many color systems that are used to describe colors. Users
of Java are probably familiar with the HSB (hue/saturation/brightness) color system. OpenGL
uses RGB colors, so I will not discuss the other possibilities further here.

A substantial number of people, by the way, are color blind to some extent because they
lack one or more of the three types of cone cells. For people with the most common type of color
blindness, red and green look the same. Programmers should avoid coding essential information
only in the colors used, especially when the essential distinction is between red and green.

∗ ∗ ∗

In the rest of this chapter, we’ll look at the OpenGL approach to light and material. There
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are a few general ideas about the interaction of light and materials that you need to understand
before we begin. When light strikes a surface, some of it will be reflected. Exactly how it
reflects depends in a complicated way on the nature of the surface, what I am calling the
material properties of the surface. In OpenGL (and in many other computer graphics systems),
the complexity is approximated by two general types of reflection, specular reflection and
diffuse reflection .

Viewer
Incoming

rays of light

Viewer sees a

reflection at

only one point

Viewer
Incoming

rays of light

Light from all

points on the

surface reaches

the viewer.

Specular Reflection Diffuse Reflection

In perfect specular (“mirror-like”) reflection, an incoming ray of light is reflected from the
surface intact. The reflected ray makes the same angle with the surface as the incoming ray. A
viewer can see the reflected ray only if the viewer is in the right position, somewhere along the
path of the reflected ray. Even if the entire surface is illuminated by the light source, the viewer
will only see the reflection of the light source at those points on the surface where the geometry
is right. Such reflections are referred to as specular highlights. In practice, we think of a
ray of light as being reflected not as a single perfect ray, but as a cone of light, which can be
more or less narrow. Specular reflection from a very shiny surface produces very narrow cones
of reflected light; specular highlights on such a material are small and sharp. A duller surface
will produce wider reflected light cones and bigger, fuzzier specular highlights. In OpenGL,
the material property that determines the size and sharpness of specular highlights is called
shininess.

In pure diffuse reflection, an incoming ray of light is scattered in all directions equally. A
viewer would see see reflected light from all points on the surface, and the surface would appear
to be evenly illuminated.

When a light strikes a surface, some wavelengths of light can be absorbed, some can be
reflected diffusely, and some can be reflected specularly. The degree to which a material reflects
light of different wavelengths is what constitutes the color of the material. We now see that
a material can have two different colors—a diffuse color that tells how the material reflects
light diffusely and a specular color that tells how it reflects light specularly. The diffuse color
is the basic color of the object. The specular color determines the color of specular highlights.

In fact, OpenGL goes even further. There are in fact four colors associated with a material.
The third color is the ambient color of the material. Ambient light refers to a general level
of illumination that does not come directly from a light source. It consists of light that has
been reflected and re-reflected so many times that it is no longer coming from any particular
source. Ambient light is why shadows are not absolutely black. In fact, ambient light is only
a crude approximation for the reality of multiply reflected light, but it is better than ignoring
multiple reflections entirely. The ambient color of a material determines how it will reflect
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various wavelengths of ambient light. Ambient color is generally set to be the same as the
diffuse color.

The fourth color associated with a material is an emission color . The emission color is
color that does not come from any external source, and therefore seems to be emitted by the
material itself. This does not mean that the object is giving off light that will illuminate other
objects, but it does mean that the object can be seen even if there is no source of light (not
even ambient light). In the presence of light, the object will be brighter than can be accounted
for by the light that illuminates it, and in that sense it might appear to glow. The emission
color is used only rarely.

In the next section, we will look at how to use materials in OpenGL. The section after that
will cover working with light sources, which have their own set of properties.

4.2 OpenGL Materials

OpenGL uses the term material to refer to the properties of an object that determine how
it interacts with light. In standard OpenGL processing (when it has not been overridden by
the GL Shading Language), material properties are assigned to vertices. Lighting calculations
are done for vertices only, and the results of those calculations are interpolated to other points
of the object. The calculations involved are summarized in a mathematical formula known
as the lighting equation, which will be covered in the next section. But you should know
that the whole calculation is a rather loose approximation for physical reality, and the use
of interpolation is another entire level of approximation that can introduce serious distortion,
especially when using large polygons. The system is designed for speed of calculation rather
than perfect realism.

4.2.1 Setting Material Properties

Material properties are set using the glMaterial* family of commands, principly glMaterialfv
and glMateriali. (There are no versions of this command that take parameters of type double.)
These commands are defined in the GL class and are specified by

public void glMateriali(int face, int propertyName, int propertyValue)

public void glMaterialfv(int face, int propertyName, float[] propertyValue, int offset)

The first parameter tells which face of a polygon the command applies to. It must be one of
the constants GL.GL FRONT AND BACK, GL.GL FRONT or GL.GL BACK. This reflects
the fact that different material properties can be assigned to the front and the back faces
of polygons, since it sometimes desirable for the front and the back faces to have a different
appearance. When the face parameter is GL.GL FRONT AND BACK, the command sets the
value of the material property for both sides simultaneously. The front material is also used for
point and line primitives. Note that the back material is ignored completely unless two-sided
lighting has been turned on by calling

gl.glLightModeli(GL.GL LIGHT MODEL TWO SIDE, GL.GL TRUE)

The second parameter for glMaterial is propertyName, which tells which material property
is being set. For glMateriali, the only legal property name is GL.GL SHININESS, and the
property value must be an integer in the range from 0 to 128, inclusive. This property determines
the size and sharpness of specular highlights. Larger values produce smaller, sharper highlights.
The default value is zero, which gives very large highlights that are almost never desirable. Try
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values close to 10 for a larger, fuzzier highlight and values of 100 or more for a small, sharp
highlight. (It’s worth noting that specular highlights are one area where polygon size can
have a significant impact. Since lighting calculations are only done at vertices, OpenGL will
entirely miss any specular highlight that should occur in the middle of a polygon but not at
the vertices. And when a highlight does occur at a vertex, the interpolation process can smear
out the highlight to points that should not show any specular highlight at all. Using very small
polygons will alleviate the problem, but will require more computation.)

For glMaterialfv, the propertyName parameter can be GL.GL AMBIENT, GL.GL DIFFUSE,
GL.GL AMBIENT AND DIFFUSE, GL.GL SPECULAR, or GL.GL EMISSION. The names
refer to the four different types of material color supported by OpenGL, as discussed in the
previous section. The property name GL.GL AMBIENT AND DIFFUSE allows both the am-
bient and the diffuse material colors to be set simultaneously to the same value. The third
parameter for glMaterialfv is an array of type float[], and the fourth parameter specifies an
index in the array. The index is often zero and is absent in the C API. Four numbers in the
array, starting at the specified index, specify the red, green, blue, and alpha components of a
color. The alpha component is used for blending, or transparency; for the time being, we will
set alpha equal to 1.

In the case of the red, blue, and green components of the ambient, diffuse, or specular
color, the term “color” really means reflectivity. That is, the red component of a color gives
the proportion of red light hitting the surface that is reflected by that surface, and similarly
for green and blue. There are three different types of reflective color because there are three
different types of light in the environment, and a material can have a different reflectivity for
each type of light. (More about that in the next section.)

The red, green, and blue component values are generally between 0 and 1, but they are not
clamped to that range. That is, it is perfectly legal to have a negative color component or a
color component that is greater than 1. For example, setting the red component to 1.5 would
mean that the surface reflects 50% more red light than hits it—a physical impossibility, but
something that you might want to do for effect.

The default material has ambient color (0.2,0.2,0.2,1) and diffuse color (0.8,0.8,0.8,1). Spec-
ular and emission color are both black, that is, (0,0,0,1). It’s not surprising that materials, by
default, do not emit extra color. However, it is a little surprising that materials, by default,
have no specular reflection. This means that the objects that you have seen in all our examples
so far exhibit ambient and diffuse color only, with no specular highlights. Here is an image to
change that:

This image shows eight spheres that differ only in the value of the GL SHININESS material
property. The ambient and diffuse material colors are set to (0.75,0.75,0,1), for a general yellow
appearance. The specular color is (0.75,0.75,0.75,1), which adds some little blue to the specular
highlight, making it appear whiter as well as brighter than the rest of the sphere. For the sphere
on the left, the shininess is 0, which leads to an ugly specular “highlight” that covers an entire
hemisphere. Going from left to right, the shininess increases by 16 from one sphere to the next.
The material colors for this image were specified using

gl.glMaterialfv(GL.GL FRONT, GL.GL SPECULAR,
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new float[] { 0.75f, 0.75f, 0.75f, 1 }, 0);

gl.glMaterialfv(GL.GL FRONT, GL.GL AMBIENT AND DIFFUSE,

new float[] { 0.75f, 0.75f, 0, 1 }, 0);

and the shininess for sphere number i was set using

gl.glMateriali(GL.GL FRONT, GL.GL SHININESS, i*16);

4.2.2 Color Material

Materials are used in lighting calculations and are ignored when lighting is not enabled. Simi-
larly, the current color as set by glColor* is ignored, by default, when lighting is enabled. How-
ever, as we have seen, calling gl.glEnable(GL.GL COLOR MATERIAL) will cause OpenGL to
take the current color into account even while lighting is enabled.

More specifically, enabling GL COLOR MATERIAL tells OpenGL to substitute the current
color for the ambient and for the diffuse material color when doing lighting computations. The
specular and emission material colors are not affected. However, you can change this default
behavior of color material by using the method

public void glColorMaterial(int face, int propertyName)

to say which material properties should be tied to glColor. The parameters in this
method correspond to the first two parameters of glMaterialfv. That is, face can
be GL.GL FRONT AND BACK, GL.GL FRONT, or GL.GL BACK, and propertyName
can be GL AMBIENT AND DIFFUSE, GL DIFFUSE, GL AMBIENT, GL SPECULAR, or
GL EMISSION. The most likely use of this method is to call

gl.glColorMaterial(GL.GL FRONT AND BACK, GL.GL DIFFUSE)

so that GL COLOR MATERIAL will affect only the diffuse material color and not the ambient
color.

