This homework on optimization problems is due on Friday, April 17.

- 1. A farmer wants to build a rectangular pen along the side of a road. The fence along the road has to be stronger than the fence on the other three sides of the pen. The cost for the fence along the road is \$3 per foot, while the fence for the other three sides costs \$1 per foot.
 - a) If the farmer has \$200 to spend on the fence, what is the maximum possible area for the pen?
 - **b)** If the area of the pen is to be 800 square feet, what is the minimum possible cost for the fence?
- 2. The volume of a cardboard box is to be 8 ft³, and the base of the box is a square. Show that area of the box (including all six sides) is minimized when the box is a 2-by-2-by-2 cube. (Note that a cube gives the minimum area even if the base is not assumed to be square, but you would need multivariable calculus to show that.)
- **3.** An athletic field is to be built. Its shape will be a rectangle with a semicircle on each end. A track around the perimeter of the field must have a length of 440 meters. What is the largest possible area for the rectangular portion of the field?

4. In class, I showed that the points $\left(\pm\sqrt{\frac{5}{2}},\frac{5}{2}\right)$ are the points on the parabola $y = x^2$ that are closest to the point (0,3). Suppose that we look at a point (0,a) on the y-axis, where a can be any number. What point on the parabola is closest to (0,a)? The answer, of course, will depend on the value of a.

Show that for $a \ge \frac{1}{2}$, the closest points on the parabola to (0, a) are $\left(\pm \sqrt{\frac{2a-1}{2}}, \frac{2a-1}{2}\right)$, and for $a \le \frac{1}{2}$, the closest point is (0, 0).

- 5. What values of x and y will make the quantity xy^2 as large as possible, if $x \ge 0$, $y \ge 0$, and x + y = 1?
- 6. This problem generalizes the result of the previous problem. Suppose that n and m are any given positive integers, and we want to maximize the quantity $x^n y^m$ subject to the constraints that $x \ge 0$, $y \ge 0$, and x + y = 1. Show that the maximum is achieved when $x = \frac{n}{n+m}$ and $y = \frac{m}{n+m}$. (Hint: You will need to find the derivative a function such as $x^n(1-x)^m$. Don't try to multiply it out. Apply the product rule and the chain rule, carefully.)

ROAD