
Math 331, Fall 2022 Sample Answers to Homework 6

Problem 1. Let (M,d) be a metric space, and let f : M → R and g : M → R be two
functions from M to R (where R has its usual metric). Let a ∈ M . Suppose f and g
are continuous at a. Show that the function f + g is continuous at a, where (f + g)(x) =
f(x) + g(x) for x ∈M. [Hint: Just imitate the proof for functions from R to R.]

Answer:

Let ε > 0. Since f is continuous at a, there is a δ1 > 0 such that for all x ∈ Bd
δ1

(a),
|f(x) − f(a)| < ε

2
. And since f is continuous at a, there is a δ2 > 0 such that for all

x ∈ Bd
δ2

(a), |g(x)− g(a)| < ε
2
.

Let δ = min(δ1, δ2). We want to show that for all x ∈ Bd
δ (a), |(f+g)(x)−(f+g)(a)| < ε.

Let x ∈ Bd
δ (a). Since δ ≤ δ1 and δ ≤ δ2, we have both x ∈ Bd

δ1
(a) and x ∈ Bd

δ2
(a). From

that, we get both |f(x)− f(a)| < ε
2

and |g(x)− g(a)| < ε
2
, and therefore,

|(f + g)(x)− (f + g)(a)| = |f(x) + g(x)− f(a)− g(a)|
= |(f(x)− f(a)) + (g(x)− g(a))|
≤ |f(x)− f(a)|+ |g(x)− g(a)|
< ε

2
+ ε

2

= ε

Problem 2. Let X be any set. Consider the metric space (X, δ) where δ is the discrete

metric, δ : X × X → R by δ(a, b) =

{
0 if a = b

1 if a 6= b
. Suppose that {xi}∞i=1 is a convergent

sequence in the metric space (X, δ). Show that there is a number N such that xN = xN+1 =
xN+2 = · · · . (We say that the sequence is “eventually constant.”)

Answer:

Suppose that the sequence {xn}∞n=1 converges to z. Let ε = 1
2
. Since lim

n→∞
xn = z, there

is a N ∈ N such that for all n ≥ N , xn ∈ Bε(z); that is, xn ∈ B1/2(z). But in the discrete
metrix, every point other than z is at distance 1 from z, so B1/2(z) = {z}. Since xn ∈ B1/2(z)
for n ≥ N , it must be that xn = z for n ≥ N .

Problem 3. Let (M,d) be a metric space and let X ⊆ M . The closure, X of X can be
defined as the set containing all the points of X plus all the accumulation points of X. Show
that the closure of X can be characterized as follows: For z ∈M, z ∈ X if and only if there
is a sequence {xn}∞n=1 of points of X such that lim

n→∞
xn = z. [Hint: Treat separately the cases

where z ∈ X and where z is an accumulation point of X.]

Answer:

=⇒) Let z ∈ X. We want to find a sequence, {xn}∞n=1, of points of X that convereges
to z. Since z ∈ X, we know that z ∈ X or z is an accumulation point of X.



Consider the case z ∈ X. In that case, we can let xn = z for all n, since the constant
sequence {z}∞n=1 is a sequence of points of X that converges to z.

Now consider the case z is an accumulation point of z. Then, for any ε > 0, we know
that there is some a ∈ X such that d(z, a) < ε. For n ∈ N, let xn be a point of X such
that d(z, xn) < 1

n
. Then the sequence {xn}∞n=1 is a sequence of points of X that converges

to z. (To prove convergence, let ε > 0. There is an N ∈ N such that 1
N
< ε, by Archimedes’

Principle. So for n ≥ N , we have d(xn, z) <
1
n
≤ 1

N
< ε. That is, for n ≥ N , xn ∈ Bε(z).)

⇐=) Suppose that {xn}∞n=1 is a sequence of points of X that coverges to z ∈ M . We
want to show that z ∈ X.

If there is an N ∈ N such that xn = z for all n > N , then z ∈ X because all elements of
the sequence are in X, and z ∈ X because X ⊆ X.

Suppose that no such N exists. We show that in that case, z is an accumulation point
of X, which implies z ∈ X. To show z is an accumulation point, let ε > 0. We must find
an a ∈ X such that d(z, a) < ε and a 6∈ X. Since lim

n→∞
xn = z, there is an N ∈ N such

that d(xn, z) < ε for all n ≥ N . But we have assumed that the sequence is not eventually
constant, so there must be some no > N for which xno 6= z. Let a be that xno . Then we
know d(a, z) < ε, and we know a ∈ X since all terms of the sequence are in X.

(Improved proof for ⇐=: Suppose thatat {xn}∞n=1 is a sequence of points of X that
coverges to z ∈M . We want to show that z ∈ X.