∗ ∗ ∗

In Section 3.4, we saw how to use the glDrawArrays and glDrawElements methods with
vertex arrays, normal arrays, and texture coordinate arrays. It is also possible to specify a
color array to be used with these methods. (More exactly, in Jogl, the color data must actually
be stored in a Java nio Buffer rather than an array.) Use of a color array must be enabled by
calling

gl.glEnableClientState(GL.GL COLOR ARRAY)

and gl.glColorPointer must be called to specify the location of the data. Exactly how to do
this depends on whether a vertex buffer object is used, but the format is exactly parallel to
that used with gl.glVertexPointer for specifying the location of vertex data.

Furthermore, it’s important to note that using GL COLOR ARRAY is equivalent to calling
glColor* for each vertex that is generated. If lighting is enabled, these colors are ignored,
unless GL COLOR MATERIAL has been enabled. That is, if you are using a color array
while lighting is enabled, you must call gl.glEnable(GL.GL COLOR MATERIAL) before calling
gl.glDrawArrays or gl.glDrawElements. Otherwise, the color data will not have any effect. You
could also, optionally, call gl.glColorMaterial to say which material property the color data will
affect.
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4.3 OpenGL Lighting

Our 3D worlds so far have been illuminated by just one light—a white light shin-
ing from the direction of the viewer onto the scene. You get this light just by turn-
ing on lighting with gl.glEnable(GL.GL LIGHTING) and enabling light number zero with
gl.glEnable(GL.GL LIGHT0 ). This “viewpoint light” shines on everything that the viewer
can see, and it is sufficient for some purposes. However, in OpenGL, it is possible to define
multiple lights. They can shine from different directions and can have various colors. Every
OpenGL implementation is required to support at least eight lights, which are identified by
the constants GL LIGHT0, GL LIGHT1, . . . , GL LIGHT7. (These constants are consecutive
integers.) Each light can be separately enabled and disabled; they are all off by default. Only
the lights that are enabled while a vertex is being rendered can have any effect on that vertex.

4.3.1 Light Color and Position

Light number zero, as we have seen, is white by default. All the other lights, however, are
black. That is, they provide no illumination at all even if they are enabled. The color and other
properties of a light can be set with the glLight* family of commands, most notably

public void glLightfv(int light, int propName, float[] propValue, int offset)

The first parameter, light, specifies the light whose property is being set. It must be one of
the constants GL.GL LIGHT0, GL.GL LIGHT1, and so on. The second parameter, prop-
Name, specifies which property of the light is being set. Commonly used properties are
GL.GL POSITION, GL.GL AMBIENT, GL.GL DIFFUSE, and GL.GL SPECULAR. Some
other properties are discussed in the next subsection. The third parameter of glLightfv is
an array that contains the new value for the property. The fourth parameter is, as usual, the
starting index of that value in the array.

A light can have color. In fact, each light in OpenGL has an ambient, a diffuse, and
a specular color, which are set using glLightfv with property names GL.GL AMBIENT,
GL.GL DIFFUSE, and GL.GL SPECULAR respectively. Just as the color of a material is
more properly referred to as reflectivity, color of a light is more properly referred to as inten-

sity or energy. A light color in OpenGL is specified by four numbers giving the red, green, blue,
and alpha intensity values for the light. These values are often between 0 and 1 but are not
clamped to that range. (I have not, however, been able to figure out how the alpha component
of a light color is used, or even if it is used; it should be set to 1.)

The diffuse intensity of a light is the aspect of the light that interacts with diffuse material
color, and the specular intensity of a light is what interacts with specular material color. It is
common for the diffuse and specular light intensities to be the same. For example, we could
make a somewhat blue light with

float[] bluish = { 0.3f, 0.3f, 0.7f, 1 };

gl.glLightfv(GL.GL LIGHT1, GL.GL DIFFUSE, bluish, 0);

gl.glLightfv(GL.GL LIGHT1, GL.GL SPECULAR, bluish, 0);

The ambient intensity of a light works a little differently. Recall that ambient light is light
that is not directly traceable to any light source. Still, it has to come from somewhere and
we can imagine that turning on a light should increase the general level of ambient light in
the environment. The ambient intensity of a light in OpenGL is added to the general level
of ambient light. This ambient light interacts with the ambient color of a material, and this
interaction has no dependence on the position of any light source. So, a light doesn’t have to
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shine on an object for the object’s ambient color to be affected by the light source; the light
source just has to be turned on. Since ambient light should never be too intense, the ambient
intensity of a light source should always be rather small. For example, we might want our blue
light to add a slight bluish tint to the ambient light. We could do this by calling

gl.glLightfv(GL.GL LIGHT1, GL.GL AMBIENT, new float[] { 0, 0, 0.1f, 0}, 0);

I should emphasize again that this is all just an approximation, and in this case not one that
has a basis in the physics of the real world. Real light sources do not have separate ambient,
diffuse, and specular colors.

∗ ∗ ∗

The other major property of a light is its position. There are two types of lights, positional

and directional . A positional light represents a light source at some point in 3D space. Light
is emitted from that point—in all directions by default, or, if the light is made into a spotlight,
in a cone whose vertex is at that point. A directional light, on the other hand, shines in parallel
rays from some set direction. A directional light imitates light from the sun, whose rays are
essentially parallel by the time they reach the earth.

The type and position or direction of a light are set using glLightfv with property name
equal to GL.GL POSITION. The property value is an array of four numbers (x,y,z,w), of which
at least one must be non-zero. When the fourth number, w, is zero, then the light is directional
and the point (x,y,z ) specifies the direction of the light: The light rays shine in the direction of
the line from the point (x,y,z ) to the origin. This is related to homogeneous coordinates: The
source of the light can be considered to be a point at infinity in the direction of (x,y,z ). (See
Subsection 3.1.3.) On the other hand, if the fourth number, w, is 1, then the light is positional
and is located at the point (x,y,z ). Again, this is really homogeneous coordinates: Any non-
zero value for w specifies a positional light at the point (x/w,y/w,z/w). The default position
for all lights is (0,0,1,0), representing a directional light shining from the positive direction of
the z-axis (and towards the negative direction of the z-axis).

The position specified for a light is transformed by the modelview matrix that is in effect at
the time the position is set using glLightfv. Thus, lights are treated in the same way as other
objects in OpenGL in that they are subject to the same transformations. For example, setting
the position of light number 1 with

gl.glLightfv(GL.GL LIGHT1, GL.GL POSITION, new float[] { 1,2,3,1 }, 0);

puts the light in the same place as

gl.glTranslatef(1,2,3);

gl.glLightfv(GL.GL LIGHT1, GL.GL POSITION, new float[] { 0,0,0,1 }, 0);

The Camera class in package glutil allows the user to rotate the 3D world using the mouse.
If cam is a Camera, then cam.apply(gl) can be called at the beginning of display() to set up
the projection and viewing transformations. If a light position is set up after calling cam.apply,
then that light will rotate along with the rest of the scene.

Note that the default light position is, in effect, set before any transformation has been
applied and is therefore given directly in eye coordinates. That is, when we say that the default
light shines towards the negative direction of the z-axis, we mean the z-axis in eye coordinates,
in which the viewer is at the origin, looking along the negative z-axis. So, the default position
makes a light into a viewpoint light that shines in the direction the viewer is looking.

∗ ∗ ∗
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The sample program LightDemo.java demonstrates various aspects of light and material.
The online version of this section includes this program as an applet. I encourage you to try
the applet or the corresponding application.

In the LightDemo example, a wave-like surface is illuminated by three lights: a red light
that shines from above, a blue light that shines from below, and a white light that shines down
the x-axis. (In this example, the z-axis is pointing up, and the x-axis is pointing out of the
screen.) The surface itself is gray, although it looks colored under the colored lights. Both the
surface material and the lights have a non-zero specular component to their color. A set of axes
and a grid of lines on the surface are also shown, at the user’s option; these features are drawn
with lighting turned off.

The user can use the mouse to rotate the scene. A control below the display determines
whether the lights are fixed with respect to the viewer or with respect to the world. In the
first case, as the user rotates the scene, the surface rotates but the lights don’t move; so, for
example, the part of the surface that is illuminated by the red light is whatever part happens
to be facing upwards in the display. In the second case, the lights rotate along with the surface;
so, for example, the red light always illuminates the same part of the surface, no matter how the
scene has been rotated. Note that even in the second case, the positions of specular highlights on
the surface do change as the scene is rotated, since specular highlights depend on the position
of the viewer relative to the surface, as well as on the position of the lights relative to the
surface.

The program also has controls that let the user turn the red, blue, and white lights, as well as
ambient light, on and off. If all the lights are turned off, the surface disappears entirely. If only
ambient light is on, the surface appears a a flat patch of gray. Ambient light by itself does not
give any 3D appearance to the surface, since it does not depend in any way on the orientation
of the surface or the location of any light source. The user should try other combinations of
settings and try to understand what is going on. Also, take a look at the source code.

