Math 135, Fall 2019, Sample Answers to Homeworks 5 and 6

Homework 5:

Theorem 1. Let a, b, and ¢ be integers, where a and b are not both zero, and ¢ is not zero. Then
ged(ac, be) = ¢ - ged(a, b).

Proof: [Note: As stated, this theorem is not true! If ¢ < 0 it is not possible for ged(ac, be) = ¢- ged(a, b)
because a greatest common divisor is always positive. I will give a proof that assumes that ¢ > 0.]

Let d = gcd(a,b) and e = ged(ac, be). Since d | a and d | b, it follows easily that dc | ac and dc | be. So,
dc is a common divisor of ac and bc. Since e is the greatest common divisor, we must have dc < e.

We know d can be written as d = ak + bf for some integers k and ¢, and multiplying both sided by ¢
gives dc = ack + bef. We also know that e is the smallest positive integer that can be written in the form
act + bej for integers ¢ and j. Since dc can be written in that form, we must have dc > e.

Since dc < e and dc > e, it follows that e = dc, as we wanted to show.

Theorem 2. Let a,b,c € N, If a does not divide be, then a does not divide b.
Proof: We prove the contrapositive: If a | b then a | bc. This is a theorem that we have previously
proved. [In fact, a | b means b = ka for some integer k. Then bc = bka = a(bk), which means that a | be.]

Theorem 3. If a = b (mod n) and ¢ = d (mod n), then ac = bd (mod n).

Proof: Suppose a = b (mod n) and ¢ = d (mod n). Since a = b (mod n), n | (a —b), and (a — b) = kn
for some integer k. Since ¢ = d (mod n), n | (¢ — d), and (¢ — d) = ¢n for some integer ¢. So, ac — bd =
ac —ad + ad — bd = a(c — d) + d(a — b) = aln + dkn = n(al + dk). We see that n | (ac — bd), and therefore
ac = bd (mod n).

Theorem 4. Let » and s be rational numbers. The r + s is rational.

Proof: Suppose that r and s are rational. Since r is rational, we can write r = ¢, where a,b € Z and
b # 0. Since s is rational, we can write s = ¢, where ¢,d € Z and d # 0. Then, r+s = §+3 = %j+% = “dbffb.
Since ad 4 ¢b and bd are integers and bd # 0, we see that r + s is rational.

Theorem 5. For any real number x, one of the numbers x and x — 7 is irrational.

Proof: Suppose, for the sake of contradiction, that both x and x — 7 are rational. Since the negative
of a rational number is rational, m — x is also rational. By the previous theorem, z + (7 — x) is rational,
because it is the sum of two rational numbers. But « + (7 — z) is m, which we know to be irrational. This
contradiction proves that at least one of x and m — z must be irrational.

Homework 6:

1. Prove: If a and b are integers, then (a + b)% = a® + b3 (mod 3).

Proof: Note that (a + b)® — (a® + %) = a® + 3a?b + 3ab® + b — a® — b3 = 3(a®b + ab?). So 3 |
((a+b)® = (a® + b®)), which means by definition that (a + b)* = a® + b* (mod 3).

2. Prove using the contrapositive method: If the product of two integers is odd, then both of the numbers
are odd.

Proof: We prove the contrapositive: If it is not the case that both integers are odd, then the product of
the two numbers is not odd.

Let a and b be two integers that are not both odd. Then at least one of the integers is even. Say, without
loss of generality, that a is even. Then a = 2k for some integer k, and ab = 2kb. This shows that ab is even.
That is, ab is not odd.



3. Prove using proof by contradiction: If @ is a rational number and b is an irrational number, then a + b is
an irrational number.

Proof: Assume, for the sake of contradiction, that a + b is rational. Since a is rational, —a is also
rational [since —% = =P]. We have previously proved that the sum of two rational numbers is rational. So
(a+b) + (—a) is rational. But (a+b) + (—a) = b, and b is irrational, not rational. This contradiction shows
that a 4+ b cannot be rational.

4. Prove using the contrapositive method: If n is an integer and n = 2 (mod 3), then n is not a square.
(Saying that n is not a square means that there is no integer a such that n = a?.)

Proof: We prove the contrapositive: If n is a square, then n #Z 2 (mod 3). Let n be an integer that is
a square, and let @ € Z such that n = a®>. We need to show that a? #Z 2 (mod 3). Since every integer is
congruent to exactly one of 0, 1, or 2 (mod 3), we can show that for any integer a, either a> = 0 (mod 3) or
a? =1 (mod 3). We use a proof by cases. Using the Division Algorithm, we can write a = 3¢ + r where q
and r are integers and r is 0, 1, or 2.

In the case a = 3¢ + 0, we have that a? = (3¢)? = 3 - 3¢%. This means 3 | a2, and a? = 0 (mod 3).

In the case a = 3¢ + 1, we have that a®> = (3¢ + 1)2 = 9¢®> + 6¢ + 1 = 3 - (3¢®> + 2q) + 1. This means
3| (a®>—1),and a®> =1 (mod 3).

In the case a = 3q + 2, we have that a? = (3¢ +2)%? = 9¢*> + 12¢ +4 = 3 - (3¢*> + 4¢ + 1) + 1. This means
3| (a®>—1), and a®> =1 (mod 3).

So, in any case, one of a? = 0 (mod 3) or a? =

(mod 3) is true, as we wanted to show.

5. Prove using proof by contradiction: No rational number is a solution of the equation x> + z + 1 = 0.

(Outline of proof: Suppose z = % is a solution, where p and ¢ are not both even. Substitute % into the

equation, and multiply by ¢> to clear the denominator. Now show that the left side of the equation is
odd, which means that it cannot be zero. To show the left side is odd, use a proof by cases.)

Proof: Suppose, for the sake of contradiction, that there is a rational number z = % such that 23 +z+1 =
0. We can assume that the fraction is in lowest terms so that, in particular, p and ¢ are not both even. We
have (%)3 + (B) +1 = 0. Multiplying this equation by ¢> to clear the denominators gives us p> +pg?+¢> = 0.
We show that the left-hand side of this equation is an odd number, and so cannot be equal to zero. This
contradiction will complete the proof.

To show p3 + pg? + ¢* is odd, we use a proof by cases. Since we know that p and ¢ are not both even,
the cases are: both p and ¢ are odd, p is odd and ¢ is even, or p is even and ¢ is odd.

In the case where p and ¢ are both odd, then, because the product of odd numbers is odd, we know that
2, pg?, and ¢> are all odd. Since the sum of odd numbers is odd, it follows that p® + pg? + ¢ is odd.

In the case where p is odd and ¢ is even, we have that p3 is odd and pg® + ¢> = q(pq + ¢?) is even. Since
the sum of an odd number and an even number is odd, p? + pg® + ¢> is odd.

Finally, in the case where p is even and ¢ is odd, we have that ¢® is odd and p3 + pg? = p(p? + ¢?) is
even. Since the sum of an odd number and an even number is odd, p3 + pg? + ¢° is odd.



