Section 1.5: Solution Sets of Linear Systems

MATH 204: Linear Algebra Prepare for class September 14, 2018	Name (Print):
After reading Section 1.5 (pages 43-47), ans	swer the following questions.
1. Write down the definition of a homogen	neous system of linear equations.
2. (a) Back in Section 1.1 we learned that a solutions it may have. What were they?	a system of linear equations has three possibilities for how man
(b) Do these three possibilities still exist	t for a homogeneous system? Why or why not?
3. Define what a trivial solution is and wha	at a nontrivial solution is.
4. Fill in the blank: FACT: The homogeneous	ous equation $A\mathbf{x} = 0$ has a nontrivial solution if and only if

5. Example: Determine if the following homogeneous system has a nontrivial solution.

$$2x_1 + 4x_2 + 6x_3 = 0$$

$$2x_1 + 4x_2 + 6x_3 = 0$$
$$4x_1 + 5x_2 + 6x_3 = 0$$
$$3x_1 + x_2 - 2x_3 = 0$$

$$3x_1 + x_2 - 2x_3 = 0$$

- 6. Example: Let $A = \begin{bmatrix} 1 & 0 & 6 \\ 1 & 1 & 2 \\ 3 & 2 & 10 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
 - (a) Describe the general solution for $A\mathbf{x} = \mathbf{b}$.

(b) Express the solution in parametric vector form (note outline for this on page 47).

(c) What is the solution in general parametric form for $A\mathbf{x} = \mathbf{0}$?

7. Write down the statement of Theorem 6 on page 47.	
8. To prove Theorem 6, we actually need to show two statements. What are those two statements?	
9. BONUS: Prove Theorem 6! That is, show that both statements you wrote in 8 are true!	