
Math 331, Fall 2022 Homework 1

Problem 1 (Exercise 1.1.12). Prove that if a is irrational, then
√
a is also irrational.

Answer:

We prove the contrapositive, which is equivalent. That is, we prove: If
√
a is not irra-

tional, then a is not irrational. That is, if
√
a is rational, then a is rational.

So, assume
√
a is rational. We want to show that a is rational. Since

√
a is rational,

then
√
a = k

n
where k and n are integers and n 6= 0. But then a = (

√
a)2 =

(
k
n

)2
= k2

n2 . This
proves that a is rational, because k2 and n2 are integers and n2 6= 0.

[A proof by contradiction is also possible: Let a be irrational. Suppose, for the sake of
contradiction that

√
a is rational. . . ]

Problem 2 (Exercises 1.1.14). Show that
√

3 +
√

2 is irrational as follows: First, show that
if
√

3 +
√

2 is rational then so is
√

3 −
√

2. (Hint: Consider their product.) Second, show
that

√
3 +
√

2 and
√

3−
√

2 cannot both be rational. (Hint: Consider their sum.)

Answer:

Assume that
√

3 +
√

2 is rational. Note that (
√

3 +
√

2)(
√

3 −
√

2) = (
√

3)2 − (
√

2)2 =
3 − 2 = 1. So,

√
3 −
√

2 = 1√
3+
√
2
. Then, since

√
3 +
√

2 is rational, and the reciprocal of

a non-zero rational number is rational, we have that
√

3 −
√

2 is rational. We have shown
that if

√
3 +
√

2 is rational, then so is
√

3−
√

2.
Next we show that

√
3 +
√

2 and
√

3 −
√

2 cannot both be rational. By the previous
result, this will show that

√
3+
√

2 is not rational (since, if it were, then both numbers would
be rational).

Now, assume, for the sake of contradiction, that
√

3+
√

2 and
√

3−
√

2 are both rational.
Since the sum of two rational numbers is rational, (

√
3 +
√

2) + (
√

3−
√

2) is also rational.
But that sum is equal to 2

√
3, which is not rational. This contradiction shows that

√
3 +
√

2
and
√

3−
√

2 cannot both be rational. [Note: If 2
√

3 were rational, then 2∗
√
3

2
would also be

rational. But we know that
√

3 is not rational.]

Problem 3. Determine whether each set is bounded above and if so find its least upper
bound. Remember to briefly explain your answers. For D and E, you will need to quote
some well-know facts about the relevant infinite series.

A = {1− 1
n
|n ∈ N}

B = {1 + 1
n
|n ∈ N}

C = [2, 9)

D = {1, 1 + 1
2
, 1 + 1

2
+ 1

4
, 1 + 1

2
+ 1

4
+ 1

8
, 1 + 1

2
+ 1

4
+ 1

8
+ 1

16
, . . . }

E = {1, 1 + 1
2
, 1 + 1

2
+ 1

3
, 1 + 1

2
+ 1

3
+ 1

4
, 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
, . . . }

Answer:



A) The least upper bound is 1. Since 1 − 1
n
< 1 for all n ∈ N, 1 is an upper bound. For

any x < 1, x is not an upper bound, since there is an no ∈ N with 1− 1
no
> x. So, 1 is

the least upper bound. [To find no, just choose any no >
1

1−x .]

B) The least upper bound is 2. We can write B = {1 + 1
2
, 1 + 1

3
, 1 + 1

4
, . . . }. The sequence

is decreasing, so the maximum is the first element, 2.

C) The least upper bound is 9. 9 is an upper bound, and any number α less than 9 is
not an upper bound, since there are numbers in [2, 9) greater than α. So 9 is the least
upper bound.

D) The least upper bound is 2. The sum 1 + 1
2

+ 1
4

+ 1
8

+ · · ·+ 1
2n

is a partial sum of the
geometric series

∑∞
k=0

1
2k

, which has sum 2. All the partial sums are less than 2, so 2
is an upper bound for D, and the partial sums get arbitrarily close to 2, so 2 is the
least upper bound.

