Pumping Fluid Examples - ANSWERS MATH 131: Calculus II, Section 1 March 7, 2014

(1) A tank has the shape of an inverted circular cone with height 10m and base radius 4m. It is filled with water to a height of 8m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (Water has a density 1000 kg/m^3 .)

 $\frac{3211264\pi}{3}~\mathrm{J}$

(2) A tank 5 feet long has cross sections in the shape of a parabola $y = x^2$, for $-2 \le x \le 2$ (where x and y are in feet). Suppose that the tank is filled to a depth of 3 feet with liquid weighing 15 lb/ft³. How much work is required to empty the tank by pumping the liquid over the edge of the tank?

 $660\sqrt{3}$ ft-lbs

Pumping Fluid and Surface Area

(3) Find the surface area generated by rotating the curve $y = \frac{1}{3}x^3$ for $0 \le x \le 2$ about the x-axis.

$$\frac{\pi}{9}(17^{3/2}-1)$$

(4) A trough as drawn on the board is filled with a fluid that has density 100 kg/m^3 . Find the work required to pump the fluid out of a pipe two meters above the tank.

 $\frac{784,000}{3} \ {\rm J}$

(5) A circular swimming pool has diameter 20 feet and a side height of 5 feet. The depth of the water is 4 feet. If water weighs 62.5 lb/ft^3 , how much work is required to pump all of the water out of a tube 2 feet above the pool?

 $125,000\pi$ ft-lbs

(6) Find the surface area generated by rotating the curve $y = \frac{x^3}{6} + \frac{1}{2x}$ for $1 \le x \le 2$ about the x-axis.