4.3.2 Other Properties of Lights

In addition to color and position, lights have six other properties that are more rarely used.
These properties have to do with spotlights and attenuation . Five of the six properties are
numbers rather than arrays and are set using either of the following forms of glLight*

public void glLighti(int light, int propName, int propValue)

public void glLightf(int light, int propName, float propValue)

It is possible to turn a positional light into a spotlight, which emits light in a cone of
directions, rather than in all directions. (For directional lights, spotlight settings are ignored.)
A positional light is a spotlight if the value of its GL SPOT CUTOFF property is set to a
number in the range 0 to 90. The value of this property determines the size of the cone of light
emitted by the spotlight; it gives the angle, measured in degrees, between the axis of the cone
and the side of the cone.

The default value of GL SPOT CUTOFF is a special value, 180, that indicates an ordinary
light rather than a spotlight. The only legal values for GL SPOT CUTOFF are 180 and
numbers in the range 0 to 90.

A spotlight is not completely specified until we know what direction it is shining. The
direction of a spotlight is given by its GL SPOT DIRECTION property, an array of three
numbers that can be set using the glLightfv method. Like the light’s position, the spotlight
direction is subject to the modelview transformation that is in effect at the time when the
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spotlight direction is set. The default value is (0,0,−1), giving a spotlight that points in the
negative direction of the z-axis. Since the default is set before the modelview transformation
has been changed from the identity, this means the viewer’s z-axis. That is, the default spotlight
direction makes it point directly away from the viewer, into the screen.

For example, to turn light number 1 into a spotlight with a cone angle of 30 degrees,
positioned at the point (10,15,5) and pointing toward the origin, you can use these commands:

gl.glLightfv(GL.GL LIGHT1, GL.GL POSITION, new float[] {10,15,5}, 0);

gl.glLighti(GL.GL LIGHT1, GL.GL SPOT CUTOFF, 30);

gl.glLightfv(GL.GL LIGHT1, GL.GL SPOT DIRECTION, new float[] {-10,-15,-5}, 0);

By default, everything in the cone of a spotlight is illuminated evenly. It is also possible to
make the illumination decrease as the angle away from the axis of the cone increases. The value
of the GL SPOT EXPONENT property of a light determines the rate of falloff. This property
must have a value in the range 0 to 128. The default value, 0, gives even illumination. Other
values cause the illumination to fall off with increasing angle, with larger values giving a more
rapid falloff.

Since lighting calculations are only done at vertices, spotlights really only work well when
the polygons that they illuminate are very small. When using larger polygons, don’t expect to
see a nice circle of illumination.

∗ ∗ ∗

In real-world physics, the level of illumination from a light source is proportional to the
reciprocal of the square of the distance from the light source. We say that the light “attenuates”
with distance. OpenGL lights do not follow this model because it does not, in practice, produce
nice pictures. By default in OpenGL, the level of illumination from a light does not depend at
all on distance from the light. However, it is possible to turn on attenuation for a positional
light source. For an vertex at distance r from a light source, the intensity of the light on that
vertex is computed as

I * ( 1 / (a + b*r + c*r2) )

where I is the intrinsic intensity of the light (that is, its color level—this calculation is done
for each of the red, green, and blue components of the color). The numbers a, b, and c are val-
ues of the properties GL CONSTANT ATTENUATION, GL LINEAR ATTENUATION, and
GL QUADRATIC ATTENUATION. By default, a is 1 while b and c are 0. With these default
values, the intensity of the light at the vertex is equal to I, the intrinsic intensity of the light,
and there is no attenuation.

Attenuation can sometimes be useful to localize the effect of a light, especially when there
are several lights in a scene. Note that attenuation applies only to positional lights. The
attenuation properties are ignored for directional lights.

4.3.3 The Global Light Model

There are a few properties of the OpenGL lighting system that are “global” in the sense that
they are not properties of individual lights. These properties can be set using the glLightModeli
and glLightModelfv methods:

public void glLightModelfv(int propertyName, float[] propertyValue, int offset)

public void glLightModeli(int propertyName, int propertyValue)
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There is only one property that can be set with glLightModelfv, the global ambient light
intensity, using property name GL.GL LIGHT MODEL AMBIENT. Global ambient light is
ambient light that is present in the environment even when no light sources are turned on. The
default value is (0.2,0.2,0.2,1). For a yellowish ambient light, for example, you could say

gl.glLightModelfv(GL.GL LIGHT MODEL AMBIENT,

new float[] { 0.2f, 0.2f, 0, 1 }, 0);

There are three properties that can be set using glLightModeli. We have already encountered
one of them. The command

gl.glLightModeli(GL.GL LIGHT MODEL TWO SIDE, GL.GL TRUE);

turns on two-sided lighting, which tells OpenGL to compute normal vectors for the back faces
of polygons by reversing the normal vectors that were specified for the front faces. This also
enables the front and the back faces of polygons to have different material properties. The
second parameter can be GL.GL TRUE or GL.GL FALSE, but these are actually just symbolic
constants for the numbers 1 and 0.

By default, when computing specular highlights, OpenGL assumes that the direction to the
viewer is in the positive direction of the z-axis. Essentially, this assumes, for the purpose of
specular light calculations, that the viewer is “at infinity.” This makes the computation easier
but does not produce completely accurate results. To make OpenGL do the correct calculation,
you can call

gl.glLightModeli(GL.GL LIGHT MODEL LOCAL VIEWER, GL.GL TRUE);

In practice, this rarely makes a significant difference, but it can be noticeable if the viewer is
fairly close to the illuminated objects.

Finally, there is an option that is available only if the OpenGL version is 1.2 or higher,
GL.GL LIGHT MODEL COLOR CONTROL. The value for this property must be either
GL.GL SEPARATE SPECULAR COLOR or GL GL SINGLE COLOR. The latter is the de-
fault. This default yields poor specular highlights on objects to which a texture has been
applied. The alternative will produce better specular highlight on such surfaces by applying
the specular highlight after the texture has been applied. To make sure that the option is
actually available, you can use the following code:

if (gl.isExtensionAvailable("GL VERSION 1 2") {

gl.glLightModeli(GL.GL LIGHT MODEL COLOR CONTROL,

GL.GL SEPARATE SPECULAR COLOR);

}

4.3.4 The Lighting Equation

What does it actually mean to say that OpenGL performs “lighting calculations”? The goal of
the calculation is produce a color, (r,g,b,a), for a vertex. The alpha component, a, is easy—it’s
simply the alpha component of the diffuse material color at that vertex. But the calculations
of r, g, and b are fairly complex.

Ignoring alpha components, let’s assume that the ambient, diffuse, specular, and emission
colors of the material have RGB components (mar,mag,mab), (mdr,mdg,mdb), (msr,msg,msb),
and (mer,meg,meb), respectively. Suppose that the global ambient intensity is (gar ,gag,gab).
Then the red component of the vertex color will be

r = mer + gar*mar + I0r + I1r + I2r + ...
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where Iir is the contribution to the color that comes from the i -th light. A similar equation
holds for the green and blue components of the color. This equation says that the emission color
is simply added to any other contributions to the color. The contribution of global ambient
light is obtained by multiplying the global ambient intensity by the material ambient color.
This is the mathematical way of saying that the material ambient color is the proportion of the
ambient light that is reflected by the surface.

The contributions from the light sources are much more complicated. Note first of all that
if a light source is disabled, then the contribution from that light source is zero. For an enabled
light source, we have to look at the geometry as well as the colors:

In this illustration, N is the normal vector at the point whose color we want to compute. L is
a vector that points towards the light source, and V is a vector that points towards the viewer.
(Both the viewer and the light source can be “at infinity”, but the direction is still well-defined.)
R is the direction of the reflected ray, that is, the direction in which a light ray from the source
will be reflected when it strikes the surface at the point in question. The angle between N and
L is the same as the angle between N and R. All of the vectors are unit vectors, with length
1. Recall that for unit vectors A and B, the inner product A · B is equal to the cosine of the
angle between the two vectors. Inner products occur at several points in the lighting equation.

Now, let’s say that the light has ambient, diffuse, and specular color components
(lar,lag,lab), (ldr,ldg,ldb), and (lsr,lsg,lsb). Also. let mh be the value of the shininess prop-
erty (GL SHININESS ) of the material. Then the contribution of this light source to the red
component of the vertex color can be computed as

Ir = lar*mar + f*att*spot*( ldr*mdr*(L·N) + lsr*msr*max(0,V·R)
mh )

with similar equations for the green and blue components. Here, f is 0 if the surface is facing
away from the light and is 1 otherwise. f is 1 when L·N is greater than 0, that is, when the
angle between L and N is less than 90 degrees. When f is zero, there is no diffuse or specular
contribution from the light to the color of the vertex. Note that even when f is 0, the ambient
component of the light can still affect the vertex color.

In the equation, att is the attenuation factor, which represents attenuation of the light
intensity due to distance from the light. The value of att is 1 if the light source is directional.
If the light is positional, then att is computed as 1/(a+b*r+c*r2), where a, b, and c are the
attenuation constants for the light and r is the distance from the light source to the vertex.
And spot accounts for spotlights. For directional lights and regular positional lights, spot is
1. For a spotlight, spot is zero when the angle between N and L exceeds the cutoff angle of
the spotlight. Otherwise, spot is given by (N ·L)e, where e is the value of the falloff property
(GL SPOT EXPONENT ) of the light.
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The diffuse component of the color, before adjustment by f, att, and spot, is given by
ldr*mdr*(L·N) This represents the diffuse intensity of the light times the diffuse reflectivity
of the material, multiplied by the cosine of the angle between L and N. The angle is involved
because for a larger angle, the same amount of energy from the light is spread out over a greater
area. As the angle increases from 0 to 90 degrees, the cosine of the angle decreases from 1 to
0, so the larger the angle, the smaller the diffuse color contribution. The specular component,
lsr*msr*max(0,V·R)

mh, is similar, but here the angle involved is the angle between the reflected
ray and the viewer, and the cosine of this angle is raised to the exponent mh. The exponent
is the material’s shininess property. When this property is 0, there is no dependence on the
angle (as long as the angle is greater than 0), and the result is the sort of huge and undesirable
specular highlight that we have seen in this case. For positive values of shininess, the specular
contribution is maximal when this angle is zero and it decreases as the angle increases. The
larger the shininess value, the faster the rate of decrease. The result is that larger shininess
values give smaller, sharper specular highlights.

