Problem 1. Prove using only the definition of real numbers as Dedekind cuts and the definitions of $+$ and $<$ in terms of Dedekind cuts: If $\alpha, \beta, \delta \in \mathbb{R}$ and $\alpha < \beta$, then $\alpha + \delta < \beta + \delta$.

Problem 2 (From Problem 1.3.7 in the textbook). Suppose that $(\mathbb{F}, +, \cdot)$ is a field, and $S \subseteq \mathbb{F}$. We say that S is a subfield of \mathbb{F} if it is a field under the same addition and multiplication as \mathbb{F}. To show that S is a subfield of \mathbb{F}, it is enough to show that $0 \in S$, $1 \in S$, and S is closed under addition, multiplication, taking additive inverses, and taking multiplicative inverses.

Let $\mathbb{Q}[\sqrt{2}] = \{r + s\sqrt{2} \mid r, s \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}. (Note: Remember that r and s can be zero in $r + s\sqrt{2}$.)

Problem 3 (Problem 1.3.11 from the textbook). Let $(\mathbb{F}, +, \cdot)$ be an ordered field. Use the definition of $x < y$ and the order axioms to prove the transitive property of $<$. That is, show that for any $a, b, c \in \mathbb{F}$, if $a < b$ and $b < c$, then $a < c$. [Note: Since \mathbb{F} is not necessarily \mathbb{R}, you can’t use common facts that you know about \mathbb{R}. You can only use the actual definition and axioms.]

Problem 4. (a) Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k$ be some finite number of open subsets of \mathbb{R}. Prove that their intersection, $\bigcap_{i=1}^k \mathcal{O}_i$, is open. (Hint: Use the characterization of open that involves $\varepsilon > 0$. Start by taking arbitrary $x \in \bigcap_{i=1}^k \mathcal{O}_i$.)

(b) Show that the intersection of an infinite number of open sets is not necessarily open by finding $\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$. (Justify your answer!)

Problem 5. Consider the unbounded closed interval $[0, \infty)$. Find an open cover of this interval that has no finite subcover. (This problem shows that the hypothesis that the interval is bounded cannot be removed from the Heine-Borel Theorem. Use a simple example, but justify your answer!)

Problem 6 (Problem 1.4.3 from the textbook). Suppose that $\{\mathcal{O}_\alpha \mid \alpha \in A\}$ is an open cover of the interval $[0, 1)$. Suppose furthermore that $1 \in \bigcup_{\alpha \in A} \mathcal{O}_\alpha$. Prove that there is finite subcover of $[0,1)$ from $\{\mathcal{O}_\alpha \mid \alpha \in A\}$. [This question tests your understanding of the proof of the Heine-Borel Theorem.]

Problem 7. Let $f(x)$ be a real-valued function that is defined on an interval I. We say that f is bounded above on I if there is a number M such that $f(x) < M$ for all $x \in I$.

Suppose that $f(x)$ is defined on the bounded, closed interval $[a, b]$. Suppose that for every $x \in [a, b]$, there is an $\varepsilon > 0$ such that f is bounded above on the interval $(x - \varepsilon, x + \varepsilon)$. Use the Heine-Borel theorem to prove that f is bounded above on $[a, b]$. (Hint: Compare this to an example about functions that was done in class.)