Section 1.4 Part I: The Matrix Equation

MATH 204: Linear Algebra Prepare for class September 7, 2018 Name (Print): After reading Section 1.4 (pages 35-40), answer the following questions. 1. The matrix-vector product is defined on page 35. If A is an $m \times n$ matrix with columns $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ and if **x** is in \mathbb{R}^n then the product of A and **x**, denoted by A**x**, is $A\mathbf{x} =$ 2. Using the definition in (1), if $A = \begin{bmatrix} 2 & -1 & 4 \\ 0 & 3 & 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, compute $A\mathbf{x}$. Be sure to use the definition in (1) and show each step. 3. Suppose A is an $m \times n$ matrix. Can we always compute $A\mathbf{x}$ for any vector \mathbf{x} ? Why or why not? 4. Suppose $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$ are vectors in \mathbb{R}^m . Write $7\mathbf{v_1} - 5\mathbf{v_2} + 8\mathbf{v_3}$ as a matrix times a vector.

5. Write the following system of equations as a vector equation and then as a matrix equation.	
	$x_1 - 3x_2 + 2x_3 = 7$ $4x_1 + x_2 - 6x_3 = 2$ $5x_1 + 6x_2 - 8x_3 = 0$
6. Fill in the blank two ways (that is, find two different ways of expressing the same idea): The equation	
$A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is	

7. Write down the statement of Theorem 3 on page 36. What does the text say is powerful about this

or

theorem?