Remember that the same calculation is repeated for every enabled light and that the results
are combined to give the final vertex color. It’s easy, especially when using several lights, to end
up with color components larger than one. In the end, before the color is used to color a pixel
on the screen, the color components must be clamped to the range zero to one. Values greater
than one are replaced by one. It’s easy, when using a lot of light, to produce ugly pictures in
which large areas are a uniform white because all the color values in those areas exceeded one.
All the information that was supposed to be conveyed by the lighting has been lost. The effect
is similar to an over-exposed photograph. It can take some work to find appropriate lighting
levels to avoid this kind of over-exposure.

4.4 Lights and Materials in Scenes

In this section, we turn to some of the practicalities of using lights and materials in a scene
and, in particular, in a scene graph.

4.4.1 The Attribute Stack

OpenGL is a state machine with dozens or hundreds of state variables. It can be easy for a pro-
grammer to lose track of the current state. In the case of transformation matrices, the OpenGL
commands glPushMatrix and glPopMatrix offer some help for managing state. Typically, these
methods are used when temporary changes are made to the transformation matrix. Using a
stack with push and pop is a neat way to save and restore state. OpenGL extends this idea
beyond the matrix stacks.

Material and light properties are examples of attributes. OpenGL has an attribute stack

that can be used for saving and restoring attribute values. The push and pop methods for the
attribute stack are defined in class GL:

public void glPushAttrib(int mask)

public void glPopAttrib()

There are many attributes that can be stored on the attribute stack. The attributes are divided
into attribute groups, and one or more groups of attributes can be pushed onto the stack with
a single call to glPushAttrib. The mask parameter tells which group or groups of attributes
are to be pushed. Each call to glPushAttrib must be matched by a later call to glPopAttrib.
Note that glPopAttrib has no parameters, and it is not necessary to tell it which attributes to
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pop—it will simply restore the values of all attributes that were saved onto the stack by the
matching call to glPushAttrib.

The attribute that most concerns us here is the one identified by the constant
GL.GL LIGHTING BIT. A call to

gl.glPushAttrib( GL.GL LIGHTING BIT );

will push onto the attribute stack all the OpenGL state variables associated with lights and
materials. The command saves material properties, properties of lights, settings for the
global light model, the enable state for lighting and for each individual light, the settings
for GL COLOR MATERIAL, and the shading model (GL FLAT or GL SMOOTH ). All the
saved values can be restored later by the single matching call to gl.glPopAttrib().

The parameter to glPushAttrib is a bit mask, which means that you can “or” together
several attribute group names in order to save the values in several groups in one step. For
example,

gl.glPushAttrib( GL.GL LIGHTING BIT | GL.GL CURRENT BIT );

will save values in the GL CURRENT BIT group as well as in the GL LIGHTING BIT group.
You might want to do this since the current color is not included in the “lighting” group but
is included in the “current” group. It is better to combine groups in this way rather than to
use separate calls to glPushAttrib, since the attribute stack has a limited size. (The size is
guaranteed to be at least 16, which should be sufficient for most purposes. However, you might
have to be careful when rendering very complex scenes.)

There are other useful attribute groups. GL.GL POLYGON BIT, GL.GL LINE BIT, and
GL.GL POINT BIT can be used to save attributes relevant to the rendering of polygons, lines,
and points, such as the point size, the line width, the settings for line stippling, and the settings
relevant to polygon offset. GL.GL TEXTURE BIT can be used to save many settings that
control how textures are processed (although not the texture images). GL.GL ENABLE BIT
will save the values of boolean properties that can be enabled and disabled with gl.glEnable
and gl.glDisable.

Since glPushAttrib can be used to push large groups of attribute values, you might think
that it would be more efficient to use the glGet family of commands to read the values of just
those properties that you are planning to modify, and to save the old values in variables in
your program so that you can restore them later. (See Subsection 3.1.4.) But in fact, a glGet
command can require your program to communicate with the graphics card—and wait for the
response, which is the kind of thing that can hurt performance. In contrast, calls to glPushAttrib
and glPopAttrib can be queued with other OpenGL commands and sent to the graphics card in
batches, where they can be executed efficiently by the graphics hardware. In fact, you should
always prefer using glPushAttrib/glPopAttrib instead of a glGet command when you can.

I should note that there is another stack, for “client attributes.” These are attributes that
are stored on the client side (that is, in your computer’s main memory) rather than in the
graphics card. There is really only one group of client attributes that concerns us:

gl.glPushClientAttrib(GL.GL CLIENT VERTEX ARRAY BIT);

will store the values of settings relevant to using vertex arrays, such as the values for
GL VERTEX POINTER and GL NORMAL POINTER and the enabled states for the various
arrays. This can be useful when drawing primitives using glDrawArrays and glDrawElements.
(Subsection 3.4.2.) The values saved on the stack can be restored with

gl.glPopClientAttrib();
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Now, how can we use the attribute stack in practice? It can be used any time complex
scenes are drawn when you want to limit state changes to just the part of the program where
they are needed. When working with complex scenes, you need to keep careful control over the
state. It’s not a good idea for any part of the program to simply change some state variable and
leave it that way, because any such change affects all the rendering that is done down the road.
The typical pattern is to set state variables in the init() method to their most common values.
Other parts of the program should not make permanent changes to the state. The easiest way
to do this is to enclose the code that changes the state between push and pop operations.

Complex scenes are often represented as scene graphs. A scene graph is a data structure that
represents the contents of a scene. We have seen how a screen graph can contain basic nodes
representing geometric primitives, complex nodes representing groups of sub-nodes, and nodes
representing viewers. In our scene graphs so far, represented by the package simplescenegraph3d,
a node can have an associated color and if that color is null then the color is inherited from the
parent of the node in the scene graph or from the OpenGL environment if it has no parent.

A more realistic package for scene graphs, scenegraph3d, adds material properties to the
nodes and adds a node type for representing lights. All the nodes in a scene graph are repre-
sented by sub-classes of the class SceneNode3D from the scenegraph3d package. This base class
defines and implements both the transforms and the material properties for the nodes in the
graph. Now, instead of just the current drawing color, there are instance variables to represent
all the material properties—ambient color, diffuse color, specular color, emission color, and
shininess. The SceneNode3D class has a draw() method that manages the transforms and the
material properties (and calls another method, basicDraw() to do the actual drawing). Here is
the method:

final public void draw(GL gl) {

boolean hasColor = (color != null) || (specularColor != null)

|| ambientColor != null || diffuseColor != null

|| emissionColor != null || shininess >= 0;

if (hasColor) {

gl.glPushAttrib(GL.GL LIGHTING BIT | GL.GL CURRENT BIT);

if (color != null)

gl.glGetFloatv(GL.GL CURRENT COLOR, color, 0);

if (ambientColor != null)

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL AMBIENT, ambientColor, 0);

if (diffuseColor != null)

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL DIFFUSE, diffuseColor, 0);

if (specularColor != null)

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL SPECULAR, specularColor, 0);

if (emissionColor != null)

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL EMISSION, emissionColor, 0);

if (shininess >= 0)

gl.glMateriali(GL.GL FRONT AND BACK, GL.GL SHININESS, shininess);

}

gl.glPushMatrix();

gl.glTranslated(translateX, translateY, translateZ);

gl.glRotated(rotationAngle, rotationAxisX, rotationAxisY, rotationAxisZ);

gl.glScaled(scaleX, scaleY, scaleZ);

drawBasic(gl); // Render the part of the scene represented by this node.

gl.glPopMatrix();

if (hasColor)
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gl.glPopAttrib();

}

This method uses glPushAttrib and glPopAttrib to make sure that any changes that are made
to the color and material properties are limited just to this node. The variable hasColor is used
to test whether any such changes will actually be made, in order to avoid doing an unnecessary
push and pop. The method also uses glPushMatrix and glPopMatrix to limit changes made
to the transformation matrix. The effect is that the material properties and transform are
guaranteed to have the same values when the method ends as they did when it began.

4.4.2 Lights in Scene Graphs

We have seen that the position of a light is transformed by the modelview matrix that is in
effect when the position is set, and a similar statement holds for the direction of a spotlight. In
this way, lights are like other objects in a scene. The contents of a scene are often represented
by a scene graph, and it would be nice to be able to add lights to a scene graph in the same
way that we add geometric objects. We should be able to animate the position of a light in a
scene graph by applying transformations to the graph node that represents the light, in exactly
the same way that we animate geometric objects.

We could, for example, place a light at the same location as a sun or a streetlight, and the
illumination from the light would appear to come from the visible object that is associated with
the light. If the sun moves during an animation, the light can move right along with it.

There is one way that lights differ from geometric objects: Geometric objects can be rendered
in any order, but lights have to be set up and enabled before any of the geometry that they
illuminate is rendered. So we have to work in two stages: Set up the lighting, then render the
geometry. When lights are represented by nodes in a scene graph, we can do this by traversing
the scene graph twice. During the first traversal, the properties and positions of all the lights
in the scene graph are set, and geometry is ignored. During the second traversal, the geometry
is rendered and the light nodes are ignored.

