Problem 1. Let \((M, d)\) be a metric space, and let \(f : M \to \mathbb{R}\) and \(g : M \to \mathbb{R}\) be two functions from \(M\) to \(\mathbb{R}\) (where \(\mathbb{R}\) has its usual metric). Let \(a \in M\). Suppose \(f\) and \(g\) are continuous at \(a\). Show that the function \(f + g\) is continuous at \(a\), where \((f + g)(x) = f(x) + g(x)\) for \(x \in M\). [Hint: Just imitate the proof for functions from \(\mathbb{R}\) to \(\mathbb{R}\).]

Answer:

Let \(\varepsilon > 0\). Since \(f\) is continuous at \(a\), there is a \(\delta_1 > 0\) such that for all \(x \in B^d_{\delta_1}(a)\), \(|f(x) - f(a)| < \frac{\varepsilon}{2}\). And since \(f\) is continuous at \(a\), there is a \(\delta_2 > 0\) such that for all \(x \in B^d_{\delta_2}(a)\), \(|g(x) - g(a)| < \frac{\varepsilon}{2}\).

Let \(\delta = \min(\delta_1, \delta_2)\). We want to show that for all \(x \in B^d_{\delta}(a)\), \(|(f + g)(x) - (f + g)(a)| < \varepsilon\). Let \(x \in B^d_{\delta}(a)\). Since \(\delta \leq \delta_1\) and \(\delta \leq \delta_2\), we have both \(x \in B^d_{\delta_1}(a)\) and \(x \in B^d_{\delta_2}(a)\). From that, we get both \(|f(x) - f(a)| < \frac{\varepsilon}{2}\) and \(|g(x) - g(a)| < \frac{\varepsilon}{2}\), and therefore,

\[
|(f + g)(x) - (f + g)(a)| = |f(x) + g(x) - f(a) - g(a)|
= |(f(x) - f(a)) + (g(x) - g(a))|
\leq |f(x) - f(a)| + |g(x) - g(a)|
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}
= \varepsilon
\]

Problem 2. Let \(X\) be any set. Consider the metric space \((X, \delta)\) where \(\delta\) is the discrete metric, \(\delta : X \times X \to \mathbb{R}\) by \(\delta(a, b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}\). Suppose that \(\{x_i\}_{i=1}^{\infty}\) is a convergent sequence in the metric space \((X, \delta)\). Show that there is a number \(N\) such that \(x_N = x_{N+1} = x_{N+2} = \cdots\). (We say that the sequence is “eventually constant.”)

Answer:

Suppose that the sequence \(\{x_n\}_{n=1}^{\infty}\) converges to \(z\). Let \(\varepsilon = \frac{1}{2}\). Since \(\lim_{n \to \infty} x_n = z\), there is a \(N \in \mathbb{N}\) such that for all \(n \geq N\), \(x_n \in B_\varepsilon(z)\); that is, \(x_n \in B_{1/2}(z)\). But in the discrete metric, every point other than \(z\) is at distance 1 from \(z\), so \(B_{1/2}(z) = \{z\}\). Since \(x_n \in B_{1/2}(z)\) for \(n \geq N\), it must be that \(x_n = z\) for \(n \geq N\).

Problem 3. Let \((M, d)\) be a metric space and let \(X \subseteq M\). The closure, \(\overline{X}\) of \(X\) can be defined as the set containing all the points of \(X\) plus all the accumulation points of \(X\). Show that the closure of \(X\) can be characterized as follows: For \(z \in M\), \(z \in \overline{X}\) if and only if there is a sequence \(\{x_n\}_{n=1}^{\infty}\) of points of \(X\) such that \(\lim_{n \to \infty} x_n = z\). [Hint: Treat separately the cases where \(z \in X\) and where \(z\) is an accumulation point of \(X\).]