If z ∈ X, there is nothing to prove, since X ⊆ X and so z ∈ X implies x ∈ X.
So suppose z 6∈ X. We show z is an accumulation point of X, which means it is in

X. To show z is an accumulation point, let ε > 0. We must find an x ∈ X such that
0 < d(x, z) < ε. Since all of the elements of the sequence are in X, and z is not in X, we
know that for all n, xn 6= z and d(xn, z) > 0. And since the sequence converges to z, there
must be an xN such that d(xN , z) < ε. Since xN ∈ X, we have found an element xN of X
such that 0 < d(z, xN) < ε.)

Problem 4 (From textbook problem 3.1.3a). Even though |x| is not differentiable at 0,
show that the function g(x) = 1

2
x|x| is differentiable at 0, and show that g′(x) = |x| for all

x. (Thus, |x| has antiderivative 1
2
x|x|.)

Answer:

For a < 0, g′(a) = d
dx

∣∣
x=a

1
2
x|x| = d

dx

∣∣
x=a

1
2
x(−x) = d

dx

∣∣
x=a

(
− 1

2
x2
)

= −1
2
· 2a = −a = |a|.

So g′(x) = |x| in the case a < 0.
For a > 0, g′(a) = d

dx

∣∣
x=a

1
2
x|x| = d

dx

∣∣
x=a

1
2
x(x) = d

dx

∣∣
x=a

(
1
2
x2
)

= 1
2
· 2a = a = |a|. So

g′(x) = |x| in the case a > 0.
Finally, for the case a = 0, we must show that g′(0) = 1

2
0|0|, that is g′(0) = 0. But in

this case we can calculate

g′(0) = lim
x→0

g(x)− g(0)

x− 0

= lim
x→0

1
2
x|x| − 0

x− 0

= lim
x→0

1
2
x|x|
x

= lim
x→0

1
2
|x|



= 1
2
|0|, since |x| is continuous at 0

= 0

Problem 5 (Textbook problem 3.3.10). A fixed point of a function is a point d such that
f(d) = d. Suppose that f is differentiable everywhere and that f ′(x) < 1 for all x. Show
that there can be at most one fixed point for f . [Hint: Suppose that a and b are two fixed
points of f . Apply the Mean Value Theorem to obtain a contradiction.]

Answer:

Let f be differentiable everywhere and suppose that f ′(x) < 1 for all x. We want to
show that f has at most one fixed point. Suppose, for the sake of contradiction, that f has
more than one fixed point. Let a and b be distinct fixed points of f . That is a 6= b, and
f(a) = a, and f(b) = b. By the Mean Value Theorem, there is a c between a and b such that

f ′(c) = f(b)−f(a)
b−a . But f(b) = b and f(a) = a, so f ′(c) = b−a

b−a = 1. But that contradicts the
assumption that f ′(x) < 1 for all x.

Problem 6 (From textbook problem 3.3.2). Recall that f satisfies a Lipschitz condition
if there is a constant M such that |f(b) − f(a)| ≤ M |b − a| for all a, b. Problem #9 on
Homework #4 proved that any function that satisfies a Libschitz condition is uniformly
continuous. Let f be a function that is differentiable on some interval I (not necessarily
bouned or closed), and suppose |f ′(x)| ≤ M for all x, where M is some constant. Use the
Mean Value Theorem to prove that |f(b)− f(a)| ≤M |a− b| for all a, b. Conclude that f is
uniformly continuous.

Answer:

Suppose f is differentiable on an interval I and |f ′(x)| < M for all x ∈ I. Let a and
b be distinct points in I, where we can assume witout loss of generality that a < b. Since
I is an interval, it contains the entire interval [a, b]. Since f is continuous on [a, b] and
differentiable on (a, b), the Mean Value Theorem applies. That is, there is a c ∈ (a, b) such

that f ′(c) = f(b)−f(a)
b−a . Since c ∈ I, we know by assumption that |f ′(c)| ≤ M . That is,∣∣∣f(b)−f(a)b−a

∣∣∣ < M . Since |b− a| > 0, this implies |f(b)− f(a)| ≤M |b− a|. That is, f satisfies

a Lipschitz condition on the interval I with Lipshitz constant M . We conclude by Problem
#9 on Homework #4 that f is uniformly continuous on I.

(Note: The problem originally assumed, incorrectly, only that f ′(c) < M . If we only have
f ′(c) < M , that leaves open the possibility that f ′(c) is some large negative number, and
in that case the statement is not true. For example, if f(x) = 1

x
for x > 0, then f ′(c) < 1

for all c > 0, but f is not uniformly continuous on (0,∞). So, we assume that |f ′(c)| < M
(which implies M > 0).)


