
Math 135, Fall 2019, Sample Answers to Homework 10

1. Note that g ◦ f : A→ C, so the first coordinates of the ordered pairs in g ◦ f , considered as a set
of ordered pairs, are a, b, c, d, and e. To compute the second coordinates, note, for example,
that g ◦ f(a) = g(f(a)) = g(3) = R, and therefore (a,R) ∈ g ◦ f . Doing a similar computation
for each element of A, we see that

g ◦ f = {(a,R), (b, R), (c,R), (d,B), (e,G)}

2. Note, for example, that h◦h(a) = h(h(a)) = h(c) = e, and h◦h◦h(a) = h(h◦h(a)) = h(e) = f .
In particular, if we know h ◦ h, we can use that to compute h ◦ h ◦ h in one step by forming the
composition of h with h ◦ h.

a) h ◦ h = {(a, c), (b, e), (c, f), (d, f), (e, f), (f, f)}

b) h ◦ h ◦ h = {(a, e), (b, f), (c, f), (d, f), (e, f), (f, f)}

c) h ◦ h ◦ h ◦ h = {(a, f), (b, f), (c, f), (d, f), (e, f), (f, f)}

d) Since (h◦h◦h◦h)(x) = f for all x ∈ A, and h(f) = f , As we continue to add on additional
compositions with h, we will always get a function whose value is f for all x ∈ A.

3. The function f is injective. Proof: Suppose that f(n) = f(m). We want to show that n = m.
Saying f(n) = f(m) means that (2n, n+3) = (2m,m+3). In particular, by definition of equality
of ordered pairs, this means that 2n = 2m. Dividing both sides of this equation by 2 shows that
n = m.

Howeve, f is not surjective. Proof: For example, the element (1, 0) cannot be equal to f(n)
for any n since the first coordinate of f(n) is always an even number.

4. The function θ is injective: Suppose that θ(X) = θ(Y ); that is, X = Y . Taking the complement

of both sides of the equation gives X = Y , and because X = X for any set X, this means that

X = Y . The function θ is also surjective. Given Y ∈P(A), let X = Y . Then θ(X) = Y = Y ,
so we have shown that every Y ∈ P(A) is in the range of θ. Because θ is both injective and
surjective, it is by definition bijective.

5. We first show that f is injective: Suppose that n,m ∈ N and f(n) = f(m). We must show
that n = m. Since f(n) = f(m), we have that 1

4

(
(−1)n(2n− 1) + 1

)
= 1

4

(
(−1)m(2m− 1) + 1

)
.

Multiplying by 4 and subtracting 1 from both sides gives (−1)n(2n−1) = (−1)m(2m−1). Note
that (−1)n is 1 if n is even and is −1 if n is odd. The two sides of the equation (−1)n(2n− 1) =
(−1)m(2m− 1) must have the same sign or must both be zero. If both sides are zero, we must
have 2n− 1 = 2m− 1 = 0; if not, then we see that (−1)n must equal (−1)m, and we can divide
the equation by that number to get 2n − 1 = 2m − 1. In any case, 2n − 1 = 2m − 1. Finally,
adding 1 and dividing by 2 yields n = m.

Next, we show that f is surjective: Suppose that k ∈ Z. We must find an n ∈ N such that
f(n) = k, that is, 1

4

(
(−1)n(2n− 1) + 1

)
= k. Consider three cases: k = 0, k > 0, and k < 0. For

the case k = 0 we see that f(1) = 1
4

(
(−1)1(2·1−1)+1

)
= 1

4

(
(−1)(1−1)

)
= 0. For the case k > 0,

let n = 2k. Noting that (−1)2k = 1, we see that f(n) = f(2k) = 1
4

(
(−1)2k(2(2k) − 1) + 1

)
=

1
4(1 · (4k − 1) + 1) = 1

4(4k) = k. For the case k < 0, let n = 1 − 2k. Noting that 1 − 2k is
an odd positive number, we see that f(n) = f(1 − 2k) = 1

4

(
(−1)1−2k(2(1 − 2k) − 1) + 1

)
=

1
4((−1) · (2− 4k − 1) + 1) = 1

4(−(1− 4k) + 1) = k. So, in any case, k is in the range of f .
We have shown that f is injective and surjective. Therefore, by definition, it is bijective.



6. Let f : A→ B and g : B → C.

a) Suppose that g ◦f is surjective. We want to show that g is surjective. Let c ∈ C. We must
find a b ∈ B such that g(b) = c. Since the function g◦f : A→ C is surjective by assumption,
there is an a ∈ a such that g ◦ g(a) = c. Let b = f(a). Then g(b) = g(f(a)) = g ◦ f(a) = c.

b) We must find an example were g ◦ f is surjective, but f is not surjective. For the most
trivial possible example, let A = {a}, B = {1, 2}, and C = {c}. Define f : A → B by
setting f(a) = 1, and define g : B → C by setting g(1) = g(2) = c. Then g ◦ f(a) = c,
so g ◦ f is surjective, but f is not surjective because 2 is not in the range of f . (For an
example with formulas, defining f : N → Z by letting f(n) = n − 1 for all n, and define
g : Z→ N by g(m) = 1 + |m| for all m ∈ Z. Then for n ∈ N, g ◦ f(n) = 1 + |n− 1| = n, so
g ◦ f is surjective. However, f is not surjective.)

7. Let f : A→ B and g : B → C.

a) Suppose that g ◦ f is injective. We want to show that f is surjective. Suppose that a1
and a2 are elements of A and that f(a1) = f(a2). We must show that a1 = a2. Applying
g to both sides of the equation f(a1) = f(a2), we get that g(f(a1)) = g(f(a2)), that is
g◦f(a1) = g◦f(a2). Because g◦f is injective by assumption, we can conclude that a1 = a2.

b) We must find an example were g ◦ f is injective, but g is not injective. But in fact, both
examples given for the previous problem work here as well.

8. Let y ∈ Rr{5}. To find f−1(y), we must solve f(x) = y for x. That is, we must find x ∈ Rr{2}
such that 5x+1

x−2 = y. Multiplying the equation by x − 2 gives 5x + 1 = (x − 2)y = xy − 2y.
Subtract xy from both sides gives 5x− xy + 1 = −2y, and subtracting 1 from both sides gives
5x−xy = −2y− 1, or x(5− y) = −(2y+ 1). Because y ∈ Rr {5}, we know y 6= 5 and therefore

5−y 6= 0. So we can divide the equation by 5−y to give y = −(2y+1)
5−y = 2y+1

y−5 . This computation

shows that f
(2y+1

y−5

)
= y and therefore f−1(y) = 2y+1

y−5 .
We can also check this:

f

(
2y + 1

y − 5

)
=

5
(2y+1

y−5

)
+ 1

2y+1
y−5 − 2

=
5(2y + 1) + 1(y − 5)

(2y + 1)− 2(y − 5)

=
10y + 5 + y − 5

2y + 1− 2y + 10

=
11y

11
= y

9. We must show that s◦s is the identity function on N. We note that if n is even then s(n) = n+1
is odd, and that if n is odd then s(n) = n− 1 is even. It follows that in the case when n is even,
s ◦ s(n) = s(n + 1) = (n + 1) − 1 = n, and in the case where n is odd, s ◦ s(n) = s(n − 1) =
(n− 1) + 1 = n. So, in any case, s ◦ s(n) = n, which means that s = s−1.

Another function that is its own inverse is ν : Z→ Z defined as ν(n) = −1. this function is
its own inverse because ν ◦ ν(n) = ν(−n) = −(−n) = n. for all n ∈ Z,


