Math 331, Fall 2022 Take-home Test #1 Sample Answers

Problem 1. State a careful definition of lim f (x) = +00. Then use the definition to prove
T—a

1
directly that lim — = +o0.
z—0T T

Answer:

Define lim+ f(z) = +oo if for every M € R, there is a 6 > 0 such that for all z, if

rT—ra

0 <z —a<d,then f(z)is defined and f(x) > M.
To show that lim % = 400, let M € R. In case M < 0, § can be arbitrary because

z—0t
% > 0 for all x > 0. So, consider the case where M > 0. Let § = ﬁ, and suppose that z

satisfies 0 < o — 0 < 0. We must show that % > M. But 0 < x — 0 < § means x is positive
and r < ﬁ Since M and z are positive, multiplying the inequality by M and dividing by
x gives M < %, as we wanted to show.

Problem 2. Let X and Y be non-empty, bounded subsets of R. Suppose that for every
x € X and for every y € Y, x < y. Prove that lub(X) < glb(Y). Is it always true that
lub(X) < glb(Y") 7 (Prove or give a counterexample!)

Answer:

Consider any = € X. Since x < y for all y € Y, x is a lower bound for y. By defnition of
greatest lower bound, this implies that x < ¢glb(Y"). Since that is true for all z € X, glb(Y) is
an upper bound for X. By definition of least upper bound, this implies that lub(X) < glb(Y'),

It is not always the case that lub(X) < glb(Y"). For a counterexample, let X = [0,1) and
let Y =(1,2]. Then x < y for all z € X and y € Y, but lub(X) = glb(Y),

(Alternative proof: Let ¢ > 0. We know that there is some =z € X such that z >
lub(X) — ¢, and there is some y € Y such that y < glb(Y) +¢. Since x € X and y € Y, we
know by assumption that x < y. So we have lub(X) —e < x <y < glb(Y) + ¢, and therefore
lub(X) < glb(Y') + 2¢. Since this is true for any € > 0, lub(X) < glb(Y).)

Problem 3. Let A and B be subsets of R. Suppose that x is an accumulation point of the
set AU B. Show that z is an accumulation point of A or z is an accumulation point of B
(or both). (Hint: Try a proof by contradiction.)

Answer:

Suppose, for the sake of contradiction, that x is not an accumulation point of A and z
is not an accumulation point of B. Since z is not an accumulation point of A, there is an
n > 0 such that AN (z —n,z + n) contains no point of A other than, possibly, x. Since z
is not an accumulation point of B, there is a ¢ > 0 such that AN (z — ¢,z + () contains no
point of A other than, possibly, x. Let ¢ = min(#n, (). Then (x — ¢,z + £) contains no point
of A other than z, and it also contains no point of B other than x, That is, (x — e,z + ¢)
contains no point of AU B other than x. By definition of accumulation point, this means
that x is not an accumulation point of AU B. But that contradicts the hypothesis.



Problem 4. Let f and g be functions. Then we can define a new function max(f, g) whose
value at x is given by max(f(z), g(z)).

(a) Show that for any numbers a and b, max(a,b) = 1(Ja — b| + a + b). (Hint: Consider
two cases.)

(b) Now, suppose that f and g are continuous on an interval I. Show that the function
max(f, g) is also continuous on I. Be clear about what continuity rules or theorems
you use.

Answer:

(a) Consider the cases a < band a > b. In the case a < b, max(a,b) = b. We have a—b < 0,
and therefore |a—b| = b—a. So in this case, § (la—b[+a+b) = 1 (b—a+a+b) = $(2b) =
b = max(a,b). And in the case a > b, max(a,b) = a. We have a — b > 0, and therefore
la—b| = a—b. Soin this case, 1 (Ja—b|+a+b) = L (a—b+a+b) = (2a) = a = max(a, b).

(b) By part (a), the function max(f,g) is given by 2(|f — g| + f + ). We know the
difference of two continuous functions is continuous, the absolute value function is
continuous, and the composition of continuous functions is continuous. So, |f — ¢g| is
a continuous function. Then, since the sum of continuous functions is continuous, we
know |f — g| + f + g is continuous. Finally, since a constant multiple of a continuous
function is continuous, we get that %(\ f—gl+f+ b). That is, max(f, ¢g) is continuous.

