Math 331, Fall 2022 Sample Answers to Homework 6

Problem 1. Let (M,d) be a metric space, and let f: M — R and ¢g: M — R be two
functions from M to R (where R has its usual metric). Let a € M. Suppose f and g
are continuous at a. Show that the function f + g is continuous at a, where (f + g)(z) =
f(z) + g(x) for x € M. [Hint: Just imitate the proof for functions from R to R.]

Answer:

Let ¢ > 0. Since f is continuous at a, there is a d; > 0 such that for all z € Bf (a),

x) — f(a)] < £. And since f is continuous at a, there is a 6, > 0 such that for all
2

x € By, (a), lg(z) — g(a)| < 5.

Let 0 = min(dy,d5). We want to show that for all x € B¢(a), |(f+g)(x)— (f+g)(a)| < e.
Let © € By(a). Since § < 6; and § < d5, we have both = € B{ (a) and = € B{ (a). From
that, we get both |f(z) — f(a)| < 5 and |g(z) — g(a)| < §, and therefore,

|(f +9)(z) = (f +9)(a)| = |£(x) + 9(2) = f(a) = 9(a)]
= |(f(z) = f(a)) + (9(z) — g(a))]
< |f(@) = fla)| +1g(x) — 9(a)l
<5+35

Problem 2. Let X be any set. Consider the metric space (X, d) where § is the discrete

0 ifa=0
metric, §: X x X — R by d6(a,b) = L ifash Suppose that {z;}°, is a convergent
if a
sequence in the metric space (X, d). Show that there is a number N such that xy = zy 41 =
Tny2 = ---. (We say that the sequence is “eventually constant.”)
Answer:

Suppose that the sequence {z,}°°, converges to z. Let ¢ = % Since lim z, = z, there
n—oo

is a N € N such that for all n > N, x,, € B.(2); that is, z,, € By2(2). But in the discrete
metrix, every point other than z is at distance 1 from z, so By 2(2) = {z}. Since z,, € By2(2)
for n > N, it must be that z,, = z for n > N.

Problem 3. Let (M, d) be a metric space and let X C M. The closure, X of X can be
defined as the set containing all the points of X plus all the accumulation points of X. Show
that the closure of X can be characterized as follows: For z € M, z € X if and only if there

is a sequence {z,}7> of points of X such that lim z,, = 2. [Hint: Treat separately the cases
n—o0

where z € X and where z is an accumulation point of X]
Answer:

=) Let z € X. We want to find a sequence, {x,,}°°,, of points of X that convereges
to z. Since z € X, we know that z € X or z is an accumulation point of X.



Consider the case z € X. In that case, we can let x,, = z for all n, since the constant
sequence {z}°°, is a sequence of points of X that converges to z.

Now consider the case z is an accumulation point of z. Then, for any £ > 0, we know
that there is some a € X such that d(z,a) < e. For n € N, let z,, be a point of X such
that d(z,2,) < +. Then the sequence {x,}32, is a sequence of points of X that converges
to z. (To prove convergence, let ¢ > 0. There is an N € N such that % < g, by Archimedes’
Principle. So for n > N, we have d(z,,,z) < 1 < & <e. That is, for n > N, x,, € B:(2).)

<=) Suppose that {z,,}>°, is a sequence of points of X that coverges to z € M. We
want to show that z € X.

If there is an N € N such that x,, = z for all n > N, then z € X because all elements of
the sequence are in X, and z € X because X C X.

Suppose that no such N exists. We show that in that case, z is an accumulation point
of X, which implies z € X. To show z is an accumulation point, let ¢ > 0. We must find
an a € X such that d(z,a) < ¢ and a ¢ X. Since lim z,, = z, there is an N € N such

n—oo
that d(z,,z) < ¢ for all n > N. But we have assumed that the sequence is not eventually

constant, so there must be some n, > N for which z,, # z. Let a be that x,,. Then we
know d(a, z) < e, and we know a € X since all terms of the sequence are in X.

