Math 331 Sample Answers to Homework 4

Problem 1. Suppose that f(z) is defined and bounded on an open interval containing 0,

except possibly at 0 itself. (That is, there is a number B such that |f(z)| < B for all x

in that interval, except possibly z = 0.) Show that liII(l) zf(x) = 0. [Hint: The product
z—

rule does not apply here. Use the Squeeze Theorem and the fact that |z| is a continuous

function.]

Answer:

On the open interval where f is defined, we have that |z f(x)| = |z||f(z)| < |z|B. (Note
that B must be greater than zero, or else | f(x)| < B would be impossible.) This inequality is
equivalent to —B|z| < zf(x) < B|z|. Since |z| is a coninuous function of z and any constant
multiple of a continuous function is continuous, we know that the functions —B|z| and B|z|
are both continous. So, :ltl_r)r(l)(—B\a:D = ilg(l) B|z| = B|0| = 0. Applying the Squeeze Theorem

to —B|z| < xf(x) < B|z|, we see that lirr(l)xf(:c) = 0.
z—

Problem 2. If f(z) is a continuous function, then we know that |f(z)| is also continuous,
since it is a composition of continuous functions. Give a counterexample to show that the
converse does not hold. That is, find a function f(x) such that |f(z)| is continuous, but f(z)
1s not continuous.

Answer:

Let E(zx) = D(z) — §, where D(x) is the Dirichlet function. That is,

B(z) = {1/2 if x is rational

—1/2 if x is irrational

E(z) is not continuous anywhere. But |E(z)| is the constant function, |E(x)| = 5, which is
continuous everywhere.

For a simpler example, define

1
2

fx) =

1 ifxs#0
—1 ifz=0

Then f is not continuous at 0, but |f(x)| = 1 for all x and so is continuous.

Problem 3 (Textbook problem 2.5.7). Suppose that f is continuous at a and that f(a) > 0.
Prove that there is a § > 0 such that f(z) > 0 for all x in the interval (a — d,a + 9).

Answer:

Suppose that f is continuous at * = a. Let ¢ = f(a), which is greater than zero
by assumption. From the definition of continuity, we can find a a § > 0 such that for
any z, if v —a| < 0, then |f(xz) — f(a)] < € = f(a). This inequality is equivalent to
—f(a) < f(zx) — f(a) < f(a). Adding f(a) to the inequality —f(a) < f(z) — f(a) gives
0 < f(x). So for any z € (a — d,a + J), we have f(z) > 0.



Problem 4 (Textbook problem 2.4.10). Prove: If lim+ f(z) = L and if ¢(x) is a function

T—a

such that a < ¢(z) < z for all x in some interval (a,b), then lim f(c(z)) = L. [Hint: This
r—a

is confusing but actually easy.|

Answer:

Let ¢ > 0. We must find 6 > 0 such that for any x, if 0 < x—a < §, then | f(c(z))—L| < e.
Since lim f(z) = L, we know that there is a § such that for any y, if 0 < y — a < 0, then

z—at

|f(y) — L] < e (*). We can take 6 < b — a, so that we know that a < ¢(z) < x for all
satisfying a < x < a + 6.

Using the same 0, suppose that 0 < x —a < §. That is a < x < a + §, so we know
by our assumption that a < ¢(x) < x. So we get that a < ¢(z) < z < a + 6, which
gives a < ¢(r) < a+ 0 and then 0 < ¢(x) —a < §. Applying (*) with y = ¢(z), we get
|f(c(x)) — L| < e, which is what we needed to show.

Problem 5. Let f be a continuous function on the interval [a, b], and suppose that f(x) € Q
for all x € [a,b]. Show that f is constant on [a,b]. [Hint: Use the Intermediate Value
Theorem.]