Problem 5. Let S be a subset of R. Recall that S is said to be dense in R if for any open
interval (a, b), the intersection of S with the set (a, b) is not empty. (That is, there is at least
one s € S such that a < s < b.) Prove that S is dense in R if and only if every point of R is
an accumulation point of S.

Answer:

—>) Suppose that S is a dense subset of R. Let x € R. We must show that z is an
accumulation point of S. Let ¢ > 0. We want to find s € S such that 0 < |z — s| < e. Since
S is dense, there is some s € S such that s is in the open interval (z,z + ¢). So, s # x
(giving 0 < |z — s), and < s < x + ¢ (giving |z — s| < €).

<) Suppose that every point of R is an accumulation point of S. We must show S
is dense in R. Let a,b € R with a < b. We must find some s € S such that a < s < b.
Let x = ”Ta, the midpoint of (a,b), and let ¢ = b’T‘l, half the length of (a,b). Since x is an
accumulation point of S, there is some s € S such that 0 < |z — s| < e. So |s — 22| < &2,

This is equivalent to

b—a< b+a<b—a
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which is what we needed to show.



Problem 6. Let f(x) be a continuous function on a closed, bounded interval [a, b]. In class,
we used uniform continuity of f to show that f is bounded above. However, it is possible to
prove that directly using the Heine-Borel Theorem. Follow this outline to prove that there
is a number M such that f(z) < M for all = € [a, b]:

e Show that for any z € [a, b], there is a §, > 0 and a number M, such that f(z) < M,
forall z € (2 —9,,249,). (This is an easy consequence of continuity. Just let € =1 in
the definition of continuity at z, and get f(z) < f(z) + 1 for all x near enough to z.)

e Define an open cover of [a, b] consisting of the intervals (z —d,, 2+ d.), for all z € [a, b].
(State why it is a cover.)

e Apply the Heine-Borel Theroem, and finish the proof.

Answer:

Suppose f is continuous on [a,b]. Let z € [a,b]. By definition of continuity at z, letting
¢ in that definition equal 1, there is a 0, > 0 such that for all z € [a,b], if |z — 2| < 4,
then |f(x) — f(2)| < 1. Now, |f(z) — f(2)| < 1is equivalent to —1 < f(x) — f(z) < 1, or
f(z)—1 < f(x) < f(z)+1. Note in particular that f(z) < f(z)+1forall x € (z—0,,2+9.).
Let M, = f(z) + 1.

The set € = {(z — 6,2+ 0,) : z € [a,b]} is an open cover of [a, b] since every ¢ € [a, b] is
in the open set (¢ — d., ¢ + 6.), which is one of the sets in €.

By the Heine-Borel Theorem, there is a finite subcover of [a, b] from €. Let that subcover
be 9 ={(z;— 0,2 +06,,) i=1,2,...,k}, and let M = max(M,,, M,,,..., M, ). We must
show that f(z) < M for all x € [a,b]. Let x € [a,b]. Since Z covers [a,b], x € (2;—0.,, z;+0,,)
for some 4, so we have f(z) < M,, < M.

Problem 7. Suppose that f(z) and g(z) are uniformly continuous on the interval I (which
is not necessarily closed or bounded). Show directly from the definition of uniform continuity
that f(x) + g(x) is uniformly continuous on 1.

Answer:

Suppose f and g are uniformly continuous on an interval /. We want to show that f+g¢
is uniformly continuous on I. Let ¢ > 0.

Since f is uniformly continuous on I, there is a d; > 0 such that for every x,y € I, if
|z —y| <6y, then [f(z) — f(z)] < 5.

Since ¢ is uniformly continuous on I, there is a do > 0 such that for every x,y € I, if
|z — y| < &2, then [g(z) — g(z)] < 3.

Let 6 = min(dy,d2). Let x,y € I such that |x—y| < ;. We then have both |f(z)— f(y)| <
5 and [g(z) — g(y)[ < 5. So

|(f(2) +9(2) = (f(y) + 9(v)]

|(f(2) = f(y) + (9(=) = 9(y))]
(If (=) = FW)l + lg(x) = 9(y)
+
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This shows that f 4 ¢ is uniformly continuous on 1.



