Problem 1. State a careful definition of \(\lim_{x \to a^+} f(x) = +\infty \). Then use the definition to prove directly that \(\lim_{x \to 0^+} \frac{1}{x} = +\infty \).

Answer:

Define \(\lim_{x \to a^+} f(x) = +\infty \) if for every \(M \in \mathbb{R} \), there is a \(\delta > 0 \) such that for all \(x \), if \(0 < x - a < \delta \), then \(f(x) > M \).

To show that \(\lim_{x \to 0^+} \frac{1}{x} = +\infty \), let \(M \in \mathbb{R} \). In case \(M \leq 0 \), \(\delta \) can be arbitrary because \(\frac{1}{x} > 0 \) for all \(x > 0 \). So, consider the case where \(M > 0 \). Let \(\delta = \frac{1}{M} \), and suppose that \(x \) satisfies \(0 < x - 0 < \delta \). We must show that \(\frac{1}{x} > M \). But \(0 < x - 0 < \delta \) means \(x \) is positive and \(x < \frac{1}{M} \). Since \(M \) and \(x \) are positive, multiplying the inequality by \(M \) and dividing by \(x \) gives \(M < \frac{1}{x} \), as we wanted to show.

Problem 2. Let \(X \) and \(Y \) be non-empty, bounded subsets of \(\mathbb{R} \). Suppose that for every \(x \in X \) and for every \(y \in Y \), \(x < y \). Prove that \(\text{lub}(X) \leq \text{glb}(Y) \). Is it always true that \(\text{lub}(X) < \text{glb}(Y) \)? (Prove or give a counterexample!)

Answer:

Consider any \(x \in X \). Since \(x < y \) for all \(y \in Y \), \(x \) is a lower bound for \(Y \). By definition of greatest lower bound, this implies that \(x < \text{glb}(Y) \). Since that is true for all \(x \in X \), \(\text{glb}(Y) \) is an upper bound for \(X \). By definition of least upper bound, this implies that \(\text{lub}(X) < \text{glb}(Y) \).

It is not always the case that \(\text{lub}(X) < \text{glb}(Y) \). For a counterexample, let \(X = [0, 1] \) and let \(Y = (1, 2] \). Then \(x < y \) for all \(x \in X \) and \(y \in Y \), but \(\text{lub}(X) = \text{glb}(Y) \).

(Alternative proof: Let \(\varepsilon > 0 \). We know that there is some \(x \in X \) such that \(x > \text{lub}(X) - \varepsilon \), and there is some \(y \in Y \) such that \(y < \text{glb}(Y) + \varepsilon \). Since \(x \in X \) and \(y \in Y \), we know by assumption that \(x < y \). So we have \(\text{lub}(X) - \varepsilon < x < y < \text{glb}(Y) + \varepsilon \), and therefore \(\text{lub}(X) < \text{glb}(Y) + 2\varepsilon \). Since this is true for any \(\varepsilon > 0 \), \(\text{lub}(X) \leq \text{glb}(Y) \).)

Problem 3. Let \(A \) and \(B \) be subsets of \(\mathbb{R} \). Suppose that \(x \) is an accumulation point of the set \(A \cup B \). Show that \(x \) is an accumulation point of \(A \) or \(x \) is an accumulation point of \(B \) (or both). (Hint: Try a proof by contradiction.)

Answer:

Suppose, for the sake of contradiction, that \(x \) is not an accumulation point of \(A \) and \(x \) is not an accumulation point of \(B \). Since \(x \) is not an accumulation point of \(A \), there is a \(\eta > 0 \) such that \(A \cap (x - \eta, x + \eta) \) contains no point of \(A \) other than, possibly, \(x \). Since \(x \) is not an accumulation point of \(B \), there is a \(\zeta > 0 \) such that \(A \cap (x - \zeta, x + \zeta) \) contains no point of \(A \) other than, possibly, \(x \). Let \(\varepsilon = \min(\eta, \zeta) \). Then \((x - \varepsilon, x + \varepsilon) \) contains no point of \(A \) other than \(x \), and it also contains no point of \(B \) other than \(x \). That is, \((x - \varepsilon, x + \varepsilon) \) contains no point of \(A \cup B \) other than \(x \). By definition of accumulation point, this means that \(x \) is not an accumulation point of \(A \cup B \). But that contradicts the hypothesis.
Problem 4. Let \(f \) and \(g \) be functions. Then we can define a new function \(\max(f, g) \) whose value at \(x \) is given by \(\max(f(x), g(x)) \).

