
Math 130-01, Spring 2020 Lab #5

This lab is due in class on Friday. Groups for this week’s lab will be assigned randomly.
Next week, you will be able to choose groups on your own again. There is no quiz this week,
but there will be one next week.

1. Finding derivatives of formulas is a pretty mechanical step-by-step process, as long as you have
memorized the rules (or have a table of formulas like the one two pages from the back of the
textbook). The problem is to look at the formula and figure out which rule to apply. For that,
you have to match the formula to one of the rules. Here is a short table of general rules, stated
using the d

dx notation:

Constant Multiple Rule: d
dx(c · f(x)) = c · d

dxf(x)

Sum Rule: d
dx(f(x) + g(x)) = d

dx(f(x)) + d
dx(g(x))

Difference Rule: d
dx(f(x)− g(x)) = d

dx(f(x))− d
dx(g(x))

Product Rule: d
dx(f(x) · g(x)) = f(x) · d

dx(g(x)) + g(x) · d
dx(f(x))

Quotient rule:
d

dx

(
f(x)

g(x)

)
=

g(x) · d
dx(f(x))− f(x) · d

dx(g(x))

(g(x))2

For example, we can apply the quotient rule to show that

d

dx

(
3x3 −

√
x

sin(x) + 7

)
=

(sin(x) + 7) · d
dx(3x3 −

√
x)− (3x3 −

√
x) · d

dx(sin(x) + 7)

(sin(x) + 7)2

For each of the following formulas, apply one of the above rules and show the exact result of
applying that rule, or state that none of the rules apply to the formula. For each formula, you
need to figure out the last operator that would be applied when evaluating the formula. That
operator tells you which rule to apply. Note that you are only being asked to do one step of
the process of computing the derivative; you are not being asked to work through to the final
answer.

a) sin(3x2) + x b) 3 sin(3x2 + x) c) sin(3x2 + x)

d)
sin(x)

cos(x)
e)

3
√
x3 − 3x + 1

x2
f) sec(x) tan(x)

g) x2(ex
2+1) h) x2(ex

2+1) + 1 i)
1

x
− 1

x2

2. In class, we showed that the function g(x) = |x| is not differentiable at x = 0, by looking at
limits from the left and from the right. Now, let f(x) = x|x|. Show, using the definition of the
derivative at 0, that f ′(0) exists and is equal to zero. You will have to compute the left and right
limits separately, using the definition of |x| as a split function. Then show that f ′(x) = 2|x| for
all x by considering the cases x < 0, x = 0, and x > 0 separately, and again using the definition
of |x|.

Lots more on the back!



3. We know that the derivative of a polynomial p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 is given
by the formula p′(x) = annx

n−1 + an−1(n− 1)xn−2 + · · ·+ a1.

a) Let p(x) = 2x3−3x2 + 1
2x−1. Compute the first four derivatives of p(x), That is compute

p′(x), p′′(x), p′′′(x), and p(4)(x).

b) Find the first six derivatives of q(x) = x5 + 2x. That is, compute q′(x) through q(6)(x).

c) If you take any polynomial and compute its first, second, third, . . . derivatives, eventually
you will end up with zero. Explain in words why this is true. How many derivatives do
you have to take before you get zero? Why?

(Polynomials are the only functions for which this is true. That is, a function f(x) is a polyno-
mial if and only if there is some derivative f (n)(x) which is zero. But we won’t be able to prove
this until we study antiderivatives at the very end of the course.)

4. We know that d
dxx

n = nxn−1, for n = 2, 3, 4, . . .. This problem relates that formula to the
product rule.

a) Consider the function x2. Write x2 as x · x, and apply the product rule to x · x to verify
that d

dxx
2 = 2x. (We already know that d

dxx = 1, and you can use that fact.)

b) Consider the function x3. Write x3 as x · x2, and apply the product rule to x · x2 to verify
that d

dxx
3 = 3x2. Use the formula for d

dxx
2 from part a).

c) Consider x4. Write x4 as x·x3, and apply the product rule to x·x3 to verify that d
dxx

4 = 4x3.

d) Now, suppose that k is some integer greater than 4 and that you already know the formula
d
dxx

k−1 = (k−1)xk−2 for that particular number k. Consider xk. Write xk as x ·xk−1, and

apply the product rule to x · xk−1 to verify that d
dxx

k = kxk−1. (Hopefully, this convinces

you that d
dxx

n = nxn−1 works in general.)

5. We have defined the derivative of a function f(x) at x = a to be the slope of the tangent line to
the graph y = f(x) at the point (a, f(a)). This slope can be computed as the limit of the slope
of the secant line between the point (a, f(a)) and the point (a+h, f(a+h)), as h→ 0. Suppose
that we decided, instead, to use two points on opposite sides of (a, f(a)) to make a secant line.
That is, consider the secant line between the points (a−h, f(a−h)) and (a+h, f(a+h)). If you
draw different types of secant lines on some graphs, you might think that a secant line through
(a − h, f(a − h)) and (a + h, f(a + h)) gives a better estimate of the slope of the tangent line
than a secant line that passes through (a, f(a)),

a) Consider a secant line through the points (a− h, f(a− h)) and (a + h, f(a + h)). What is
the slope of this secant line, and what formula do you get for f ′(x) by taking the limit of
that slope as h→ 0?

b) Use your formula to compute the derivative function of the function f(x) =
√
x. You

should get the same answer that we get using the usual definition of the derivative, that
is, f ′(x) = 1

2
√
x
.

c) Suppose that you try to use the nifty new formula to compute the derivative of the function
g(x) = |x| at x = 0. Do it! The answer should be zero. Draw a picture (with an explanation
in words) to illustrate why this happens. But as we have shown, g′(0) does not exist for
this function (using the normal definition)! So the new definition is not really equivalent
to the old one. (It can be shown however that if the derivative does exist according to the
regular definition, then the new definition gives the same answer.)


