
Math 331, Fall 2022 Sample Answers for Homework 7

Problem 1. We showed that if f is integrable on [a, b], then |f | is also integrable on [a, b].
Now, suppose we know that |g| is integrable on [a, b]. Is it necessarily true that g is integrable
on [a, b]? [Hint: Consider a simple modification of the Dirichlet function.]

Answer:

It is not necessarily true that if |g| is integrable, then g is integrable. Recall that the

Dirichlet function is defined as D(x) =

{
1 if x is rational

0 if x is irrational
. We know that D(x) is not

integrable on [0, 1]. Define g(x) = D(x) − 1
2

=

{
1/2 if x is rational

−1/2 if x is irrational
. Then |g| is the

constant function 1
2
, so |g| is integrable. However, g is not integrable, since if it were then

D(x) = g(x) + 1
2

would also be integrable.

Problem 2. Suppose f is a continuous function on [a, b] and f(x) > 0 for x ∈ [a, b]. Define
F (x) =

∫ x

a
f . Prove that F is strictly increasing on [a, b]. [Hint: This is trivial, using two

facts that we have proved.]

Answer:

By the Second Fundamental Theorem of Calculus, F ′(x) = f(x) for all x ∈ [a, b]. So
saying f(x) > 0 means F ′(x) > 0. By a corollary to the Mean Value Theorem, F is strictly
increasing.

[Or, to prove it directly, suppose x1, x2 ∈ [a, b] with x1 < x2. We must show F (x1) <

F (x2). By the MVT, there is a c ∈ [x1, x2] such that F ′(c) = F (x2)−F (x1)
x2−x1

. Since F ′(c) > 0,

we have F (x2)−F (x1)
x2−x1

> 0. And then, since x2 − x1 > 0, we can multiply that inequaltity by
x2 − x1 to get F (x2)− F (x1) > 0. That is, F (x2) > F (x1.]

[Or, for a different proof, let x1, x2 ∈ [a, b] with x1 < x2. We must show F (x1) < F (x2).
But F (x1) < F (x2) =

∫ x2

x1
f > 0 using the fact that f is continuous and the result in Problem

4c below.]

Problem 3 (Textbook problem 3.4.11). Assume that f is integrable on [a, b]. Suppose that
J is a real number such that L(f, P ) ≤ J ≤ U(f, P ) for every partition P of [a, b]. Show

that J =
∫ b

a
f . [Hint: Use properties of sup and inf, that is of lub and glb, and the definition

of integrable.]

Answer:

Since f is integrable on [a, b], we know that
∫ b

a
f = supP L(f, P ) = infP U(f, P ).

Since J ≥ L(f, P ) for every partition P of [a, b], we see that J is an upper bound for the
set {L(f, P ) | P is a partition of [a, b]}. So, J is greater than or equal to the sup of this set,

which is
∫ b

a
f . That is, J ≥

∫ b

a
f .

Since J ≤ U(f, P ) for every partition P of [a, b], we see that J is a lower bound for the
set {U(f, P ) | P is a partition of [a, b]}. So, J is less than or equal to the inf of this set,

which is
∫ b

a
f . That is, J ≤

∫ b

a
f .

So we have
∫ b

a
f ≤ J ≤

∫ b

a
f , which means J =

∫ b

a
f .



Problem 4. Prove the following statements.

(a) Assume that f is an integrable function on [a, b] and f(x) ≥ 0 for all x ∈ [a, b]. Prove

directly, using the definition of the integral, that
∫ b

a
f ≥ 0.

(b) Assume that f and g are integrable on [a, b] and that f(x) ≥ g(x) for all x ∈ [a, b].

Prove that
∫ b

a
f ≥

∫ b

a
g, using part (a) and the linearity of the integral (Theorems 3.5.6

and 3.5.7).

(c) Assume that f is continuous on [a, b], that f(x) ≥ 0 for all x ∈ [a, b], and that

f(c) > 0, where c is some number in (a, b). Show that
∫ b

a
f > 0. [Hint: A previous

homework problem already showed that there is a δ > 0 such that f(x) > f(c)
2

for all
x ∈ (c− δ, c+ δ).]