(a) Show that for any numbers \(a \) and \(b \), \(\max(a, b) = \frac{1}{2}(|a-b| + a + b) \). (Hint: Consider two cases.)

(b) Now, suppose that \(f \) and \(g \) are continuous on an interval \(I \). Show that the function \(\max(f, g) \) is also continuous on \(I \). Be clear about what continuity rules or theorems you use.

Answer:

(a) Consider the cases \(a < b \) and \(a \geq b \). In the case \(a < b \), \(\max(a, b) = b \). We have \(a-b < 0 \), and therefore \(|a-b| = b-a \). So in this case, \(\frac{1}{2}(|a-b| + a + b) = \frac{1}{2}(b-a+a+b) = \frac{1}{2}(2b) = b = \max(a, b) \). And in the case \(a \geq b \), \(\max(a, b) = a \). We have \(a-b > 0 \), and therefore \(|a-b| = a-b \). So in this case, \(\frac{1}{2}(|a-b| + a + b) = \frac{1}{2}(a-b+a+b) = \frac{1}{2}(2a) = a = \max(a, b) \).

(b) By part (a), the function \(\max(f, g) \) is given by \(\frac{1}{2}(|f-g| + f + b) \). We know the difference of two continuous functions is continuous, the absolute value function is continuous, and the composition of continuous functions is continuous. So, \(|f-g| \) is a continuous function. Then, since the sum of continuous functions is continuous, we know \(|f-g| + f + g \) is continuous. Finally, since a constant multiple of a continuous function is continuous, we get that \(\frac{1}{2}(|f-g| + f + g) \). That is, \(\max(f, g) \) is continuous.

Problem 5. Let \(S \) be a subset of \(\mathbb{R} \). Recall that \(S \) is said to be dense in \(\mathbb{R} \) if for any open interval \((a, b)\), the intersection of \(S \) with the set \((a, b)\) is not empty. (That is, there is at least one \(s \in S \) such that \(a < s < b \).) Prove that \(S \) is dense in \(\mathbb{R} \) if and only if every point of \(\mathbb{R} \) is an accumulation point of \(S \).

Answer:

\[\implies \] Suppose that \(S \) is a dense subset of \(\mathbb{R} \). Let \(x \in \mathbb{R} \). We must show that \(x \) is an accumulation point of \(S \). Let \(\varepsilon > 0 \). We want to find \(s \in S \) such that \(0 < |x-s| < \varepsilon \). Since \(S \) is dense, there is some \(s \in S \) such that \(s \) is in the open interval \((x, x+\varepsilon)\). So, \(s \neq x \) (giving \(0 < |x-s| \)), and \(x < s < x+\varepsilon \) (giving \(|x-s| < \varepsilon \)).

\[\iff \] Suppose that every point of \(\mathbb{R} \) is an accumulation point of \(S \). We must show \(S \) is dense in \(\mathbb{R} \). Let \(a, b \in \mathbb{R} \) with \(a < b \). We must find some \(s \in S \) such that \(a < s < b \). Let \(x = \frac{b+a}{2} \), the midpoint of \((a, b)\), and let \(\varepsilon = \frac{b-a}{2} \), half the length of \((a, b)\). Since \(x \) is an accumulation point of \(S \), there is some \(s \in S \) such that \(0 < |x-s| < \varepsilon \). So \(|s - \frac{b+a}{2}| < \frac{b-a}{2} \). This is equivalent to

\[
\begin{align*}
\frac{-b-a}{2} < s - \frac{b+a}{2} < \frac{b-a}{2} \\
\frac{b+a}{2} - \frac{b-a}{2} < s < \frac{b+a}{2} + \frac{b-a}{2} \\
\frac{b+a-a+b}{2} < s < \frac{b+a+b-a}{2} \\
a < s < b
\end{align*}
\]

which is what we needed to show.
Problem 6. Let \(f(x) \) be a continuous function on a closed, bounded interval \([a, b]\). In class, we used uniform continuity of \(f \) to show that \(f \) is bounded above. However, it is possible to prove that directly using the Heine-Borel Theorem. Follow this outline to prove that there is a number \(M \) such that \(f(x) \leq M \) for all \(x \in [a, b] \):

