Problem 1. Suppose that \(f(x) \) is defined and bounded on an open interval containing 0, except possibly at 0 itself. (That is, there is a number \(B \) such that \(|f(x)| < B \) for all \(x \) in that interval, except possibly \(x = 0 \).) Show that \(\lim_{x\to0} xf(x) = 0 \). [Hint: The product rule does not apply here. Use the Squeeze Theorem and the fact that \(|x| \) is a continuous function.]

Problem 2. If \(f(x) \) is a continuous function, then we know that \(|f(x)| \) is also continuous, since it is a composition of continuous functions. Give a counterexample to show that the converse does not hold. That is, find a function \(f(x) \) such that \(|f(x)| \) is continuous, but \(f(x) \) is not continuous.

Problem 3 (Textbook problem 2.5.7). Suppose that \(f \) is continuous at \(a \) and that \(f(a) > 0 \). Prove that there is a \(\delta > 0 \) such that \(f(x) > 0 \) for all \(x \) in the interval \((a-\delta,a+\delta) \).

Problem 4 (Textbook problem 2.4.10). Prove: If \(\lim_{x\to a^+} f(x) = L \) and if \(c(x) \) is a function such that \(a < c(x) < x \) for all \(x \) in some interval \((a,b) \), then \(\lim_{x\to a^+} f(c(x)) = L \). [Hint: This is confusing but actually easy.]

Problem 5. Let \(f \) be a continuous function on the interval \([a,b]\), and suppose that \(f(x) \in \mathbb{Q} \) for all \(x \in [a,b] \). Show that \(f \) is constant on \([a,b]\). [Hint: Use the Intermediate Value Theorem.]

Problem 6 (Textbook problem 2.6.7b). Show that \(p(x) = x^4 - x^3 + x^2 + x - 1 \) has at least two roots in the interval \([-1, 1]\).

Problem 7. Show that any linear function \(f(x) = mx + b \) is uniformly continuous on \(\mathbb{R} \).

Problem 8. Let \(f(x) = \frac{1}{x} \).
(a) Show that for any \(c > 0 \), \(f(x) \) is uniformly continuous on \([c, \infty)\),
(b) Show that \(f(x) \) is not uniformly continuous on \((0, \infty)\).

Problem 9 (Textbook problem 2.6.12a). We say that a function \(f \) satisfies a Lipschitz condition if there is a positive real number \(M \) such that for all \(x, y \in \mathbb{R} \), \(|f(x) - f(y)| < M|x - y| \). Show that if \(f \) satisfies a Lipschitz condition, then \(f \) is uniformly continuous on \((-\infty, \infty)\).