Math 331, Fall 2022, Test 1 Information

The first in-class test will take place on Monday, October 3. It will cover Chapters 1
and 2 from the textbook and the section on open and closed sets from the metric spaces web
site. You can expect questions that cover concepts, definitions, and theorems. You should
certainly be able to give clear and precise statements of important definitions and theorems.
You should be able to work with the concepts, definitions, and theorems as they apply to
examples and problems. You should be able to do short proofs that are, from my point of
view at least, simple and straightforward. The questions on the test will include shorter and
longer essay-type questions, math problems (things like “find the least upper bound” or “find
the following limit”), and simple proofs.

There will be no questions on the test about Dedekind cuts, the eleven field axioms, limits
at infinity, or infinite limits.

Some concepts, definitions, and theorems that you should know about for the test:

the sets R, Q, and N

rational and irrational numbers

examples of irrational numbers, such as /p for p prime

bounded sets in R; upper bounds and lower bounds

least upper bounds and greatest lower bounds

Archimedean property of R

R is a complete, ordered field (and is characterized by this property)

a field is set with multiplication and addition satisfying certain axioms
an ordered field has an operation < that is defined by a set, P, of positive elements
absolute value, |z|, and distance in R, |z — y|

triangle inequality in R: |a 40| < |a| + |b], or |z —z| < |z —y|+ |y — 2|
open sets, open covers, and subcovers

accumulation point of a set in R

ligl f(x), the epsilon-delta definition

one-sided limits

continuity at a point, and continuity on an interval

uniform continuity

metric space; distance in a metric space; open ball B (x)
open subset in a metric space; closed subset in a metric space
accumulation point of a set in a metric space

closure of a subset of a metric space

Definition. A subset S of R is dense in R if for any a,b € R with a < b, there exists an s € S

such that a < s < b. (Alternative definition: S is dense if for every non-empty open subset U of R,
SNU #@.)

Definition. An accumulation point of a subset X of R is a point a € R such that for any € > 0,
there is an € X such that 0 < |z —a| < e.



Definition. An open cover for a subset X of R is a collection of open sets {O, |a € A} such
that X C U Oq. A subcover for this cover is a subset of {O, | € A} that is still a cover of X.
acA

Definition. For a function f and a, L € R, we say il_r)ré f(z) = L if for every € > 0, thereisa § > 0
such that for any z, 0 < |z — a| < ¢ implies f(z) is defined and |f(x) — L| < e.
Definition. For a function f and a € R, we say f is continuous at a if for every € > 0, there is a
d > 0 such that for all z, if |z — a| < J then |f(x) — f(a)| < e. (Equivalently, f is continuous at a
if lim f(x) = f(a).)

T—a
Definition. A function f is uniformly continuous on an interval I if for every € > 0, there is a
d > 0 such that for all z,y € I, if |z — y| < 4, then |f(z) — f(y)| < e.

Definition. A metric space is a pair (M,d), where M is a set and d: M x M — R, satisfying
(1) d(z,y) > 0 for all z,y € M; (2) d(z,y) = 0 if and only if x = y, for all z,y € M; (3) d(z,y) =
d(y,x) for all x,y € M; and (4) d(x, z) < d(x,y) + d(y, z) for all z,y,z € M. (Property (4) is the
triangle inequality for metric spaces.)

Definition. If (M,d) is a metric space, z € M, and r > 0, then the open ball about z of radius
7 in the metric d is defined as BY(x) = {z € M |d(z,z) < r}.

Definition. A subset U of a metric space (M, d) is open if for every x € U, there is an € > 0 such
that B4(x) C U. A subset C is closed if its complement, M ~ C, is open.

Definition. Let X be a subset of a metric space M. A point z € M is an accumulation
point of M if for all £ > 0, there is some z € X such that 0 < d(z,2z) < e (equivalently,
(B(z)~ )N X # 2).

Theorem. (Completeness of R.) Every non-empty subset of R that is bounded above has a least

upper bound. (It follows that every non-empty subset of R that is bounded below has a greatest
lower bound.)

Theorem. (Archimedean property of R.) For any positive z € R, there is an n € N such that
n > x. (Equivalently: For any positive a,b € R, there is an n € N such that an > b.)

Theorem. (Heine-Borel Theorem.) Every open cover of a bounded closed interval in R has a finite
subcover

Theorem. (Bolzano-Weirstrass Theorem.) Every bounded infinite subset of R has an accumulation
point.
Theorem. (Squeeze Theorem.) Suppose that lim f(z) = lim A(x) = L and ¢ is a function
Tr—a Tr—a

satisfying f(z) < g(x) < h(x) for all  in some open interval containing a, except possibly at a
itself. Then lim g(x) = L.

T—a
Theorem. (Intermediate Value Theorem.) If the function f is continuous on the closed, bounded
interval [a, b], and y is strictly between f(a) and f(b), then there is a ¢ € (a,b) such that f(c) = y.
Theorem. (Extreme Value Theorem.) If the function f is continuous on the closed, bounded
interval [a, b] then there exist zg,x; € [a,b] such that for all z € [a,b], f(zo) < f(z) < f(x1).
Theorem. If the function f is continuous on the closed, bounded interval [a, b], then it is uniformly

continuous on [a, b].

Theorem. (Properties of open sets.) Let (M,d) be a metric space. Then (1) @ and M are open
subsets of M; (2) the union of any collection of open subsets of M is open; and (3) the intersection
of any finite collection of open subsets of M is open.

You should also be familiar with properties of limits, such as the sum rule and constant multiple
rule for limits, and the corresponding properties of continuity.



