Problem 1. Suppose that \(f(x) \) is defined and bounded on an open interval containing 0, except possibly at 0 itself. (That is, there is a number \(B \) such that \(|f(x)| < B\) for all \(x \) in that interval, except possibly \(x = 0 \).) Show that \(\lim_{x \to 0} xf(x) = 0 \). [Hint: The product rule does not apply here. Use the Squeeze Theorem and the fact that \(|x|\) is a continuous function.]

Answer:

On the open interval where \(f \) is defined, we have that \(|xf(x)| = |x||f(x)| < |x||B|\). (Note that \(B \) must be greater than zero, or else \(|f(x)| < B\) would be impossible.) This inequality is equivalent to \(-B|x| < xf(x) < B|x|\). Since \(|x|\) is a continuous function of \(x \) and any constant multiple of a continuous function is continuous, we know that the functions \(-B|x|\) and \(B|x|\) are both continuous. So, \(\lim_{x \to 0}(-B|x|) = \lim_{x \to 0}B|x| = B|0| = 0 \). Applying the Squeeze Theorem to \(-B|x| < xf(x) < B|x|\), we see that \(\lim_{x \to 0} xf(x) = 0 \).

Problem 2. If \(f(x) \) is a continuous function, then we know that \(|f(x)|\) is also continuous, since it is a composition of continuous functions. Give a counterexample to show that the converse does not hold. That is, find a function \(f(x) \) such that \(|f(x)|\) is continuous, but \(f(x) \) is not continuous.

Answer:

Let \(E(x) = D(x) - \frac{1}{2} \), where \(D(x) \) is the Dirichlet function. That is,

\[
E(x) = \begin{cases}
1/2 & \text{if } x \text{ is rational} \\
-1/2 & \text{if } x \text{ is irrational}
\end{cases}
\]

\(E(x) \) is not continuous anywhere. But \(|E(x)|\) is the constant function, \(|E(x)| = \frac{1}{2}\), which is continuous everywhere.

For a simpler example, define

\[
f(x) = \begin{cases}
1 & \text{if } x \neq 0 \\
-1 & \text{if } x = 0
\end{cases}
\]

Then \(f \) is not continuous at 0, but \(|f(x)| = 1\) for all \(x \) and so is continuous.

Problem 3 (Textbook problem 2.5.7). Suppose that \(f \) is continuous at \(a \) and that \(f(a) > 0 \). Prove that there is a \(\delta > 0 \) such that \(f(x) > 0 \) for all \(x \) in the interval \((a - \delta, a + \delta)\).

Answer:

Suppose that \(f \) is continuous at \(x = a \). Let \(\varepsilon = f(a) \), which is greater than zero by assumption. From the definition of continuity, we can find a \(a \) \(\delta > 0 \) such that for any \(x \), if \(|x - a| < \delta\), then \(|f(x) - f(a)| < \varepsilon = f(a)\). This inequality is equivalent to \(-f(a) < f(x) - f(a) < f(a)\). Adding \(f(a) \) to the inequality \(-f(a) < f(x) - f(a) < f(a)\) gives \(0 < f(x)\). So for any \(x \in (a - \delta, a + \delta) \), we have \(f(x) > 0 \).
Problem 4 (Textbook problem 2.4.10). Prove: If \(\lim_{x \to a^+} f(x) = L \) and if \(c(x) \) is a function such that \(a < c(x) < x \) for all \(x \) in some interval \((a, b) \), then \(\lim_{x \to a^+} f(c(x)) = L \). [Hint: This is confusing but actually easy.]

Answer:

Let \(\varepsilon > 0 \). We must find \(\delta > 0 \) such that for any \(x \), if \(0 < x - a < \delta \), then \(|f(c(x)) - L| < \varepsilon \). Since \(\lim_{x \to a^+} f(x) = L \), we know that there is a \(\delta \) such that for any \(y \), if \(0 < y - a < \delta \), then \(|f(y) - L| < \varepsilon (\ast) \). We can take \(\delta \leq b - a \), so that we know that \(a < c(x) < x \) for all \(x \) satisfying \(a < x < a + \delta \).

Using the same \(\delta \), suppose that \(0 < x - a < \delta \). That is \(a < x < a + \delta \), so we know by our assumption that \(a < c(x) < x \). So we get that \(a < c(x) < x < a + \delta \), which gives \(a < c(x) < a + \delta \) and then \(0 < c(x) - a < \delta \). Applying \((\ast) \) with \(y = c(x) \), we get \(|f(c(x)) - L| < \varepsilon \), which is what we needed to show.

Problem 5. Let \(f \) be a continuous function on the interval \([a, b] \), and suppose that \(f(x) \in \mathbb{Q} \) for all \(x \in [a, b] \). Show that \(f \) is constant on \([a, b]\). [Hint: Use the Intermediate Value Theorem.]

Answer:

Suppose, for the sake of contradiction, that \(f(x) \) is not constant. Then there are points \(x_1 \) and \(x_2 \) in \([a, b]\) such that \(f(x_1) \neq f(x_2) \). Without loss of generality, we can take \(x_1 < x_2 \). Now, \(f \) is continuous on the interval \([x_1, x_2]\), and so satisfies the Intermediate Value Theorem there. Since \(f(x_1) \neq f(x_2) \), we know by the density of the irrational numbers that there is some irrational number \(y \) between \(f(x_1) \) and \(f(x_2) \). By the IVT, there must exist some \(c \in [x_1, x_2] \) such that \(f(c) = y \). But this contradicts the assumption that \(f(x) \in \mathbb{Q} \) for all \(x \in [a, b] \). So, in fact, \(f \) must be constant.