Answer:

(a) Let P = {x0, x1, . . . , xn} be any partition of [a, b], and let Mi = inf{f(x) | xi−1 ≤
x ≤ xi}, as usual. Since f(x) ≥ 0 for all x ∈ [xi−1, xi], we know that Mi ≥ 0.
Therefore U(f, P ), which is

∑n
i=1Mi · (xi − xi−1), is a sum of non-negative terms. So

U(f, P ) ≥ 0. Since this is true for all partitions of [a, b], zero is a lower bound for
the set {U(f, P ) | P is a partition of [a, b]}, which implies that infP U(f, P ) ≥ 0. But

infP U(f, P ) =
∫ b

a
f , so we have

∫ b

a
f ≥ 0.

(b) We know f(x) ≥ g(x), and therefore f(x) − g(x) ≥ 0, for all x ∈ [a, b]. By part (a),∫ b

a
(f−g) ≥ 0. By the linearity of the integral,

∫ b

a
(f−g) =

( ∫ b

a
f
)
−
( ∫ b

a
g
)
. Combining

these facts,
( ∫ b

a
f
)
−
( ∫ b

a
g
)
≥ 0, and therefore

∫ b

a
f ≥

∫ b

a
g.

(c) By continuity of f at c, there is a δ > 0 such that f(x) > f(c)
2

for all x ∈ (c− δ, c+ δ).

[For the proof: Since f(c)
2

> 0 and f is continuous at c, there is a δ > 0 such that

|x − c| < δ implies |f(x) − f(c)| < f(c)
2

. That is, for x ∈ (c − δ, c + δ), we get

−f(c)
2
< f(x)−f(c) < f(c)

2
and therefore f(c)

2
< f(x).] By making δ smaller if necessary,

we can assume (c− δ, c+ δ) ⊂ [a, b]. If we let g(x) be the function that is equal to f(c)
2

for c − δ < x < c + δ and is zero elsewhere, then f(x) ≥ g(x) for all x ∈ [a, b], and∫ b

a
g = 2δ f(c)

2
> 0. So

∫ b

a
f ≥

∫ b

a
g > 0.

Problem 5. Suppose that f and g are continuously differentiable functions on [a, b]. So, f ,
g, f ′ and g′ are all continuous. Prove the Integration by Parts formula∫ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x) dx

[Hint: One way to do this is to define, for x ∈ [a, b], P (x) =
∫ x

a
f(t)g′(t)dt and Q(x) =

f(t)g(t)
∣∣x
a
−
∫ x

a
f ′(t)g(t)dt = f(x)g(x)− f(a)g(a)−

∫ x

a
f ′(t)g(t)dt. Show that P ′(x) = Q′(x)

and P (a) = Q(a), and explain why this means P (x) = Q(x) for all x ∈ [a, b]. Finally, use
P (b) = Q(b).]



Answer:

Note that since f , g, f ′ and g′ are all continuous, it follows that fg′ and f ′g are also
continuous and hence integrable. So, the integrals in this problem are defined.

Let P (x) and Q(x) be as in the hint. By the Second Fundamental Theorem of Calculus,
P ′(x) = f(x)g′(x) for all x ∈ [a, b]. Again applying the Second Fundamental Theorem and
the prduct and sum rules for differentiation,

Q′(x) =
d

dx

(
f(x)g(x)− f(a)g(a)−

∫ x

a

f ′(t)g(t) dx

)
=

d

dx

(
f(x)g(x)

)
− d

dx

(
f(a)g(a)

)
− d

dx

∫ x

a

f ′(t)g(t) dx

=
(
f(x)g′(x) + f ′(x)g(x)

)
− 0− f ′(x)g′(x)

= f(x)g′(x)

= P ′(x)

Since P and Q have the same derivative on [a, b], they differ by a constant on that interval.
Since P (a) = Q(a) = 0, The two functions are the same. Evaluating them at x = b gives∫ b

a

f(t)g′(t)dt = f(t)g(t)

∣∣∣∣b
a

−
∫ b

a

f(t)g′(t)dt

as we wanted to show.