This is the approach taken in the scene graph package, scenegraph3d. This package contains
a LightNode class. A LightNode represents an OpenGL light. The draw() method for a scene
graph, shown above, does a traversal of the graph for the purpose of rendering geometry. There
is also a turnOnLights() method that does a traversal of the scene graph for the purpose of
turning on lights and setting their properties, while making sure that they are subject to all the
transformations that are applied in the scene graph. The on-line version of this section includes
an applet that demonstrates the use of LightNodes in scene graphs.

There are four lights in the applet, one inside a sun that rotates around the “world,” one in
a moon that does likewise, and two spotlights in the headlights of a cart. The headlights come
on only at night (when the sun is on the other side of the world). There is also a light that
illuminates the scene from the position of the viewer and that can be turned on and off using
a control beneath the display area. The viewpoint light is not part of the scene graph. The
source code can be found in MovingLightDemo.java.

One issue when working with lights in OpenGL is managing the limited number of lights.
In fact, the scene graphs defined by the package scenegraph3d can handle no more than eight
lights; any lights in the scene graph beyond that number are ignored. Lights in the scene graph
are assigned one of the light constants (GL LIGHT0, GL LIGHT1, and so on) automatically,
as the graph is traversed, so that the user of the scene graph does not have to worry about
managing the light constants. One interesting point is that the light constants are not simply
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assigned to LightNodes, and indeed it would be impossible to do so since the same LightNode

can be encountered more than once during a single traversal of the graph. For example, in
the MovingLightDemo program, the two headlights of the cart are represented by just one
LightNode. There are two lights because the node is encountered twice during a graph traversal;
the lights are in different locations because different transformations are in effect during the
two encounters. A different light constant is used for each encounter, and each adds a new
OpenGL light to the scene.

For more details about how lights are managed, see the methods turnOnLights and turnOn-
LightsBasic in scenegraph3d/SceneNode3D.java and the implementation of turnOnLightsBasic
in scenegraph3d/LightNode.java. It’s also worth looking at how scene graphs are used in the
sample program MovingLightDemo.java.

By the way, that example also demonstrates some of the limitations of OpenGL lighting.
One big limitation is that lights in OpenGL do not cast shadows. This means that light simply
shines through objects. This is why is is possible to place a light inside a sphere and still have
that light illuminate other objects: The light simply shines through the surface of the sphere.
That’s not such a bad thing, but when the sun in the applet is below the world, it shines up
through the ground and illuminates objects in the scene from below. The effect is not all that
obvious. You have to look for it, but even if you don’t notice it, it makes things look subtly
wrong. Problems with spotlights are also apparent in the example. As mentioned previously,
you don’t get a neat circle of light from a spotlight unless the polygons that it illuminates are
very small. As a result, the illumination from the headlights flickers a bit as the cart moves.
And if you look at the boundary of the circle of illumination from a headlight on an object made
up of large polygons, you’ll see that the boundary can be very jagged indeed. For example,
consider this screenshot of a cylinder whose left side is illuminated by one of the spotlights in
the program:

4.5 Textures

Textures were introduced in Subsection 2.4.2. In that section, we looked at Java’s Texture

class, which makes it fairly easy to use image textures. However, this class is not a standard
part of OpenGL. This section covers parts of OpenGL’s own texture API (plus more detail on
the Texture class). Textures are a complex subject. This section does not attempt to cover all
the details.



118 CHAPTER 4. LIGHT AND MATERIAL

4.5.1 Texture Targets

So far, we have only considered texture images, which are two-dimensional textures. However,
OpenGL also supports one-dimensional textures and three-dimensional textures. OpenGL has
three texture targets corresponding to the three possible dimensions: GL TEXTURE 1D,
GL TEXTURE 2D, and GL TEXTURE 3D. (There are also several other targets that are used
for aspects of texture mapping that I won’t discuss here.) OpenGL maintains some separate
state information for each target. Texturing can be turned on and off for each target with

gl.glEnable(GL.GL TEXTURE 1D); / gl.glDisable(GL.GL TEXTURE 1D);

gl.glEnable(GL.GL TEXTURE 2D); / gl.glDisable(GL.GL TEXTURE 2D);

gl.glEnable(GL.GL TEXTURE 3D); / gl.glDisable(GL.GL TEXTURE 3D);

At most one texture target will be used when a surface is rendered. If several targets are
enabled, 3D textures have precedence over 2D textures, and 2D textures have precedence over
1D. Except for one example later in this section, we will work only with 2D textures.

Many commands for working with textures take a texture target as their first parameter,
to specify which target’s state is being changed. For example,

gl.glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE WRAP S, GL.GL REPEAT);

tells OpenGL to repeat two-dimensional textures in the s direction. To make one-dimensional
textures repeat in the s direction, you would use GL.GL TEXTURE 1D as the first parameter.
Texture wrapping was mentioned at the end of Subsection 2.4.2, where repeat in the s direction
was set using an object tex of type Texture with

tex.setTexParameteri(GL.GL TEXTURE WRAP S, GL.GL REPEAT);

More generally, for a Texture, tex, tex.setTexParameteri(prop,val) is simply an abbreviation
for gl.glSetTexParameteri(tex.getTarget(),prop,val), where tex.getTarget() returns the target—
most likely GL TEXTURE 2D—for the texture object. The Texture method simply pro-
vides access to the more basic OpenGL command. Similarly, tex.enable() is equivalent to
gl.glEnable(tex.getTarget()).

Texture targets are also used when setting the texture environment , which determines
how the colors from the texture are combined with the color of the surface to which the texture
is being applied. The combination mode for a given texture target is set by calling

gl.glTexEnvi( target, GL.GL TEXTURE ENV MODE, mode );

where target is the texture target, such as GL.GL TEXTURE 2D, for which the combination
mode is being changed. The default value of mode is GL.GL MODULATE, which means that
the color components from the surface are multiplied by the color components from the texture.
This is commonly used with a white surface material. The surface material is first used in the
lighting computation to produce a basic color for each surface pixel, before combination with
the texture color. A white surface material means that what you end up with is basically the
texture color, modified by lighting effects. This is usually what you want, but there are other
texture combination modes for special purposes. For example, the GL.GL REPLACE mode
will completely replace the surface color with the texture color. In fact, the texture environment
offers many options and a great deal of control over how texture colors are used. However, I
will not cover them here.
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4.5.2 Mipmaps and Filtering

When a texture is applied to a surface, the pixels in the texture do not usually match up one-
to-one with pixels on the surface, and in general, the texture must be stretched or shrunk as
it is being mapped onto the surface. Sometimes, several pixels in the texture will be mapped
to the same pixel on the surface. In this case, the color that is applied to the surface pixel
must somehow be computed from the colors of all the texture pixels that map to it. This is an
example of filtering ; in particular, it is “minification filtering” because the texture is being
shrunk. When one pixel from the texture covers more than one pixel on the surface, the texture
has to be magnified, and we have an example of “magnification filtering.”

One bit of terminology before we proceed: The pixels in a texture are referred to as texels,
short for texture pixels, and I will use that term from now on.

When deciding how to apply a texture to a point on a surface, OpenGL has the texture
coordinates for that point. Those texture coordinates correspond to one point in the texture,
and that point lies in one of the texture’s texels. The easiest thing to do is to apply the color
of that texel to the point on the surface. This is called nearest neighbor filtering . It is very
fast, but it does not usually give good results. It doesn’t take into account the difference in size
between the pixels on the surface and the texels. An improvement on nearest neighbor filtering
is linear filtering , which can take an average of several texel colors to compute the color that
will be applied to the surface.

The problem with linear filtering is that it will be very inefficient when a large texture
is applied to a much smaller surface area. In this case, many texels map to one pixel, and
computing the average of so many texels becomes very inefficient. OpenGL has a neat solution
for this: mipmaps.

A mipmap for a texture is a scaled-down version of that texture. A complete set of mipmaps
consists of the full-size texture, a half-size version in which each dimension is divided by two,
a quarter-sized version, a one-eighth-sized version, and so on. If one dimension shrinks to a
single pixel, it is not reduced further, but the other dimension will continue to be cut in half
until it too reaches one pixel. In any case, the final mipmap consists of a single pixel. Here are
the first few images in the set of mipmaps for a brick texture:

You’ll notice that the mipmaps become small very quickly. The total memory used by a set of
mipmaps is only about one-third more than the memory used for the original texture, so the
additional memory requirement is not a big issue when using mipmaps.

Mipmaps are used only for minification filtering. They are essentially a way of pre-computing
the bulk of the averaging that is required when shrinking a texture to fit a surface. To texture
a pixel, OpenGL can first select the mipmap whose texels most closely match the size of the
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pixel. It can then do linear filtering on that mipmap to compute a color, and it will have to
average at most a few texels in order to do so.

Starting with OpenGL Version 1.4, it is possible to get OpenGL to create and manage
mipmaps automatically. For automatic generation of mipmaps for 2D textures, you just have
to say

gl.glTexParameteri(GL.GL TEXTURE 2D, GL.GL GENERATE MIPMAP, GL.GL TRUE);

and then forget about 2D mipmaps! Of course, you should check the OpenGL version be-
fore doing this. In earlier versions, if you want to use mipmaps, you must either load each
mipmap individually, or you must generate them yourself. (The GLU library has a method,
gluBuild2DMipmaps that can be used to generate a set of mipmaps for a 2D texture, with
similar functions for 1D and 3D textures.) The best news, perhaps, is that when you are using
Java Texture objects to represent textures, the Texture will manage mipmaps for you without
any action on your part except to ask for mipmaps when you create the object. (The methods
for creating Textures have a parameter for that purpose.)

