1) a) $x = -\frac{1}{2}, -2, 1$ (where tangent line is horizontal)
b) $-2 < x < 1$ (where tangent line slopes upward)
c) $f(-1)$ (it looks like tangent line is steeper than at $x = 0$)
d) -1, since graph looks like $x = -1$ for $x > 3$

2) $\lim_{x \to 1} \frac{\sin(2x) - \sin(x)}{x-1} = \lim_{x \to 1} \frac{2\sin(x)\cos(x) - \sin(x)}{x-1}$
 $= \lim_{x \to 1} \frac{\sin(x)(2\cos(x) - 1)}{x-1}$
 $= \frac{\sin(1)(2\cos(1) - 1)}{0}$
 $= \frac{0}{0}$ (indeterminate)
Since this is an indeterminate form, we can use L'Hopital's Rule.

3) $V(t) = 5\sin(t) - e^{-\frac{t}{2}}\cos(t)$
 $V'(t) = 5\cos(t) + e^{-\frac{t}{2}}\sin(t)$
 The point is moving right since its velocity is always positive.

4) To show e^x is on the graph, check that $e = e^x$.
 $e^x = (e^x)^x = e^{(e^x-x)} = e^x = e$. So, (e, e) is on the graph. The derivative of e^x is $e^x \ln(e)$, so the slope of the tangent line at $x = e$ is $e^x \ln(e) = e^x$. The tangent line has slope 1 and contains (e, e) so has equation $y = e^{x}(x-e)$.

5) $\frac{d}{dx} e^{2x} = 2e^{2x}$
 $= 2e^{2x}$.
 $\frac{d}{dx} e^{x^2} = \frac{d}{dx} \left(e^{x^2} \right) = e^{x^2} \cdot 2x$.
 $= e^{x^2} \cdot 2x$.

6) $F''(x) = \frac{d}{dx} F'(x) = \frac{d}{dx} (-x^2) = -2x$.
 $F'(x) = \frac{d}{dx} F(x) = \frac{d}{dx} e^{-x^2} = -2xe^{-x^2}$.

7) An inverse function of a function $f(x)$ is a function $g(x)$ such that $f(g(x)) = x$ for all x in the domain of g, and $g(f(x)) = x$ for all x in the domain of f. For example, $\ln(x)$ is an inverse function for e^x because $\ln(e^x) = x$ and $e^{\ln(x)} = x$ for $x > 0$.

8) When a quantity B is determined by a quantity A, we can speak about the rate at which B changes as A changes. An average rate of change would be given by $\frac{B - B_0}{A - A_0}$, where A_0 represents some change in the value of A and ΔB represents the resulting change in the value of B. Taking a limit as $\Delta A \to 0$ gives the derivative $\frac{dB}{dA}$ as an exact rate of change. [Often, A represents time]
\[\frac{d}{dy} (\ln(y^2+1))^{100} = 100 \left(\frac{1}{y^2+1} \right)^9 \cdot \frac{d}{dy} \ln(y^2+1) \]
\[= 100 \cdot \left(\frac{1}{y^2+1} \right)^9 \cdot \frac{1}{2y} \]

10. (a) \[\frac{d}{dx} \left(\frac{1}{y} \right) = \frac{d}{dx} \left(\frac{1}{\tan^{-1}(x)} \right) = -\frac{1}{x^2 + 1} \cdot \frac{d}{dx} \tan^{-1}(x) \]
\[= -\frac{1}{x^2 + 1} \cdot \frac{1}{x^2 + 1} \cdot 2x \]

(b) \[\frac{d}{dt} \left(\tan(t^2) + t^2 \cot(t) \right) = \frac{d}{dt} \tan(t^2) + t^2 \frac{d}{dt} \cot(t) \]
\[= \sec^2(t^2) \cdot 2t \cdot \frac{d}{dt}(t^2) + t^2 \frac{d}{dt} \cot(t) + \cot(t) \cdot 2t \]
\[= \sec^2(t^2) \cdot 2t + t^2 \cdot (-\csc^2(t^2)) + \cot(t) \cdot 2t \]

(c) \[\frac{d}{dx} \sin^{-1}(2x) = \frac{1}{\sqrt{1-(2x)^2}} \cdot \frac{d}{dx} 2x \]
\[= \frac{1}{\sqrt{1-4x^2}} \cdot 2x \cdot \ln(2) \]

11. \[\frac{d}{dx} e^{\pi x} \cdot \pi^{\pi x} \cdot \pi^{\pi^{\pi x}} = e^{\pi x} \cdot \frac{d}{dx} (\pi^{\pi x} \cdot \pi^{\pi^{\pi x}}) \]
\[= e^{\pi x} \cdot \left(\pi^{\pi x} \frac{d}{dx} \pi^{\pi x} + \pi^{\pi^{\pi x}} \frac{d}{dx} \pi^{\pi x} \right) \]
\[= e^{\pi x} \cdot \left(\pi^{\pi x} \cdot \pi x + \pi^{\pi^{\pi x}} \cdot \pi^{\pi^{\pi x}} \cdot \ln(\pi) \right) \]

12. The limit is \(f'(2) \) when \(f(x) = \sqrt{5-x^2} \).
\[f'(x) = \frac{1}{2\sqrt{5-x^2}} \cdot \frac{d}{dx} (5-x^2) = \frac{-x}{\sqrt{5-x^2}} \]
\[f'(2) = \frac{-2}{\sqrt{5-2^2}} = \frac{-2}{\sqrt{1}} = -2 \]

13. \[\sin(\sin^{-1}(x)) = x \quad \text{and} \quad \cos(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}} \]
So \(\sin(\sin^{-1}(x)) + \cos(\sin^{-1}(x)) = x + \sqrt{1-x^2} \).