Problem 6 (Textbook problem 2.6.7b). Show that \(p(x) = x^4 - x^3 + x^2 + x - 1 \) has at least two roots in the interval \([-1, 1]\).

Answer:

Since \(p \) is a polynomial, it is continuous everywhere, and the Intermediate Value Theorem will apply to \(p \) on any closed, bounded interval. Note that \(p(-1) = 1, p(0) = -1, \) and \(p(1) = 1 \). Since \(p(-1) > 0 > p(0), \) then by the IVT applied to \(p \) on the interval \([-1, 0]\), \(p(a) = 0 \) for some \(a \in (-1, 0) \). Since \(p(0) < 0 < p(1), \) then by the IVT applied to \(p \) on the interval \([0, 1]\), \(p(b) = 0 \) for some \(b \in (0, 1) \). So \(p \) has at least the roots \(a \) and \(b \) in the interval \([-1, 1]\).

Problem 7. Show that any linear function \(f(x) = mx + b \) is uniformly continuous on \(\mathbb{R} \).

Answer:

Let \(\varepsilon > 0 \). We must find \(\delta > 0 \) such that for all \(x, y \in \mathbb{R}, \) if \(|x - y| < \delta \) it follows that \(|(mx + b) - (my + b)| < \varepsilon \). In the case \(m \neq 0 \), we can let \(\delta = \frac{\varepsilon}{|m|} \). Then when \(|x - y| < \delta \), we have \(|(mx + b) - (my + b)| = |mx - my| = |m(x - y)| = |m||x - y| < |m|\delta = |m|\frac{\varepsilon}{|m|} = \varepsilon \). In the case \(m = 0, |(mx + b) - (my - b)| = 0, \) which is always less than \(\varepsilon \), so any \(\delta \) will work.
Problem 8. Let \(f(x) = \frac{1}{x} \).

(a) Show that for any \(c > 0 \), \(f(x) \) is uniformly continuous on \([c, \infty)\),

(b) Show that \(f(x) \) is not uniformly continuous on \((0, \infty)\).

Answer:

(a) Let \(c > 0 \). To show that \(\frac{1}{x} \) is uniformly continuous on \([c, \infty)\), let \(\varepsilon > 0 \). We must show that there is a \(\delta > 0 \) such that for all \(x \in [c, \infty) \), if \(|x - y| < \delta \), then \(\frac{1}{x} - \frac{1}{y} < \varepsilon \). Let \(\delta = c^2 \varepsilon \). Let \(x, y \in [c, \infty) \) with \(|x - y| < \delta \). Note that since \(x \geq c > 0 \), we have \(\frac{1}{x} \leq \frac{1}{c} \).

Similarly, \(\frac{1}{y} \leq \frac{1}{c} \). So, \(\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{y - x}{xy} \right| = \frac{1}{x} \cdot \frac{1}{y} \cdot |x - y| < \frac{1}{c} \cdot \frac{1}{c} \cdot \delta = \frac{1}{c^2} (c^2 \varepsilon) = \varepsilon \).

(b) Letting \(\varepsilon = 1 \) in the definition of uniform continuity, we must show that for any \(\delta > 0 \) there exist \(x, y \in (0, \infty) \) such that \(|x - y| < \delta \) but \(\frac{1}{x} - \frac{1}{y} \geq 1 \). In the case \(\delta \geq 1 \), we can let \(x = \frac{1}{2}, y = 1 \). Then \(|x - y| = \frac{1}{2} < \delta \), but \(\frac{1}{x} - \frac{2}{x} \geq 1 \) since it is in fact \(|2 - 1| = 1 \). In the case \(\delta < 1 \), let \(x = \delta, y = \frac{1}{2} \delta \). Then \(|x - y| = |\delta - \frac{1}{2} \delta| = \frac{1}{2} \delta < \delta = 1 \), but \(\frac{1}{x} - \frac{2}{x} \geq 1 \). \(\frac{1}{x} - \frac{2}{x} = |n - \frac{1}{n} + 1| = 1 \), which is not less than \(\varepsilon \).

Problem 9 (Textbook problem 2.6.12ab). We say that a function \(f \) satisfies a **Lipschitz condition** if there is a positive real number \(M \) such that for all \(x, y \in \mathbb{R} \), \(|f(x) - f(y)| < M|x - y| \). We say that a function \(f \) satisfies a **Lipschitz condition** if there is a positive real number \(M \) such that for all \(x, y \in \mathbb{R} \), \(|f(x) - f(y)| < M|x - y| \). Show that if \(f \) satisfies a Lipschitz condition, then \(f \) is uniformly continuous on \((-\infty, \infty)\).

Answer:

Suppose that \(f \) satisfies the Lipschitz condition \(|f(x) - f(y)| < M|x - y| \) for all \(x, y \in \mathbb{R} \). Note that \(M \) must be strictly positive. Let \(\varepsilon > 0 \). We must find \(\delta > 0 \) such that for all \(x, y \in \mathbb{R} \), if \(|x - y| < \delta \), then \(|f(x) - f(y)| < \varepsilon \). Let \(\delta = \frac{\varepsilon}{M} \). Then if \(|x - y| < \delta \), we have that \(|f(x) - f(y)| < M|x - y| < M \delta = M \frac{\varepsilon}{M} = \varepsilon \).