Answer:

\(\implies\) Let \(z \in \overline{X}\). We want to find a sequence, \(\{x_n\}_{n=1}^{\infty}\), of points of \(X\) that converges to \(z\). Since \(z \in \overline{X}\), we know that \(z \in X\) or \(z\) is an accumulation point of \(X\).
Consider the case $z \in X$. In that case, we can let $x_n = z$ for all n, since the constant sequence $(z)_{n=1}^\infty$ is a sequence of points of X that converges to z.

Now consider the case z is an accumulation point of z. Then, for any $\varepsilon > 0$, we know that there is some $a \in X$ such that $d(z, a) < \varepsilon$. For $n \in \mathbb{N}$, let x_n be a point of X such that $d(z, x_n) < \frac{1}{n}$. Then the sequence $(x_n)_{n=1}^\infty$ is a sequence of points of X that converges to z. (To prove convergence, let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$, by Archimedes’ Principle. So for $n \geq N$, we have $d(x_n, z) < \frac{1}{n} \leq \frac{1}{N} < \varepsilon$. That is, for $n \geq N$, $x_n \in B_\varepsilon(z).$)

\iff Suppose that $(x_n)_{n=1}^\infty$ is a sequence of points of X that converges to $z \in M$. We want to show that $z \in \overline{X}$.

If there is an $N \in \mathbb{N}$ such that $x_n = z$ for all $n > N$, then $z \in X$ because all elements of the sequence are in X, and $z \in \overline{X}$ because $X \subseteq \overline{X}$.

Suppose that no such N exists. We show that in that case, z is an accumulation point of X, which implies $z \in \overline{X}$. To show z is an accumulation point, let $\varepsilon > 0$. We must find an $a \in X$ such that $d(z, a) < \varepsilon$ and $a \not\in X$. Since $\lim_{n \to \infty} x_n = z$, there is an $N \in \mathbb{N}$ such that $d(x_n, z) < \varepsilon$ for all $n \geq N$. But we have assumed that the sequence is not eventually constant, so there must be some $n_o > N$ for which $x_{n_o} \neq z$. Let a be that x_{n_o}. Then we know $d(a, z) < \varepsilon$, and we know $a \in X$ since all terms of the sequence are in X.

(Improved proof for \iff: Suppose that $(x_n)_{n=1}^\infty$ is a sequence of points of X that converges to $z \in M$. We want to show that $z \in \overline{X}$.

If $z \in X$, there is nothing to prove, since $X \subseteq \overline{X}$ and so $z \in X$ implies $x \in \overline{X}$.

So suppose $z \not\in X$. We show z is an accumulation point of X, which means it is in \overline{X}. To show z is an accumulation point, let $\varepsilon > 0$. We must find an $a \in X$ such that $0 < d(x, z) < \varepsilon$. Since all of the elements of the sequence are in X, and z is not in X, we know that for all n, $x_n \neq z$ and $d(x_n, z) > 0$. And since the sequence converges to z, there must be an x_N such that $d(x_N, z) < \varepsilon$. Since $x_N \in X$, we have found an element x_N of X such that $0 < d(z, x_N) < \varepsilon$.)

Problem 4 (From textbook problem 3.1.3a). Even though $|x|$ is not differentiable at 0, show that the function $g(x) = \frac{1}{2}x|x|$ is differentiable at 0, and show that $g'(x) = |x|$ for all x. (Thus, $|x|$ has antiderivative $\frac{1}{2}x|x|$.)

Answer:

For $a < 0$, $g'(a) = \frac{d}{dx} \big|_{x=a} \frac{1}{2}x|x| = \frac{d}{dx} \big|_{x=a} \frac{1}{2}x(-x) = \frac{d}{dx} \big|_{x=a} (-\frac{1}{2}x^2) = -\frac{1}{2} \cdot 2a = -a = |a|$. So $g'(x) = |x|$ in the case $a < 0$.

