(1) Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = \frac{2}{5}x^3 - 6$.

(a) Determine whether or not f is one-to-one. Prove your assertion without graphing the function.

(b) Determine whether or not f is onto. Prove your assertion without graphing the function.

(2) Consider $g(x) = \sqrt{x-4}$.

(a) If $f : \mathbb{R} \to \mathbb{R}$, is g a function? Justify your assertion without graphing.

(b) If $f: [4, \infty) \to \mathbb{R}$, is g one-to-one? Justify your assertion without graphing.

(3) Consider $h(x) = 9 - x^2$.

(a) Determine sets A and B such that $h: A \to B$ is a one-to-one function. Justify your assertion without graphing the function.

(b) Determine sets A and B such that $h : A \to B$ is NOT a one-to-one function. Justify your assertion without graphing the function.

(c) Determine sets A and B such that $h: A \to B$ is an onto function. Justify your assertion without graphing the function.

(d) Determine sets A and B such that $h: A \to B$ is NOT an onto function. Justify your assertion without graphing the function.