Individual Homework Week 7

You have looked at compositions in algebra and calculus. Here is a formal definition.
Definition: Let A, B and C be sets and f and g be functions such that $f: A \rightarrow B$ and $g: B \rightarrow C$. Then the composite of f and g is the relation from A to $C: g \circ f=\{(x, z)$: there exists $y \in B$ such that $(x, y) \in f$ and $(y, z) \in g\}$.

Prove the following:
(1) Let A, B and C be sets and f and g be functions such that $f: A \rightarrow B$ and $g: B \rightarrow C$. If f is one-to-one and g is one-to-one, then $g \circ f$ is one-to-one.
(2) Let A, B and C be sets and f and g be functions such that $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is one-to-one, then f is one-to-one.

