Math 331 Sample Solutions for Homework 3

Problem 1 (Textbook problem 1.4.12a). Suppose that A is the least upper bound of some
set S, and that A is not in S. Prove that A is an accumulation point of S. [Hint: For any
€ > 0, there is a point s € S such that A\—e < s < A. Now use the definition of accumulation
point to finish the proof.]

Answer:

Suppose that S is a set with least upper bound A, and A ¢ S. To show that A is an
accumulation point of S, we need to show that for every ¢ > 0, there is some s € S with
0 < |A—s| <e. Since A = lub(S), we know that there is some s € S such that s > A — ¢,
since otherwise, A —& would be a smaller upper bound for S. (This result was also previously
proved as a theorem.) Since s € S and A ¢ S, we know that s # A. So in fact, A\—e < s < A,
which means |\ — s| > 0 and |\ — s| < e.

Problem 2 (Textbook problems 1.4.9 and 1.4.10). (a) Prove lemma 1.4.5: If x is an accu-
mulation point of a set .S and if € > 0, then there is an infinite number of points of S within
distance ¢ of S. [Hint: Suppose that for some ¢ > 0, there were only a finite number of points,
S1,82, - - ., Sk, of S within € of z, but not equal to x. Let ¢’ = min(|s; —x|, |ses—x|, ..., [sp—x]).
Now, show that no s € S satisfies 0 < |s — x| < €".] (b) Deduce that if S is a finite subset
of R, then S has no accumulation points. [This is trivially a corollary of the lemma.]

Answer:

(a) Suppose z is an accumulation point of S and ¢ > 0. Suppose, for the sake of
contradiction, that there are only finitely many points of S within distance ¢ of x. Let
those points be sy, 59, ..., S, (where we omit x from the list if it happens to be in S). Let
¢ = min(|x — s1], |z — s2|,..., |z — sg|). Note that ¢ > 0. Take any point z that satisfies
0 < |z—2z| <¢. Since |z — z| < ¢, while for i = 1,2,....k, |z — s;| > €, we see that z
cannot be one of the points sy, ss,...,s;. This means that z is not in S. So, there are no
points of S within & of x (except possibly z itself). This means x is not an accumulation
point of .S, which is a contradiction. So, there must be infinitely many points of S within ¢
of x.

(b) If a set S has an accumulation point, then by part (a), there must be infinitely many
points of S within distance 1 of = (letting ¢ = 1 in (a)). But that means S is infinite, not
finite.

Problem 3. Prove directly from the epsilon-delta definition of limits, that lim 22 = 2.

z—5 7

Answer:

Let ¢ > 0. We want to find 6 > 0 such that 0 < |z — 5| < ¢ implies }@ - 2’ < e. Let
2‘ _ |(21+4)714‘ _ |21710‘ _
7 7

52 = . Then for any « satisfying |z — 5| < &, we have ‘2‘”%1 —
7

lz -5 <2 - E=e



Problem 4. Show directly, without using the product rule for limits, that lirrzl)) 3 = 27.
Tr—r
(Note that a® — b* = (a — b)(a® + ab + b%).)

Answer:

Let € > 0. We want to find § > 0 such that 0 < |z — 3| < ¢ implies |2® — 27| < . Let

6 = min (1,£). Then for any z satisfying |z — 3| < §, we have |z — 3| < 1, which means

—l<x—3<1lor2<uz<4. So,in particular, |z| = x < 4. We then have
|2° — 27| = |(2® + 3z + 9)(x — 3)| = |2* + 3z + 9||x — 3|
< (|2®| + [3] + [9]) |z — 3|
= (|2 + 3|z| + 9)|z — 3|
<(4*+3-4+49)|x—3|
<375

=&

Problem 5 (Textbook problem 2.2.9). Suppose that f(z) < 0 for all x in some open interval
containing a, except possibly at a. Suppose that lim f(z) = L. Show that L < 0. [Hint:
Tr—a

Assume instead that L > 0. Let ¢ = L/2 and derive a contradiction.]

Answer:

Suppose, for the sake of contradiction, that lim = L where L > 0. Then £ > 0, so

r—a 2

we can find § > 0 such that for all x satisfying 0 < |z —a| < ¢, |f(z) — L| < £. That

is, —% < f(r)—L < % Adding %, % < f(z) < % In particular, we see that for any x

satisfying 0 < |z — a| < 4, f(z) > £ > 0. This contradicts the fact that f(z) < 0 for all z
near enough to a.
Problem 6. This problem gives an alternative proof of the product rule.
(a) Suppose lim f(z) = L. Show directly from the definition of limit (without using the
r—a
product rule) that lim f(z)* = L.
r—a
(b) Verify algebraically, by expanding the right-hand side, that ab = 1((a+b)? — (a —b)?).

(c) Let’s say that the sum, difference, and constant multiple rules for limits have already
been proved, in addition to parts (a) and (b) of this problem. Using all that (and not
the definition of derivative), prove the product rule for limits.

Answer:



(a) Suppose lim f(z) = L. Let ¢ > 0. We want to find 6 > 0 such that for all z,
0<|z— ;ri § implies | f(z)? — L?| < e.
Since lim f(z) = L, there is a 0; > 0 such that for 0 < |z —a| < d1, |f(z) = L] < 1
and tﬁ;gfore |f( )| < |L| 4+ 1. And there is a d5 > 0 such that for 0 < |z — a] < 6y,
[f(z) = L] < 57557
Let 6 = min(dy,d2). Take any x Satisfying 0 < |z —a] < 6. Then we have both
[f(@)] <[L[+1, and |f(z) — L] < So

2|L|+1

|f(2)* = L*| = | f(2) + L] f(z) — L|
< (If(2) + [LD|f(z) = L]
< (([LI+1) + L) f(z) = L]

2IL| + 1)
< QI+ Dy

=&

(b) This is a simple calculation:

(@ +0) = (a—=b)?) = {((a® +2ab + ") — (a” — 2ab + "))
= 1(4ab)
b

= a

(¢) Suppose lim f(x) = L and lim g(x) = M. Then, by part (a) and the sum rule,
Tr—a

r—a

lim (f(x) + 9(x))* = (1 (f(x) + (g(2)))"
= (lim f(z) + lim g())’
= (L+ M)?

Similarly, by part (a) and the difference rule,

lim (f(z) — g(x))* = (L — M)?

Tr—a
And then by the constant multiple and difference rules,
lim f(z)g(x) = lim £ ((f(x) + g(2))* = (f(x) — g(2)*)

= 1 ((L+ M) = (L - M)?)
— LM



