Vector Spaces and Subspaces

MATH 204: Linear Algebra Prepare for class October 29, 2018	Name (Print):
After re-reading Section 4.1, work through the	ne following ideas.
•	orksheet. Here it is all together!) Example 4 on page 194 is an (more carefully than the text!) through the example by filling
Let $n \ge 0$ be an integer and let	
$\mathbb{P}_n = $ the set of po	olynomials of degree at most $n \geq 0$.
Members of \mathbb{P}_n have the form	
$ec{p}(t)=a_0$	$0 + a_1t + a_2t^2 + \dots + a_nt^n$
where $a_0, a_1, a_2, \ldots, a_n$ are real numbers and	t is a real variable. We will prove that \mathbb{P}_n is a vector space.
Let $\vec{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$, $\vec{q}(t) = 0$ be elements of \mathbb{P}_n . Let c and d be scalars.	$b_0 + b_1 t + b_2 t^2 + \dots + b_n t^n$, and $\vec{r}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n$
Prove Axiom 1 Holds:	
The polynomial $\vec{p} + \vec{q}$ is defined as follows: ($ec{p}+ec{q})(t)=ec{p}(t)+ec{q}(t).$
Therefore, $(\vec{p} + \vec{q})(t) =$	
=	
which is also a	of degree at most
So	
Prove Axiom 2 Holds:	
Let \vec{p} and \vec{q} be in \mathbb{P}_n and as defined above.	
Then $\vec{p} + \vec{q} =$	
while	
$ec{q}+ec{p}=$	
Since addition of real numbers is	$\underline{\qquad}, a_i + b_i = \underline{\qquad}.$
So	
Prove Axiom 3 Holds: (You provide all th	ne details to this one)

Prove Axiom 4 Holds:
The zero vector in \mathbb{P}_n is defined as $\vec{0} = 0 + 0t + \cdots + 0t^n$.
Then $(\vec{p}+\vec{0})(t) = \vec{p}(t)+\vec{0} =$
=
So
Prove Axiom 5 Holds:
If \vec{p} is the polynomial in \mathbb{P}_n as defined above then $\vec{-p} =$
because
$\vec{p} + (\vec{-p}) =$
So
Prove Axiom 6 Holds: (You provide all the details to this one)
Prove Axiom 7 Holds: (You provide all the details to this one)
Prove Axiom 8 Holds: (You provide all the details to this one)
Prove Axiom 9 Holds: (You provide all the details to this one)
Prove Axiom 10 Holds: (You provide all the details to this one)

Thus _____

2. What is the definition of subspace?	
3. Give an example of a subspace including of what it is a subspace . You do not need to prove it, just write down what it is.	t
4. Give an example of something that is NOT a subspace including of what it is NOT a subspace. Yo do not need to prove it, just write down what it is.	u
5. State Theorem 4.1: The Spans are Subspaces Theorem.	
6. Write down any questions you have on the reading.	