Answer:

Suppose, for the sake of contradiction, that f(z) is not constant. Then there are points
x1 and x5 in [a, b] such that f(z1) # f(x2). Without loss of generality, we can take z1 < 5.
Now, f is continuous on the interval [z, x5], and so satisfies the Intermediate Value Theorem
there. Since f(x1) # f(x2), we know by the density of the irrational numbers that there
is some irrational number y between f(z1) and f(x2). By the IVT, there must exist some
¢ € [x1, 23] such that f(c) = y. But this contradicts the assumption that f(x) € Q for all
x € |a,b]. So, in fact, f must be constant.

Problem 6 (Textbook problem 2.6.7b). Show that p(z) = 2* — 2® + 2% + x — 1 has at least
two roots in the interval [—1, 1].

Answer:

Since p is a polynomial, it is continuous everywhere, and the Intermediate Value Theorem
will apply to p on any closed, bounded interval. Note that p(—1) = 1, p(0) = —1, and
p(1) = 1. Since p(—1) > 0 > p(0), then by the IVT applied to p on the interval [—1, 0],
p(a) = 0 for some a € (—1,0). Since p(0) < 0 < p(1), then by the IVT applied to p on
the interval [0, 1], p(b) = 0 for some b € (—1,0). So p has at least the roots a and b in the
interval [—1, 1].

Problem 7. Show that any linear function f(x) = mx + b is uniformly continuous on R.

Answer:

Let € > 0. We must find 6 > 0 such that for all z,y € R, if |z — y| < § it follows that
|(ma +b) — (my +b)| <. In the case m # 0, we can let § = = Then when [z —y| <4, we

have |(m +8) — (my +b)| = [mz — my| = |m(z — y)| = [mllz — ] < [m|§ = |m| £ = <. In
the case m = 0, |(mx + b) — (my — b)| = 0, which is alwasy less than ¢, so any ¢ will work.



Problem 8. Let f(z) = 1.

(a)
(b)

Show that for any ¢ > 0, f(z) is uniformly continuous on [¢, 00),

Show that f(x) is not uniformly continuous on (0, 00).

Answer:

(a)

Let ¢ > 0. To show that % is uniformly continuous on [c, 00), let £ > 0. We must show
that there is a § > 0 such that for all x € [¢,00), if |x — y| < §, then ‘% — ?ﬂ < e. Let

6 = c?e. Let 2,y € [c,00) with |z — y| < 6. Note that since > ¢ > 0, we have £ < 1.

N Bl B S PR TEO R

Similarly, i < % So,

Letting € = 1 in the definition of uniform continuity, we must show that for any 6 > 0
there exist z,y € (0,00) such that |z — y| < & but |1 — i‘ > 1. In the case 0 > 1,

we can let # = 3,y = 1. Then |z —y| = 5 < 4, but \% — %| > 1 since it is in fact
2—1|=1. Inthecase d <1,let z =8,y = 36. Then |z —y| =6 — 30| =16 <6 =1,
bt |1 = 2= [}~ 3 =1 > 1

[Easier proof, based on student response: Let ¢ = 1. Given § > 0, choose any n
with 5 < 4. Letx:%,y:%ﬂ. Then |z — y| = %—%ﬂ :#<$<5, and
1 111‘ = |n— (n+1)| =1, which is not less than ¢.|

Problem 9 (Textbook problem 2.6.12ab). We say that a function f satisfies a Lipschitz
condition if there is a positive real number M such that for all z,y € R, |f(x) — f(y)] <
M|z — y|. We say that a function f satisfies a Lipschitz condition if there is a positive
real number M such that for all z,y € R, |f(z) — f(y)| < M|z — y|. Show that if f satisfies
a Lipschitz condition, then f is uniformly continuous on (—o0, ).

Answer:

Suppose that f satisfies the Lipschitz condition |f(z) — f(y)| < M|z —y| for all z,y € R.
Note that M must be strictly positive. Let ¢ > 0. We must find § > 0 such that for all
v,y € R, if [z —y| <0, then |f(x) — f(y)| <e. Let § = 7. Then if |z —y| < §, we have
that |f(z) — f(y)| < M|z —y| < Mé =M =e.



