
Math 331, Fall 2022 Take-home Test #2

This test is due by the start of class on the day of the second in-class test, Friday,
November 18. You should do any six out of the seven problems on the test.
Do not do all seven; if you do all seven, your answer for problem 7 will
be ignored.

You should do this test on your own, using only your textbook, class notes, and
previous work in the course as reference. You should not work with other students,
you should not use the Internet or other references, and you should not consult
anyone except the professor for the course. You can ask questions about the test in
class and by email. I might give some hints and clarifications, but I am unlikely to
give extensive, detailed help. Be sure to show all of your work! If you are not able to
complete a problem, you should turn in work showing whatever progress you have
made on it, for partial credit. Note: There will be no “rewrites” for this test.

You can submit your answers in LaTeX on overleaf.com, if you want to do that,
but you are welcome to write up your answers neatly by hand.

Although some problems are more difficult than others, and some are fairly easy,
all seven problems will count equally.

Problem 1. (a) Suppose that the function F (x) is differentiable at a. Show directly from
the definition of derivative that the function G(x) = F (x)2 is differentiable at a and G′(a) =
2F (a)F ′(a). [Hint: You only need to factor F (x)2 − F (a)2 in the definition.]

(b) We know that f(x)g(x) = 1
4

(
(f(x)+g(x))2−(f(x)−g(x))2

)
from a previous homework

problem . Using only this fact, the result from part (a), and the sum, difference, and constant
multiple rules for derivatives, find the formula for the derivative of f(x)g(x),

Problem 2. Let f and g be differentiable functions on [a, b]. Suppose that f(a) = g(a)
and f ′(x) > g′(x) for all x ∈ (a, b). Prove that f(b) > g(b). [Hint: Consider the function
h(x) = f(x)− g(x) and apply the Mean Value Theorem.]

Problem 3. Let f be an integrable function on [a, b]. Suppose that A ≤ f(x) ≤ B for all

x ∈ [a, b]. Show, from the definition of the integral, that A · (b − a) ≤
∫ b

a
f ≤ B · (b − a).

(Hint: Use the trivial partition P = {x0, x1} where x0 = a, x1 = b.)

Problem 4. Suppose that f is integrable on [a, b]. Define F (x) =
∫ x

a
f for x ∈ [a, b], and

define G(x) =
∫ x

a
F for x ∈ [a, b]. How do we know

∫ x

a
F exists? Show that G is differentiable

on [a, b].

Problem 5. Let
∑∞

k=1 ak be a convergent series of non-negative terms. Prove that the

series
∑∞

k=1 a
2
k also converges. [Hints:

(
1
2

)2
= 1

4
, and remember that you only need to show∑∞

k=N a2k converges for some N .]



Problem 6 (Textbook problem 4.5.7, 8). (a) Let {fn}∞n=1 be a sequence of functions defined
on an interval I. Assume that each fn is bounded; that is, there are constants Mn such that
|fn(x)| ≤Mn for all x ∈ I. Prove: If {fn}∞n=1 converges uniformly to f , then f must also be
bounded on I.

(b) Show that the hypothesis of uniform convergence is necessary by finding a sequence
of bounded functions that converges pointwise to a function that is not bounded. ([Hint:
Take I = [0,∞) and look for a simple example.]

Problem 7. Suppose that the function f : R → R satisfies |f(x) − f(y)| ≤ r|x − y| for all
x, y ∈ R, where r is a constant in the interval 0 ≤ r < 1. Such a function is said to be a
contraction on R. Note that a contraction is simply a Lipschitz function with Lipschitz
constant strictly less than 1, so we already know that f is continuous.

(a) Let t be any real number. Define a sequence {an}∞n=0 by a0 = t, an = f(an−1) for
n > 0. That is a0 = t, a1 = f(t), a2 = f(f(t)), a3 = f(f(f(t))), . . . , an = fn(t), . . . ,
where fn is the composition of f with itself n times. Show that the sequence {an}∞n=0

is contracting, and hence is convergent.

(b) Let z = lim
n→∞

an. Show that f(z) = z, that is, z is a fixed point of f . [Hint: Write

f(z) = f
(

lim
n→∞

an
)

= f
(

lim
n→∞

fn(t)
)
. and use the fact that f is continuous.]

(Note: Recall that a fixed point of a function f is a point y such that f(y) = y. It
is clear that a contraction can have at most one fixed point. This problem shows that
a contraction always does have a fixed point. Furthermore, if t is any real number, then
the sequence {fn(t)}∞n=0 converges to that unique fixed point. This is the Contraction
Mapping Theorem for R.)


