Individual Homework Week 7

You have looked at compositions in algebra and calculus. Here is a formal definition.

Definition: Let A, B and C be sets and f and g be functions such that $f : A \to B$ and $g : B \to C$. Then the composite of f and g is the relation from A to C: $g \circ f = \{(x, z):$ there exists $y \in B$ such that $(x, y) \in f$ and $(y, z) \in g\}$.

Prove the following:

(1) Let A, B and C be sets and f and g be functions such that $f : A \to B$ and $g : B \to C$. If f is one-to-one and g is one-to-one, then $g \circ f$ is one-to-one.

(2) Let A, B and C be sets and f and g be functions such that $f : A \to B$ and $g : B \to C$. If $g \circ f$ is one-to-one, then f is one-to-one.