E) The set is not bounded above. The sum 1 + 1
2

+ 1
3

+ 1
4

+ · · ·+ 1
n

is a partial sum of the
harmonic series, which diverges to infinity.

Problem 4 (From exercise 1.2.6). Let A and B be arbitrary non-empty, bounded-above
sets of real numbers. Define C = {a + b | a ∈ A and b ∈ B}. [That is, C contains contains
all sums made up of one number from A and one number from B.]

(a) Suppose that µ1 is an upper bound for A and µ2 is an upper bound for B. Let
µ = µ1 + µ2. Show that is an upper bound for C.

(b) Now suppose that λ1 is the least upper bound for A and λ2 is the least upper bound for
B. Let λ = λ1 + λ2. Show that λ is the least upper bound for C. (Hint: Use the last
theorem in the third reading guide: Let ε > 0. Explain why there is an ao ∈ A such
that ao > λ1− ε

2
and a bo ∈ B such that bo > λ2− ε

2
. Use this to show ao + bo > λ− ε,

and conclude that λ is the least upper bound for C.)

Answer:

(a) Let c ∈ C. We want to show that c ≤ µ, where µ = µ1 + µ2. Since c ∈ C, there is an
a ∈ A and a b ∈ B such that c = a + b. We know that a ≤ µ1 and b ≤ µ2. It follows
that a+ b ≤ µ1 + µ2. That is, c < µ.

(b) The theorem says that an upper bound x is the least upper bound of the set X if and
only if for every ε > 0, there is a y ∈ X with y > x−ε. By (a), λ is an upper bound for
C. We what to show that λ is the least upper bound. So let ε > 0. We must find co ∈ C
with co > λ− ε. Since λ1 is the least upper bound of A and ε

2
> 0, there is an ao ∈ A

with ao > λ1 − ε
2
. Since λ2 is the least upper bound of B and ε

2
> 0, there is a bo ∈ B

with bo > λ2 − ε
2
. Adding these two inequalities gives ao + bo < λ1 + λ2 − ε = λ − ε.

Let co = ao + bo, which is is C. So, co > λ− ε, as we wanted to show.



Problem 5 (From exercise 1.2.4). Consider two sequences of real numbersA = {a1, a2, a3, . . . }
and B = {b1, b2, b3, . . . }, which are bounded above. Let C be the set C = {a1 + b1, a2 +
b2, a3 + b3, . . . }. [Compare this to the previous problem, where C contains only the sums
of all elements of A with all elements of B; the C in this problem contains only sums of
corresponding elements from the two sequences.]

(a) Suppose that µ1 is an upper bound for A and µ2 is an upper bound for B. Show that
µ1 + µ2 is an upper bound for C.

(b) Now suppose that λ1 is the least upper bound for A and λ2 is the least upper bound
for B. Give an example to show that λ1 + λ2 is not necessarily the least upper bound
of C. [Hint: Take part (c) into account as you look for an example!]

(c) Show that if A and B are non-decreasing sequences, then λ is in fact the least upper
bound of C. (Non-decreasing here means a1 ≤ a2 ≤ a3 ≤ · · · and b1 ≤ b2 ≤ b3 ≤ · · · .)

Answer:

(a) Let c ∈ C. We want to show that c ≤ µ, where µ = µ1 + µ2. Since c ∈ C, there is
an i ∈ N such that c = ai + bi. We know that ai ≤ µ1 and bi ≤ µ2. It follows that
ai + bi ≤ µ1 + µ2. That is, c < µ.

(b) Let A = {1, 0, 0, 0, . . . } and B = {0, 1, 1, 1, 1, . . . }. Then λ1 = 1 is the least upper
bound of A and λ2 = 1 is also the least upper bound of B. So in this example,
λ1 + λ2 = 2. However, C = {1, 1, 1, 1, 1, . . . }, which has least upper bound 1. So,
λ1 + λ2 is not the least upper bound of C. [Another example: A = {1, 1

2
, 1
3
, 1
4
, 1
5
, . . . }

and B = {0, 1
2
, 2
3
, 3
4
, 4
5
, . . . }.]

