1. a) \(p\left(\frac{1}{2}\right) = 3\cdot\left(\frac{1}{2}\right)^5 - \frac{1}{2} - 1 = \frac{3}{32} - \frac{16}{32} - \frac{32}{32} = -\frac{45}{32} \). Since \(p\left(\frac{1}{2}\right) < 0 \) and \(p(1) > 0 \), the IVT says there is a root in the interval \(\left[\frac{1}{2}, 1\right] \).

b) To narrow down to an interval of length \(\frac{1}{4} \), look at \(p\left(\frac{3}{4}\right) \). It will be either positive or negative. If \(p\left(\frac{3}{4}\right) > 0 \), the root will be in \(\left[\frac{3}{4}, 1\right] \); because \(p\left(\frac{3}{4}\right) \) is negative, \(\frac{p\left(\frac{3}{4}\right)}{p(1)} > 0 \). If \(p\left(\frac{3}{4}\right) \) happens to be zero exactly, then we know that the root is \(0 \) exactly. In fact, by calculator, \(p\left(\frac{3}{4}\right) = -1.038... \). Since \(p\left(\frac{3}{4}\right) < 0 \) and \(p(1) > 0 \), the root is in \(\left[\frac{3}{4}, 1\right] \).

c) Look at \(x = \frac{7}{8} \), which is halfway between \(\frac{3}{4} \) and \(1 \).
\(p\left(\frac{7}{8}\right) = -0.036... \). Since \(p\left(\frac{7}{8}\right) < 0 \) and \(p\left(\frac{3}{4}\right) > 0 \), the root is in the interval \(\left[\frac{7}{8}, 1\right] \). On the next step, we would find it is in the range \(\left[\frac{7}{8}, \frac{15}{16}\right] \), since \(p\left(\frac{15}{16}\right) > 0 \) and \(p\left(\frac{7}{8}\right) < 0 \).

d) Start with \(a = 0 \), \(b = 1 \). On each step, choose the number \(c = \frac{a+b}{2} \), that is halfway between \(a \) and \(b \).
If \(p(c) \) has the same sign as \(p(a) \), then the root is in \(\left[c, b\right] \); so replace \(a \) with \(c \); if \(p(c) \) has the same sign as \(p(b) \), then the root is in \(\left[a, c\right] \), so replace \(b \) with \(c \). If the new \(\left[a, b\right] \) has a length that is smaller than the desired accuracy, stop. Otherwise continue on to the next step.

This works because at every step, the root is known to be in \(\left[a, b\right] \), and when we stop we can take \(\frac{a+b}{2} \) to be the approximation that we want.
(2) a) Let D be the distance from the car to the lake. Then $f(0) = 0$, $f(2) = D$, $g(0) = D$, $g(2) = 0$.

b) $h(0) = f(0) - g(0) = 0 - D = -D$
$\quad h(2) = f(2) - g(2) = D - 0 = D$

c) By the IVT, because 0 is between $-D$ and D, there must be a c in $[0, 2]$ such that $h(c) = 0$. Then $f(c) = g(c)$, which means you are the same distance from the car at c hours after 7:00 Friday as at c hours after 7:00 on Sunday.

(2) $f(x) = \frac{|x^2 - 9|}{x^2 + x - 12} = \frac{|x^2 - 9|}{(x+4)(x-3)}$. The only points of discontinuity are $x = 3$ and $x = 4$, where the denominator is 0. At $x = 4$, $\frac{|x^2 - 9|}{(x+4)(x-3)}$ had the form $\frac{5}{0}$, so the limit of $f(x)$ from the left or right as $x \to 4$ is infinite. $f(x)$ has an infinite discontinuity at $x = 4$. At $x = 3$, we need to examine the limits from the left and from the right. Note that $f(x) = \frac{|x-3||x+3|}{(x+4)(x-3)}$

$= \frac{|x+3|}{x+4} \cdot \frac{|x-3|}{x-3}$. $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{|x+3|}{x+4} \cdot \frac{-3}{x-3} = \frac{6}{7} \cdot (-1) = -\frac{6}{7}$
because $|x-3| = -(x-3)$ and $|x-3| = -(x-3)$. And

$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{|x+3|}{x+4} \cdot \frac{x-3}{x-3} = \frac{6}{7} \cdot 1 = \frac{6}{7}$. Since for

$x > 3$, $x - 3 > 0$ and $|x-3| = x-3$. Since limits from left and right are different, it's a jump discontinuity.
4. a) Let \(\varepsilon > 0 \). Let \(\delta = \frac{\varepsilon}{5} \). We then have that if
\[0 < |x - 5| < \delta, \text{ Then } |f(x) - L| = \left| \frac{5(x - 5) - 15}{x - 10} \right| = \frac{5}{5} \left| x - 5 \right| < 5 \cdot \frac{\varepsilon}{5} = \varepsilon. \]

b) Let \(\varepsilon > 0 \). Let \(\delta = \frac{\varepsilon}{3} \). We then have that if
\[0 < |x - 2| < \delta, \text{ Then } |f(x) - L| = \left| \frac{1}{3(x + 1)} - (-5) \right| \]
\[= \left| -3x + 6 \right| = \left| (3)(x-2) \right| = 13 \cdot |x-2| < 13 \cdot \frac{\varepsilon}{3} = \varepsilon. \]

5. a) \[\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x^2 - 2x} = \lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x^2 - 2x} \cdot \frac{\sqrt{x} + \sqrt{2}}{\sqrt{x} + \sqrt{2}} \]
\[= \lim_{x \to 2} \frac{x - 2}{x(x-2)(\sqrt{x} + \sqrt{2})} = \lim_{x \to 2} \frac{1}{x(\sqrt{x} + \sqrt{2})} = \frac{1}{2(\sqrt{2})} = \frac{1}{2\sqrt{2}} \]

b) \[\lim_{x \to 7} \frac{\sqrt{x+2} - 3}{\sqrt{x-2} - 2} = \lim_{x \to 7} \frac{\sqrt{x+2} - 3}{\sqrt{x-2} - 2} \cdot \frac{\sqrt{x+2} + 3}{\sqrt{x+2} + 3} \]
\[= \lim_{x \to 7} \frac{(\sqrt{x+2} - 3)(\sqrt{x+2} + 3)}{(\sqrt{x-2} - 2)(\sqrt{x-2} + 2)} = \lim_{x \to 7} \frac{(x+2-9)}{(x-2+4)} = \frac{x-7}{x-2} = \frac{2+2}{3+3} = \frac{2}{3} \]

c) \[\lim_{x \to 1} \left(\frac{2}{(x-3)(x-1)} - \frac{1}{(x-2)(x-1)} \right) \]
\[= \lim_{x \to 1} \left(\frac{2(x-2) - 1(x-3)}{(x-3)(x-1)(x-2)} \right) = \lim_{x \to 1} \left(\frac{2x - 4 - x + 3}{(x-3)(x-1)(x-2)} \right) \]
\[= \lim_{x \to 1} \left(\frac{x-1}{(x-3)(x-1)(x-2)} \right) = \lim_{x \to 1} \frac{1}{(x-3)(x-2)} \]
\[= \frac{1}{(1-3)(1-2)} = \frac{1}{(2)(1)} = \frac{1}{2} \]