- Show that for any \(z \in [a, b] \), there is a \(\delta_z > 0 \) and a number \(M_z \) such that \(f(x) \leq M_z \) for all \(x \in (z - \delta_z, z + \delta_z) \). (This is an easy consequence of continuity. Just let \(\varepsilon = 1 \) in the definition of continuity at \(z \), and get \(f(x) < f(z) + 1 \) for all \(x \) near enough to \(z \).)

- Define an open cover of \([a, b]\) consisting of the intervals \((z - \delta_z, z + \delta_z)\), for all \(z \in [a, b] \).
 (State why it is a cover.)

- Apply the Heine-Borel Theorem, and finish the proof.

Answer:

Suppose \(f \) is continuous on \([a, b]\). Let \(z \in [a, b] \). By definition of continuity at \(z \), letting \(\varepsilon \) in that definition equal 1, there is a \(\delta_z > 0 \) such that for all \(x \in [a, b] \), if \(|x - z| < \delta_z \), then \(|f(x) - f(z)| < 1 \). Now, \(|f(x) - f(z)| < 1 \) is equivalent to \(-1 < f(x) - f(z) < 1\), or \(f(z) - 1 < f(x) < f(z) + 1 \). Note in particular that \(f(x) < f(z) + 1 \) for all \(x \in (z - \delta_z, z + \delta_z) \).

Let \(M_z = f(x) + 1 \).

The set \(C = \{(z - \delta_z, z + \delta_z) : z \in [a, b]\} \) is an open cover of \([a, b]\) since every \(c \in [a, b] \) is in the open set \((c - \delta_c, c + \delta_c)\), which is one of the sets in \(C \).

By the Heine-Borel Theorem, there is a finite subcover of \([a, b]\) from \(C \). Let that subcover be \(D = \{(z_i - \delta_{z_i}, z_i + \delta_{z_i}) : i = 1, 2, \ldots, k\} \), and let \(M = \max(M_{z_1}, M_{z_2}, \ldots, M_{z_k}) \). We must show that \(f(x) \leq M \) for all \(x \in [a, b] \). Let \(x \in [a, b] \). Since \(D \) covers \([a, b]\), \(x \in (z_i - \delta_{z_i}, z_i + \delta_{z_i}) \) for some \(i \), so we have \(f(x) < M_z \leq M \).

Problem 7. Suppose that \(f(x) \) and \(g(x) \) are uniformly continuous on the interval \(I \) (which is not necessarily closed or bounded). Show directly from the definition of uniform continuity that \(f(x) + g(x) \) is uniformly continuous on \(I \).

Answer:

Suppose \(f \) and \(g \) are uniformly continuous on an interval \(I \). We want to show that \(f + g \) is uniformly continuous on \(I \). Let \(\varepsilon > 0 \).

Since \(f \) is uniformly continuous on \(I \), there is a \(\delta_1 > 0 \) such that for every \(x, y \in I \), if \(|x - y| < \delta_1 \), then \(|f(x) - f(y)| < \frac{\varepsilon}{2} \).

Since \(g \) is uniformly continuous on \(I \), there is a \(\delta_2 > 0 \) such that for every \(x, y \in I \), if \(|x - y| < \delta_2 \), then \(|g(x) - g(y)| < \frac{\varepsilon}{2} \).

Let \(\delta = \min(\delta_1, \delta_2) \). Let \(x, y \in I \) such that \(|x - y| < \delta \). We then have both \(|f(x) - f(y)| < \frac{\varepsilon}{2} \) and \(|g(x) - g(y)| < \frac{\varepsilon}{2} \). So

\[
|f(x) + g(x) - (f(y) + g(y))| = |(f(x) - f(y)) + (g(x) - g(y))| \\
\leq |f(x) - f(y)| + |g(x) - g(y)| \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon
\]

This shows that \(f + g \) is uniformly continuous on \(I \).