Collaborative Homework Week 7

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=\frac{2}{5} x^{3}-6$.
(a) Determine whether or not f is one-to-one. Prove your assertion without graphing the function.
(b) Determine whether or not f is onto. Prove your assertion without graphing the function.
(2) Consider $g(x)=\sqrt{x-4}$.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$, is g a function? Justify your assertion without graphing.
(b) If $f:[4, \infty) \rightarrow \mathbb{R}$, is g one-to-one? Justify your assertion without graphing.
(3) Consider $h(x)=9-x^{2}$.
(a) Determine sets A and B such that $h: A \rightarrow B$ is a one-to-one function. Justify your assertion without graphing the function.
(b) Determine sets A and B such that $h: A \rightarrow B$ is NOT a one-to-one function. Justify your assertion without graphing the function.
(c) Determine sets A and B such that $h: A \rightarrow B$ is an onto function. Justify your assertion without graphing the function.
(d) Determine sets A and B such that $h: A \rightarrow B$ is NOT an onto function. Justify your assertion without graphing the function.

