Section 8.3

10. \(\lim_{n \to \infty} \frac{n^{12}}{3n^{13} + 4} = \frac{1}{3} \), since for the rational function \(\frac{x^{12}}{3x^{13} + 4} \),

\[\lim_{x \to \infty} \frac{x^{12}}{3x^{13} + 4} = \lim_{x \to \infty} \frac{x^{12}}{3x^{13}} = \lim_{x \to \infty} \frac{1}{3} = \frac{1}{3} \]

("highest power rule")

or

\[\lim_{x \to \infty} \frac{x^{12}}{3x^{13} + 4} = \lim_{x \to \infty} \frac{12x^{12}}{3 \cdot 12x^{12}} = \lim_{x \to \infty} \frac{1}{3} = \frac{1}{3} \]

(\(L'Hôpital's \) rule)

12. \(\lim_{n \to \infty} \frac{2e^n + 1}{e^n} = 2 \), since by \(L'Hôpital's \) rule,

\[\lim_{x \to \infty} \frac{2e^x + 1}{e^x} = \lim_{x \to \infty} \frac{2e^x}{e^x} = \lim_{x \to \infty} 2 = 2 \]

34. \(\lim_{n \to \infty} \frac{(-1)^n + 2}{2n^3 + n} = 0 \), since \(\lim_{n \to \infty} \frac{n^3}{2n^3 + n} = 0 \) \[\text{[Problem 4, on Lab 12]} \]

\[\text{or} \]

\[\lim_{x \to \infty} \frac{x^2}{2x^3 + x} = \lim_{x \to \infty} \frac{1}{2x} = 0 \] (by the "highest power rule")

which means that both the positive and the negative terms in the series approach \(0 \). Since all terms approach \(0 \), the limit of the sequence is \(0 \)

50. \(\lim_{n \to \infty} 2^{n+3} - 3^n = \lim_{n \to \infty} \frac{2^n \cdot 3^n}{3^n} = \lim_{n \to \infty} 2^n \left(\frac{2}{3} \right)^n = 0 \)

Since this is a geometric sequence with \(r = \frac{2}{3} \), and a geometric sequence converges to 0 if \(|r| < 1 \).
28. \[\sum_{k=3}^{\infty} \frac{3 \cdot 4^k}{7^k} = \sum_{k=3}^{\infty} 3 \left(\frac{4}{7} \right)^k \] This is a geometric series with \(r = \frac{4}{7} \) and \(a = \frac{3 \cdot 4^3}{7^3} \), so it converges to
\[\frac{a}{1-r} = \frac{3 \cdot 4^3}{7^3} \cdot \frac{7^3}{1 - \frac{4}{7}} = \frac{3 \cdot 4^3}{7^3} \cdot \frac{7^3}{3} = \frac{4^3}{7^2} = \frac{64}{49} \]

40. \[\sum_{k=1}^{\infty} 3 \left(-\frac{1}{8^k} \right) = \sum_{k=1}^{\infty} 3 \left(-\frac{1}{8^k} \right) \] a geometric series with \(r = -\frac{1}{8} \) and \(a = -\frac{3}{8} \), which converges to
\[\frac{a}{1-r} = \frac{-\frac{3}{8}}{1 - \left(-\frac{1}{8} \right)} = \frac{-\frac{3}{8}}{1 + \frac{1}{8}} = \frac{-3}{8^2 + 1} = \frac{-3}{513} \approx -\frac{1}{171} \]

46. \[0.27 = \frac{27}{100} + \frac{27}{(100)^2} + \frac{27}{(100)^3} + \frac{27}{(100)^4} + \ldots \] (Geometric series, \(r = \frac{1}{100}, a = \frac{27}{100} \))

\[= \frac{\frac{27}{100}}{1 - \frac{1}{100}} = \frac{27}{100 - 1} = \frac{27}{99} = \frac{3}{11} \]

[Could also be done directly: Let \(x = 0.27272727\ldots \) Then
\[100x = 27.272727\ldots \] So, \(100x - x = 27 \), \(99x = 27 \)
and \(x = \frac{27}{99} = \frac{3}{11} \).]

56. \[\sum_{k=1}^{\infty} \left(\frac{1}{k+2} - \frac{1}{k+3} \right) = \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) + \ldots \]

The \(n \)-th partial sum is
\[S_n = \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \ldots + \left(\frac{1}{n+2} - \frac{1}{n+3} \right) \]
\[= \frac{1}{3} - \frac{1}{n+3} \]

So, \(\sum_{k=1}^{\infty} \left(\frac{1}{k+2} - \frac{1}{k+3} \right) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{n+3} \right) = \frac{1}{3} - 0 = \frac{1}{3} \)