∗ ∗ ∗

OpenGL supports several different filtering techniques for minification and magnification.
The filters that can be used can be set with glTexParameteri. For the 2D texture target, for
example, you would call

gl.glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MAG FILTER, magFilter);

gl.glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MIN FILTER, minFilter);

where magFilter and minFilter are constants that specify the filtering algorithm. For the mag-
Filter, the only options are GL.GL NEAREST and GL.GL LINEAR, giving nearest neighbor
and linear filtering. The default for the MAG filter is GL LINEAR, and there is rarely any
need to change it. For minFilter, in addition to GL.GL NEAREST and GL.GL LINEAR,
there are four options that use mipmaps for more efficient filtering. The default MIN filter
is GL.GL NEAREST MIPMAP LINEAR which does averaging between mipmaps and nearest
neighbor filtering within each mipmap. For even better results, at the cost of greater ineffi-
ciency, you can use GL.GL LINEAR MIPMAP LINEAR, which does averaging both between
and within mipmaps. (You can research the remaining two options on your own if you are
curious.)

One very important note: If you are not using mipmaps for a texture, it is imperative
that you change the minification filter for that texture to GL NEAREST or, more likely,
GL LINEAR. The default MIN filter requires mipmaps, and if mipmaps are not available,
then the texture is considered to be improperly formed, and OpenGL ignores it!

4.5.3 Texture Transformations

Recall that textures are applied to objects using texture coordinates. The texture coordinates
for a vertex determine which point in a texture is mapped to that vertex. Texture coordinates
can be specified using the glTexCoord* families of methods. Textures are most often images,
which are two-dimensional, and the two coordinates on a texture image are referred to as s
and t. Since OpenGL also supports one-dimensional textures and three-dimensional textures,
texture coordinates cannot be restricted to two coordinates. In fact, a set of texture coordinates
in OpenGL is represented internally as homogeneous coordinates (see Subsection 3.1.4), which
are referred to as (s,t,r,q). We have used glTexCoord2d to specify texture s and t coordinates,
but a call to gl.glTexCoord2d(s,t) is really just shorthand for gl.glTexCoord4d(s,t,0,1).
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Since texture coordinates are no different from vertex coordinates, they can be transformed
in exactly the same way. OpenGL maintains a texture transformation matrix as part of
its state, along with the modelview matrix and projection matrix. When a texture is applied
to an object, the texture coordinates that were specified for its vertices are transformed by the
texture matrix. The transformed texture coordinates are then used to pick out a point in the
texture. Of course, the default texture transform is the identity, which has no effect.

The texture matrix can represent scaling, rotation, translation and combinations of these
basic transforms. To specify a texture transform, you have to use glMatrixMode to set the
matrix mode to GL TEXTURE. With this mode in effect, calls to methods such as glRotated,
glScalef, and glLoadIdentity are applied to the texture matrix. For example to install a texture
transform that scales texture coordinates by a factor of two in each direction, you could say:

gl.glMatrixMode(GL.GL TEXTURE);

gl.glLoadIdentity(); // Make sure we are starting from the identity matrix.

gl.glScaled(2,2,2);

gl.glMatrixMode(GL.GL MODELVIEW); // Leave matrix mode set to GL MODELVIEW.

Now, what does this actually mean for the appearance of the texture on a surface? This
scaling transforms multiplies each texture coordinate by 2. For example, if a vertex was assigned
2D texture coordinates (0.4,0.1), then that vertex will be mapped, after the texture transform is
applied, to the point (s,t) = (0.8,0.2) in the texture. The texture coordinates vary twice as fast
on the surface as they would without the scaling transform. A region on the surface that would
map to a 1-by-1 square in the texture image without the transform will instead map to a 2-by-2
square in the image—so that a larger piece of the image will be seen inside the region. In other
words, the texture image will be shrunk by a factor of two on the surface! More generally, the
effect of a texture transformation on the appearance of the texture is the inverse of its effect
on the texture coordinates. (This is exactly analogous to the inverse relationship between a
viewing transformation and a modeling transformation.) If the texture transform is translation
to the right, then the texture moves to the left on the surface. If the texture transform is a
counterclockwise rotation, then the texture rotates clockwise on the surface.

The following image shows a cube with no texture transform, with a texture transform given
by a rotation about the center of the texture, and with a texture transform that scales by a
factor of 0.5:

These pictures are from the sample program TextureAnimation.java. You can find an applet
version of that program on-line.
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4.5.4 Creating Textures with OpenGL

Texture images for use in an OpenGL program usually come from an external source, most often
an image file. However, OpenGL is itself a powerful engine for creating images. Sometimes,
instead of loading an image file, it’s convenient to have OpenGL create the image internally, by
rendering it. This is possible because OpenGL can read texture data from its own color buffer,
where it does its drawing. To create a texture image using OpenGL, you just have to draw the
image using standard OpenGL drawing commands and then load that image as a texture using
the method

gl.glCopyTexImage2D( target, mipmapLevel, internalFormat,

x, y, width, height, border );

In this method, target will be GL.GL TEXTURE 2D except for advanced applications;
mipmapLevel, which is used when you are constructing each mipmap in a set of mipmaps by
hand, should be zero; the internalFormat, which specifies how the texture data should be stored,
will ordinarily be GL.GL RGB or GL.GL RGBA, depending on whether you want to store an
alpha component for each texel; x and y specify the lower left corner of the rectangle in the
color buffer from which the texture will be read and are usually 0; width and height are the size
of that rectangle; and border, which makes it possible to include a border around the texture
image for certain special purposes, will ordinarily be 0. That is, a call to glCopyTexImage2D
will typically look like

gl.glCopyTexImage2D(GL.GL TEXTURE 2D, 0, GL.GL RGB, 0, 0, width, height, 0);

As usual with textures, the width and height should ordinarily be powers of two, although
non-power-of-two textures are supported if the OpenGL version is 2.0 or higher.

As an example, the sample program TextureFromColorBuffer.java uses this technique to
produce a texture. The texture image in this case is a copy of the two-dimensional hierarchical
graphics example from Subsection 2.1.4. Here is what this image looks like when the program
uses it as a texture on a cylinder:

The texture image in this program can be animated. For each frame of the animation, the
program draws the current frame of the 2D animation, then grabs that image for use as a
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texture. It does this in the display() method, even though the 2D image that is draws is not
shown. After drawing the image and grabbing the texture, the program erases the image and
draws a 3D textured object, which is the only thing that the user gets to see in the end. It’s
worth looking at that display method, since it requires some care to use a power-of-two texture
size and to set up lighting only for the 3D part of the rendering process:

public void display(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

int[] viewPort = new int[4]; // The current viewport; x and y will be 0.

gl.glGetIntegerv(GL.GL VIEWPORT, viewPort, 0);

int textureWidth = viewPort[2]; // The width of the texture.

int textureHeight = viewPort[3]; // The height of the texture.

/* First, draw the 2D scene into the color buffer. */

if (version 2 0) {

// Non-power-of-two textures are supported. Use the entire

// view area for drawing the 2D scene.

draw2DFrame(gl); // Draws the animated 2D scene.

}

else {

// Use a power-of-two texture image. Reset the viewport

// while drawing the image to a power-of-two-size,

// and use that size for the texture.

gl.glClear(GL.GL COLOR BUFFER BIT);

textureWidth = 1024;

while (textureWidth > viewPort[2])

textureWidth /= 2; // Use a power of two that fits in the viewport.

textureHeight = 512;

while (textureWidth > viewPort[3])

textureHeight /= 2; // Use a power of two that fits in the viewport.

gl.glViewport(0,0,textureWidth,textureHeight);

draw2DFrame(gl); // Draws the animated 2D scene.

gl.glViewport(0, 0, viewPort[2], viewPort[3]); // Restore full viewport.

}

/* Grab the image from the color buffer for use as a 2D texture. */

gl.glCopyTexImage2D(GL.GL TEXTURE 2D, 0, GL.GL RGBA,

0, 0, textureWidth, textureHeight, 0);

/* Set up 3D viewing, enable 2D texture,

and draw the object selected by the user. */

gl.glPushAttrib(GL.GL LIGHTING BIT | GL.GL TEXTURE BIT);

gl.glEnable(GL.GL LIGHTING);

gl.glEnable(GL.GL LIGHT0);

float[] dimwhite = { 0.4f, 0.4f, 0.4f };

gl.glLightfv(GL.GL LIGHT0, GL.GL SPECULAR, dimwhite, 0);

gl.glEnable(GL.GL DEPTH TEST);

gl.glShadeModel(GL.GL SMOOTH);

if (version 1 2)

gl.glLightModeli(GL.GL LIGHT MODEL COLOR CONTROL,

GL.GL SEPARATE SPECULAR COLOR);

gl.glLightModeli(GL.GL LIGHT MODEL LOCAL VIEWER, GL.GL TRUE);
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gl.glClearColor(0,0,0,1);

gl.glClear(GL.GL COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT);

camera.apply(gl);

/* Since we don’t have mipmaps, we MUST set the MIN filter

* to a non-mipmapped version; leaving the value at its default

* will produce no texturing at all! */

gl.glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MIN FILTER, GL.GL LINEAR);

gl.glEnable(GL.GL TEXTURE 2D);

float[] white = { 1, 1, 1, 1 }; // Use white material for texturing.