(Improved proof for <=: Suppose thatat {z,}>°; is a sequence of points of X that
coverges to z € M. We want to show that z € X.

If z € X, there is nothing to prove, since X C X and so z € X implies z € X.

So suppose z ¢ X. We show z is an accumulation point of X, which means it is in
X. To show z is an accumulation point, let ¢ > 0. We must find an € X such that
0 < d(x,z) < e. Since all of the elements of the sequence are in X, and z is not in X, we
know that for all n, x, # z and d(z,,z) > 0. And since the sequence converges to z, there
must be an zy such that d(zy,z) < e. Since xy € X, we have found an element xy of X
such that 0 < d(z,zy) < €.)

Problem 4 (From textbook problem 3.1.3a). Even though |z| is not differentiable at 0,
show that the function g(x) = jz|z| is differentiable at 0, and show that ¢'(z) = |z| for all

z. (Thus, |z| has antiderivative z|z|.)

Answer:

Fora < 0. ¢/(a) = &, dalel = £],_bo(-) = |, (- 5¢%) =~} 20 = ~a = ol
So ¢'(x) = |z| in the case a < 0.

For a > 0, ¢'(a) = £ a3l = 4 a3r(r) = 4 xza(%ﬁ) =1-2a=a=|al. So

¢'(x) = |x| in the case a > 0.
Finally, for the case a = 0, we must show that ¢’(0) = 10|0|, that is ¢’(0) = 0. But in
this case we can calculate



= %|0|, since |z| is continuous at 0

=0

Problem 5 (Textbook problem 3.3.10). A fixed point of a function is a point d such that
f(d) = d. Suppose that f is differentiable everywhere and that f’(z) < 1 for all . Show
that there can be at most one fixed point for f. [Hint: Suppose that a and b are two fixed
points of f. Apply the Mean Value Theorem to obtain a contradiction. |

Answer:

Let f be differentiable everywhere and suppose that f'(x) < 1 for all z. We want to
show that f has at most one fixed point. Suppose, for the sake of contradiction, that f has
more than one fixed point. Let a and b be distinct fixed points of f. That is a # b, and
f(a) = a, and f(b) = b. By the Mean Value Theorem, there is a ¢ between a and b such that
f'(e) = W But f(b) = b and f(a) = a, so f'(c) = =% = 1. But that contradicts the
assumption that f'(z) < 1 for all .

Problem 6 (From textbook problem 3.3.2). Recall that f satisfies a Lipschitz condition
if there is a constant M such that |f(b) — f(a)| < M|b — af for all a,b. Problem #9 on
Homework #4 proved that any function that satisfies a Libschitz condition is uniformly
continuous. Let f be a function that is differentiable on some interval I (not necessarily
bouned or closed), and suppose |f'(z)] < M for all z, where M is some constant. Use the
Mean Value Theorem to prove that |f(b) — f(a)| < M|a — b| for all a,b. Conclude that f is
uniformly continuous.

Answer:

Suppose f is differentiable on an interval I and |f'(z)] < M for all x € I. Let a and
b be distinct points in I, where we can assume witout loss of generality that a < b. Since
I is an interval, it contains the entire interval [a,b]. Since f is continuous on [a,b] and
differentiable on (a,b), the Mean Value Theorem applies. That is, there is a ¢ € (a,b) such

that f'(c) = % Since ¢ € I, we know by assumption that |f'(c¢)| < M. That is,

)%‘ < M. Since |b — a| > 0, this implies |f(b) — f(a)| < M|b— a|. That is, f satisfies
a Lipschitz condition on the interval I with Lipshitz constant M. We conclude by Problem
#9 on Homework #4 that f is uniformly continuous on I.

(Note: The problem originally assumed, incorrectly, only that f’(¢) < M. If we only have
f'(¢) < M, that leaves open the possibility that f’(c) is some large negative number, and
in that case the statement is not true. For example, if f(z) = % for z > 0, then f'(c) < 1
for all ¢ > 0, but f is not uniformly continuous on (0,00). So, we assume that |f'(c)] < M

(which implies M > 0).)