(c) Let ε > 0. To show that λ is the least upper bound of C, we must find co ∈ C with
co > λ − ε. Since λ1 is the least upper bound of A and ε

2
> 0, there is an i ∈ N with

ai > λ1 − ε
2
. Since λ2 is the least upper bound of B and ε

2
> 0, there is a j ∈ N

with bj > λ2 − ε
2
. In the case i = j, we can simply let co = ai + bi and add the two

inequalities to get co = ai + bi < λ1 − ε
2

+ λ2 − ε
2

= λ − ε. Next, consider the case
i < j. Since the sequence {a1, a2, a3, . . . } is non-decreasing, and i < j, we know that
aj ≥ ai. From that and ai > λ1− ε

2
. we get aj > λ1− ε

2
. If we combine this inequality

with bj > λ2 − ε
2
, we get aj + bj > λ1 + λ2 − ε. So, in the case i < j, we can take

c0 = aj + bj. Similarly, in the final case, j > i, we can use co = ai + bi.

Problem 6. The last theorem in the third reading guide is about least upper bounds. State
the corresponding theorem for greatest lower bounds. You do not have to prove the theorem.

Answer:

Theorem: Let X be a non-empty subset of R that is bounded below, and let µ be a
lower bound for X. Then µ is the greatest lower bound of X if and only if for every ε > 0,
there is a y ∈ X such that y < µ+ ε.



Problem 7 (Exercises 1.2.17 aamd 1.2.18).

(a) Prove that the intersection of two Dedekind cuts is again a Dedekind cut.

(b) Show that the intersection of an infinite number of Dedekind cuts is not necessarily a
Dedekind cut, even if the intersection is non-empty, by using the following example:
For n ∈ N, let Sn be the Dedekind cut corresponding to the number 1

n
. You need to

show that
⋂∞

n=1 Sn is not a Dedekind cut.

Answer:

(a) Suppose that α and β are Dedekind cuts. The second reading guide proved the tri-
chotomy law, which says that exactly one of α < β, α = β, or α > β is true. By
definition, this means one of α ⊂ β, α = β, or α ⊃ β is true. Now, α ∩ β = α in the
cases α ⊂ β or α = β, and α ∩ β = β in the case when α ⊃ β. So, in any case, α ∩ β
is a Dedekind cut.

Alternative direct proof : Suppose that α and β are Dedekind cuts. Let γ = α∩ β.
We must show that γ satisfies the three properties of a Dedekind cut.

(i) γ is not empty and γ 6= Q: Let p ∈ α and q ∈ β. Suppose p ≤ q. Since β is
a Dedekind cut, then p ∈ β by property ii of Dedekind cuts. So, in this case,
p ∈ α∩ β. Similarly, if q ≤ p, then q ∈ α∩ β. So α∩ β contains either p or q and
so is not empty. Since α ∩ β ⊆ α ⊂ Q, α ∩ β is not Q,

(ii) If p ∈ γ and q < p, then q ∈ γ: Suppose that p ∈ γ and q < p. Since α is
a Dedekind cut, q ∈ α, and since β is a Dedekind cut, q ∈ β. It follows that
q ∈ α ∩ β.

(iii) If p ∈ γ, there is a r ∈ γ such that r > p: Suppose that p ∈ γ. Since p ∈ α, there
is an r1 ∈ α with r1 > p. Since p ∈ β, there is an r2 ∈ β with r2 > p. Consider
the case r1 ≤ r2; the case r2 ≤ r1 is similar. Since r1 ≤ r2, and r2 ∈ β, then
r1 ∈ β. If we let r = r1, then r is both in α and in β, and therefore is in their
intersection, γ.

(b) In fact, Sn = {q ∈ Q | q < 1
n
}. Since 0 < 1

n
for all n ∈ N, then 0 ∈

⋂∞
n=1 Sn. We

show that Sn does not satisfy property iii of Dedekind cuts. That is, we show that
there is no r > 0 such that r ∈

⋂∞
n=1 Sn. For let r ∈ Q with r > 0. Now, there is an

no ∈ N such that 1
no
< r. (For example, if r = a

b
where a and b are positive integers,

let no = b+ 1, so 1
b+1

< 1
b
≤ a

b
.) But then r /∈ Sno , and so r /∈

⋂∞
n=1 Sn.