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL AMBIENT AND DIFFUSE, white, 0);

gl.glMaterialfv(GL.GL FRONT AND BACK, GL.GL SPECULAR, white, 0);

gl.glMateriali(GL.GL FRONT AND BACK, GL.GL SHININESS, 128);

int selectedObject = objectSelect.getSelectedIndex();

// selectedObject Tells which of several object to draw.

gl.glRotated(15,3,2,0); // Apply some viewing transforms to the object.

gl.glRotated(90,-1,0,0);

if (selectedObject == 1 || selectedObject == 3)

gl.glTranslated(0,0,-1.25);

objects[selectedObject].render(gl);

gl.glPopAttrib();

}

4.5.5 Loading Data into a Texture

Although OpenGL can draw its own textures, most textures come from external sources. The
data can be loaded from an image file, it can be taken from a BufferedImage, or it can even be
computed by your program on-the-fly. Using Java’s Texture class is certainly the easiest way
to load existing images. However, it’s good to also know how to load texture data using only
basic OpenGL commands.

To load external data into a texture, you have to store the color data for that texture into
a Java nio Buffer (or, if using the C API, into an array). The data must specify color values for
each texel in the texture. Several formats are possible, but the most common are GL.GL RGB,
which requires a red, a blue, and a green component value for each texel, and GL.GL RGBA,
which adds an alpha component for each texel. You need one number for each component, for
every texel. When using GL.GL RGB to specify a texture with n texels, you need a total of
3*n numbers. Each number is typically an unsigned byte, with a value in the range 0 to 255,
although other types of data can be used as well.

(The use of unsigned bytes is somewhat problematic in Java, since Java’s byte data typed
is signed, with values in the range −128 to 127. Essentially, the negative numbers are re-
interpreted as positive numbers. Usually, the safest approach is to use an int or short value
and type-cast it to byte.)

Once you have the data in a Buffer, you can load that data into a 2D texture using the
glTexImage2D method:

gl.glTexImage2D(target, mipmapLevel, internalFormat, width, height, border,

format, dataType, buffer);
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The first six parameters are similar to parameters in the glCopyTexImage2D method, as dis-
cussed in the previous subsection. The other three parameters specify the data. The format
is GL.GL RGB if you are providing RGB data and is GL.GL RGBA for RGBA data. Other
formats are also possible. Note that the format and the internalFormat are often the same,
although they don’t have to be. The dataType tells what type of data is in the buffer and is usu-
ally GL.GL UNSIGNED BYTE. Given this data type, the buffer should be of type ByteBuffer.
The number of bytes in the buffer must be 3*width*height for RGB data and 4*width*height
for RGBA data.

It is also possible to load a one-dimensional texture in a similar way. The glTexImage1D
method simply omits the height parameter. As an example, here is some code that creates a
one-dimensional texture consisting of 256 texels that vary in color through a full spectrum of
color:

ByteBuffer textureData1D = BufferUtil.newByteBuffer(3*256);

for (int i = 0; i < 256; i++) {

Color c = Color.getHSBColor(1.0f/256 * i, 1, 1); // A color of the spectrum.

textureData1D.put((byte)c.getRed()); // Add color components to the buffer.

textureData1D.put((byte)c.getGreen());

textureData1D.put((byte)c.getBlue());

}

textureData1D.rewind();

gl.glTexImage1D(GL.GL TEXTURE 1D, 0, GL.GL RGB, 256, 0,

GL.GL RGB, GL.GL UNSIGNED BYTE, textureData1D);

This code is from the sample program TextureLoading.java, which also includes an example of a
two-dimensional texture created by computing the individual texel colors. The two dimensional
texture is the famous Mandelbrot set. Here are two images from that program, one showing
the one-dimensional spectrum texture on a cube and the other showing the two-dimensional
Mandelbrot texture on a torus. (Note, by the way, how the strong specular highlight on the
black part of the Mandelbrot set adds to the three-dimensional appearance of this image.) You
can find an applet version of the program in the on-line version of this section.

4.5.6 Texture Coordinate Generation

Texture coordinates are typically specified using the glTexCoord* family of methods or by us-
ing texture coordinate arrays with glDrawArrays and glDrawElements. However, computing
texture coordinates can be tedious. OpenGL is capable of generating certain types of texture
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coordinates on its own. This is especially useful for so-called “reflection maps” or “environment
maps,” where texturing is used to imitate the effect of an object that reflects its environment.
OpenGL can generate the texture coordinates that are needed for this effect. However, envi-
ronment mapping is an advanced topic that I will not cover here. Instead, we look at a simple
case: object-linear coordinates.

With object-linear texture coordinate generation, OpenGL uses texture coordinates that
are computed as linear functions of object coordinates. Object coordinates are just the actual
coordinates specified for vertices, with glVertex* or in a vertex array. The default when object-
linear coordinate generation is turned on is to make the object coordinates equal to the texture
coordinates. For two-dimensional textures, for example,

gl.glVertex3f(x,y,z);

would be equivalent to

gl.glTexCoord2f(x,y);

gl.glVertex3f(x,y,z);

However, it is possible to compute the texture coordinates as arbitrary linear combinations of
the vertex coordinates x, y, z, and w. Thus, gl.glVertex4f(x,y,z,w) becomes equivalent to

gl.glTexCoord2f(a*x + b*y + c*z + d*w, e*x + f*y + g*z + h*w);

gl.glVertex4f(x,y,z,w);

where (a,b,c,d) and (e,f,g,h) are arbitrary arrays.

To use texture generation, you have to enable and configure it for each texture coordinate
separately. For two-dimensional textures, you want to enable generation of the s and t texture
coordinates:

gl.glEnable(GL.GL TEXTURE GEN S);

gl.glEnable(GL.GL TEXTURE GEN T);

To say that you want to use object-linear coordinate generation, you can use the method
glTexGeni to set the texture generation “mode” to object-linear for both s and t :

gl.glTexGeni(GL.GL S, GL.GL TEXTURE GEN MODE, GL.GL OBJECT LINEAR);

gl.glTexGeni(GL.GL T, GL.GL TEXTURE GEN MODE, GL.GL OBJECT LINEAR);

If you accept the default behavior, the effect will be to project the texture onto the surface
from the xy-plane (in the coordinate system in which the coordinates are specified, before any
transformation is applied). If you want to change the equations that are used, you can specify
the coordinates using glTexGenfv. For example, to use coefficients (a,b,c,d) and (e,f,g,h) in the
equations:

gl.glTexGenfv(GL.GL S, GL.GL OBJECT PLANE, new float[] { a,b,c,d }, 0);

gl.glTexGenfv(GL.GL T, GL.GL OBJECT PLANE, new float[] { e,f,g,h }, 0);

The sample program TextureCoordinateGeneration.java demonstrates the use of texture
coordinate generation. It allows the user to enter the coefficients for the linear equations that
are used to generate the texture coordinates. The same program also demonstrates “eye-
linear” texture coordinate generation, which is similar to the object-linear version but uses eye
coordinates instead of object coordinates in the equations; I won’t discuss it further here. As
usual, you can find an applet version on-line.
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4.5.7 Texture Objects

For our final word on textures, we look briefly at texture objects. Texture objects are used
when you need to work with several textures in the same program. The usual method for
loading textures, glTexImage*, transfers data from your program into the graphics card. This
is an expensive operation, and switching among multiple textures by using this method can
seriously degrade a program’s performance. Texture objects offer the possibility of storing
texture data for multiple textures on the graphics card and to switch from one texture object
to another with a single, fast OpenGL command. (Of course, the graphics card has only
a limited amount of memory for storing textures, and texture objects that don’t fit in the
graphics card’s memory are no more efficient than ordinary textures.)

Note that if you are using Java’s Texture class to represent your textures, you won’t
need to worry about texture objects, since the Texture class handles them automatically. If
tex is of type Texture, the associated texture is actually stored as a texture object. The
method tex.bind() tells OpenGL to start using that texture object. (It is equivalent to
gl.glBindTexture(tex.getTarget(),tex.getTextureObject()), where glBindTexture is a method that
is discussed below.) The rest of this section tells you how to work with texture objects by hand.

Texture objects are similar in their use to vertex buffer objects, which were covered in
Subsection 3.4.3. Like a vertex buffer object, a texture object is identified by an integer ID
number. Texture object IDs are managed by OpenGL, and to obtain a batch of valid textures
IDs, you can call the method

gl.glGenTextures(n, idList, 0);

where n is the number of texture IDs that you want, idList is an array of length at least n and
of type int[] that will hold the texture IDs, and the 0 indicates the starting index in the array
where the IDs are to be placed. When you are done with the texture objects, you can delete
them by calling gl.glDeleteTextures(n,idList,0).

Every texture object has its own state, which includes the values of texture parameters such
as GL TEXTURE WRAP S as well as the color data for the texture itself. To work with the
texture object that has ID equal to texID, you have to call

gl.glBindTexture(target, texID)

where target is a texture target such as GL.GL TEXTURE 1D or GL.GL TEXTURE 2D. After
this call, any use of glTexParameter*, glTexImage*, or glCopyTexImage* with the same texture
target will be applied to the texture object with ID texID. Furthermore, if the texture target is
enabled and some geometry is rendered, then the texture that is applied to the geometry is the
one associated with that texture ID. A texture binding for a given target remains in effect until
another texture object is bound to the same target. To switch from one texture to another,
you simply have to call glBindTexture with a different texture object ID.
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Chapter 5

Some Topics Not Covered

This page contains a few examples that demonstrate topics not covered in Chapters 1
through 4. The source code for the examples might be useful to people who want to learn more.
The next version of this book should cover these topics—and more— in detail.

∗ ∗ ∗

In stereoscopic viewing , a slightly different image is presented to each eye. The images for
the left eye and the right eye are rendered from slightly different viewing directions, imitating
the way that a two-eyed viewer sees the real world. For many people, stereoscopic views can be
visually fused to create a convincing illusion of 3D depth. One way to do stereoscopic viewing
on a computer screen is to combine the view from the left eye, drawn in red, and the view from
the right eye, drawn in green. To see the 3D effect, the image must be viewed with red/green
(or red/blue or red/cyan) glasses designed for such 3D viewing. This type of 3D viewing is
referred to as anaglyph (search for it on Google Images).