For $a > 0$, $g'(a) = \frac{d}{dx} \big|_{x=a} \frac{1}{2}x|x| = \frac{d}{dx} \big|_{x=a} \frac{1}{2}x(x) = \frac{d}{dx} \big|_{x=a} (\frac{1}{2}x^2) = \frac{1}{2} \cdot 2a = a = |a|$. So $g'(x) = |x|$ in the case $a > 0$.

Finally, for the case $a = 0$, we must show that $g'(0) = \frac{1}{2}0|0|$, that is $g'(0) = 0$. But in this case we can calculate

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2}x|x| - 0}{x - 0}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2}x|x|}{x}$$

$$= \lim_{x \to 0} \frac{1}{2}|x|$$
\[
= \frac{1}{2} |0|, \text{ since } |x| \text{ is continuous at } 0 \\
= 0
\]

Problem 5 (Textbook problem 3.3.10). A **fixed point** of a function is a point \(d \) such that \(f(d) = d \). Suppose that \(f \) is differentiable everywhere and that \(f'(x) < 1 \) for all \(x \). Show that there can be at most one fixed point for \(f \). [Hint: Suppose that \(a \) and \(b \) are two fixed points of \(f \). Apply the Mean Value Theorem to obtain a contradiction.]

Answer:

Let \(f \) be differentiable everywhere and suppose that \(f'(x) < 1 \) for all \(x \). We want to show that \(f \) has at most one fixed point. Suppose, for the sake of contradiction, that \(f \) has more than one fixed point. Let \(a \) and \(b \) be distinct fixed points of \(f \). That is, \(a \neq b \), and \(f(a) = a \) and \(f(b) = b \). By the Mean Value Theorem, there is a \(c \) between \(a \) and \(b \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \). But \(f(b) = b \) and \(f(a) = a \), so \(f'(c) = \frac{b-a}{b-a} = 1 \). But that contradicts the assumption that \(f'(x) < 1 \) for all \(x \).

Problem 6 (From textbook problem 3.3.2). Recall that \(f \) satisfies a Lipschitz condition if there is a constant \(M \) such that \(|f(b) - f(a)| \leq M|b - a|\) for all \(a, b \). Problem #9 on Homework #4 proved that any function that satisfies a Lipschitz condition is uniformly continuous. Let \(f \) be a function that is differentiable on some interval \(I \) (not necessarily bounded or closed), and suppose \(|f'(x)| \leq M \) for all \(x \), where \(M \) is some constant. Use the Mean Value Theorem to prove that \(|f(b) - f(a)| \leq M|a - b|\) for all \(a, b \). Conclude that \(f \) is uniformly continuous.

Answer:

Suppose \(f \) is differentiable on an interval \(I \) and \(|f'(x)| < M \) for all \(x \in I \). Let \(a \) and \(b \) be distinct points in \(I \), where we can assume without loss of generality that \(a < b \). Since \(I \) is an interval, it contains the entire interval \([a, b]\). Since \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\), the Mean Value Theorem applies. That is, there is a \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \). Since \(c \in I \), we know by assumption that \(|f'(c)| \leq M \). That is, \(|f(b) - f(a)| \leq M|b - a| \). Since \(|b - a| > 0\), this implies \(|f(b) - f(a)| \leq M|b - a| \). That is, \(f \) satisfies a Lipschitz condition on the interval \(I \) with Lipschitz constant \(M \). We conclude by Problem #9 on Homework #4 that \(f \) is uniformly continuous on \(I \).

(Note: The problem originally assumed, incorrectly, only that \(f'(c) < M \). If we only have \(f'(c) < M \), that leaves open the possibility that \(f'(c) \) is some large negative number, and in that case the statement is not true. For example, if \(f(x) = \frac{1}{x} \) for \(x > 0 \), then \(f'(c) < 1 \) for all \(c > 0 \), but \(f \) is not uniformly continuous on \((0, \infty)\). So, we assume that \(|f'(c)| < M \) (which implies \(M > 0 \)).)