This homework is due by 4:00 PM on Monday, September 26

Problem 1. Suppose that f(x) is defined and bounded on an open interval containing 0, except possibly at 0 itself. (That is, there is a number B such that |f(x)| < B for all x in that interval, except possibly x = 0.) Show that $\lim_{x\to 0} xf(x) = 0$. [Hint: The product rule does not apply here. Use the Squeeze Theorem and the fact that |x| is a continuous function.]

Problem 2. If f(x) is a continuous function, then we know that |f(x)| is also continuous, since it is a composition of continuous functions. Give a counterexample to show that the converse does not hold. That is, find a function f(x) such that |f(x)| is continuous, but f(x) is not continuous.

Problem 3 (Textbook problem 2.5.7). Suppose that f is continuous at a and that f(a) > 0. Prove that there is a $\delta > 0$ such that f(x) > 0 for all x in the interval $(a - \delta, a + \delta)$.

Problem 4 (Textbook problem 2.4.10). Prove: If $\lim_{x \to a^+} f(x) = L$ and if c(x) is a function such that a < c(x) < x for all x in some interval (a, b), then $\lim_{x \to a^+} f(c(x)) = L$. [Hint: This is confusing but actually easy.]

Problem 5. Let f be a continuous function on the interval [a, b], and suppose that $f(x) \in \mathbb{Q}$ for all $x \in [a, b]$. Show that f is constant on [a, b]. [Hint: Use the Intermediate Value Theorem.]

Problem 6 (Textbook problem 2.6.7b). Show that $p(x) = x^4 - x^3 + x^2 + x - 1$ has at least two roots in the interval [-1, 1].

Problem 7. Show that any linear function f(x) = mx + b is uniformly continuous on \mathbb{R} .

Problem 8. Let $f(x) = \frac{1}{x}$.

- (a) Show that for any c > 0, f(x) is uniformly continuous on $[c, \infty)$,
- (b) Show that f(x) is not uniformly continuous on $(0, \infty)$.

Problem 9 (Textbook problem 2.6.12a). We say that a function f satisfies a **Lipschitz** condition if there is a positive real number M such that for all $x, y \in \mathbb{R}$, |f(x) - f(y)| < M|x - y|. Show that if f satisfies a Lipschitz condition, then f is uniformly continuous on $(-\infty, \infty)$.