The sample program Sterographer.java, in the package stereoGraph3d, can render an
anaglyph stereo view of the graph of a function. The program uses modified versions of the
Classname and TrackBall classes that can be found in the same package. In order to combine
the red and green images, the program uses the method glColorMask method. (The program is
also a nice example of using vector buffer objects and glDrawElements for drawing primitives.)
An applet version of the program can be found on-line; here is a screenshot:

∗ ∗ ∗
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Mouse interaction with a 3D scene is complicated by the fact that the mouse coordinates
are given in device (pixel) coordinates, while the objects in the scene are created in object
coordinates. This makes it difficult to tell which object the user is clicking on. OpenGL can
help with this “selection” problem. It offers the GL SELECT render mode to make selection
easier. Unfortunately, it’s still fairly complicated and I won’t describe it here.

The sample program SelectionDemo.java in the package selection demonstrates the use of
the GL SELECT render mode. The program is a version of WalkThroughDemo.java where the
user can click on objects to select it. The size of the selected object is animated to show that it
is selected, but otherwise nothing special can be done with it. An applet version can be found
on-line.

∗ ∗ ∗

Throughout the text, we have been talking about the standard OpenGL “rendering
pipeline.” The operations performed by this pipeline are are actually rather limited when com-
pared to the full range of graphics operations that are commonly used in modern computer
graphics. And new techniques are constantly being discovered. It would be impossible to make
every new technique a standard part of OpenGL. To help with this problem, OpenGL 2.0 in-
troduced the OpenGL Shading Language (GLSL). Parts of the OpenGL rendering pipeline
can be replaced with programs written in GLSL. GLSL programs are referred to as shaders.
A vertex shader written in OpenGL can replace the part of the pipeline that does lighting,
transformation and other operations on each vertex. A fragment shader can replace the part
that operates on each pixel in a primitive. GLSL is a complete programming language, based
on C, which makes GLSL shaders very versitile. In the newest versions of OpenGL, shaders are
preferred over the standard OpenGL processing.

Since the OpenGL API for working with shaders is rather complicated, I wrote the class
GLSLProgram to represent a GLSL program (source code GLSLProgram.java in package glsl).
The sample programs MovingLightDemoGLSL.java and IcosphereIFS GLSL.java, both in pack-
age glsl, demonstrate the use of simple GLSL programs with the GLSLProgram class. These
examples are not meant as a demonstration of what GLSL can do; they just show how to use
GLSL with Java. The GLSL programs can only be used if the version of OpenGL is 2.0 or
higher; the program will run with lower version numbers, but the GLSL programs will not be
applied.

The first sample program, MovingLightDemoGLSL.java is a version of MovingLight-
Demo.java that allows the user to turn a GLSL program on and off. The GLSL program
consists of a fragment shader that converts all pixel colors to gray scale. (Note, by the way,
that the conversion applies only to pixels in primitives, not to the background color that is used
by glClear). An applet version can be found on-line.

The second sample program, IcosphereIFS GLSL.java, uses both a fragment shader and a
vertex shader. This example is a version of IcosphereIFS.java, which draws polyhdral approxi-
mations for a sphere by subdividing an icosahedron. The vertices of the icosphere are generated
by a recursive algorithm, and the colors in the GLSL version are meant to show the level of the
recursion at which each vertex is generated. (The effect is not as interesting as I had hoped.)
As usual, an applet version is on-line; here is a screenshot:
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Appendix: Source Files

This is a list of source code files for examples in Fundamentals of Computer Graphics with Java,
OpenGL, and Jogl.

• QuadraticBezierEdit.java and QuadraticBezierEditApplet.java, from Subsection 1.2.2. A
program that demonstrates quadratic editing curves and allows the user to edit them.

• CubicBezierEdit.java and CubicBezierEditApplet.java, from Subsection 1.2.2. A program
that demonstrates quadratic editing curves and allows the user to edit them.

• HierarchicalModeling2D.java and HierarchicalModeling2DApplet.java, from Subsec-
tion 1.3.2. A program that shows an animation constructed using hierarchical modeling
with Graphics2D transforms.

• BasicJoglApp2D.java, from Subsection 2.1.1. An OpenGL program that just draws a
triangle, showing how to use a GLJPanel and GLEventListener.

• BasicJoglAnimation2D.java and BasicJoglAnimation2DApplet.java, from Subsection 2.1.3.
A very simple 2D OpenGL animation, using a rotation transform to rotate a triangle.

• JoglHierarchicalModeling2D.java and JoglHierarchicalModeling2DApplet.java, from Sub-
section 2.1.3. An animated 2D scene using hierarchical modeling OpenGL. This program
is pretty much a port of HierarchicalModeling2D.java, which used Java Graphics2D instead
of OpenGL.

• JoglHMWithSceneGraph2D.java, from Subsection 2.1.5. Another version of the hierarchi-
cal modeling animation, this one using a scene graph to represent the scene. The scene
graph is built using classes from the source directory scenegraph2D.

• Axes3D.java, used for an illustration in Section 2.2. A very simple OpenGL 3D program
that draws a set of axes. The program uses GLUT to draw the cones and cylinders that
represent the axes.

• LitAndUnlitSpheres.java, used for an illustration in Subsection 2.2.2. A very simple
OpenGL 3D program that draws four spheres with different lighting settings.

• glutil, introduced in Section 2.3 is a package that contains several utility classes in-
cluding glutil/Camera.java for working with the projection and view transforms; glu-
til/TrackBall.java, for implementing mouse dragging to rotate the view; and glu-
til/UVSphere.java, glutil/UVCone.java, and glutil/UVCylinder.java for drawing some ba-
sic 3D shapes.

• PaddleWheels.java and PaddleWheelsApplet.java, from Subsection 2.3.1. A first example
of modeling in 3D. A simple animation of three rotating “paddle wheels.” The user can
rotate the image by dragging the mouse (as will be true for most examples from now on).
This example depends on several classes from the package glutil

• ColorCubeOfSpheres.java and ColorCubeOfSpheresApplet.java, from Subsection 2.3.2.
Draws a lot of spheres of different colors, arranged in a cube. The point is to do a
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lot of drawing, and to see how much the drawing can be sped up by using a display list.
The user can turn the display list on and off and see the effect on the rendering time. This
example depends on several classes from the package glutil.

• TextureDemo.java and TextureDemoApplet.java, from Subsection 2.4.2. Shows six tex-
tured objects, with various shapes and textures. The user can rotate each object individ-
ually. This example depends on several classes from the package glutil and on textures
from textures.

• PrimitiveTypes.java and PrimitiveTypesApplet.java, from Subsection 3.2.5. A 2D program
that lets the user experiment with the ten OpenGL primitive types and various options
that affect the way they are drawn.

• VertexArrayDemo.java and VertexArrayDemoApplet.java, from Section 3.4. Uses vertex
arrays and, in OpenGL 1.5 or higher, vertex buffer objects to draw a cylinder inside a
sphere, where the sphere is represented as a random cloud of points.

• IcosphereIFS.java and IcosphereIFSApplet.java, from Subsection 3.4.4. Demonstrates the
use of glDrawElements, with or without vertex buffer objects to draw indexed face sets.

• WalkThroughDemo.java and WalkThroughDemoApplet.java, from Subsection 3.5.4. The
user navigates through a simple 3D world using the arrow keys. The user’s point of view
is represented by an object of type SimpleAvatar, from the glutil package. The program
uses several shape classes from the same package, as well as a basic implementation of 3D
scene graphs found in the package simplescenegraph3d.

• MovingCameraDemo.java and MovingCameraDemoApplet.java, from Subsection 3.5.5.
The program uses the simplescenegraph3d package to implement a scene graph that in-
cludes two AvatarNodes. These nodes represent the view of the scene from two viewers
that are embedded in the scene as part of the scene graph. The program also uses several
classes from the glutil package.

• LightDemo.java and LightDemoApplet.java, from Subsection 4.3.1. Demonstrates some
light and material properties and setting light positions. Requires Camera and TrackBall
from the glutil package.

• MovingLightDemo.java and MovingLightDemoApplet.java, from Subsection 4.4.2. The
program uses the scenegraph3d package, a more advanced version of scenegraph3d, to
implement a scene graph that uses two LightNodes to implement moving lights. The
program also uses several classes from the glutil package.

• There are four examples in Section 4.5 that deal with textures: TextureAnima-
tion.java, TextureFromColorBuffer.java, TextureLoading.java, and TextureCoordinateGen-
eration.java (and their associated applet classes). All of these examples use the glutil
package.

• There are four examples in Chapter 5, a section at the end of the book that describes
a few topices that not covered in the book proper. StereoGrapher.java demonstrates a
form of stereo rendering that requires red/green 3D glasses; this program uses modified
versions of the Trackball and Camera classes, which can be found in the stereoGraph3D
package. SelectionDemo.java demonstrates using OpenGL’s GL SELECT render mode
to let the user “pick” or “select” items in a 3D scene using the mouse; this demo is a
modification of WalkThroughDemo.java and requires the packages glutil and simplescene-
graph3d. Finally, MovingLightDemoGLSL.java and IcosphereIFS GLSL.java demonstrate
the use of “shaders” written in the OpenGL Shading Language (GLSL); these examples
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are modifications of MovingLightDemo.java and IcosphereIFS.java. The GLSL programs
in these examples are very simple. The examples use a class, GLSLProgram.java, that
is meant to coordinate the use of GLSL programs. MovingLightDemoGLSL requires the
packages glutil and scenegraph3d.


