Groupwork: Null Spaces, Column Spaces and Linear Transformations

MATH 204: Linear Algebra November 5, 2018	Name (Print):
Work together with your group to answe	r the following questions on Section 4.2.
1. Here is a theorem that is a generalization?):	ion of Theorem 4.3 in the text (do you see WHY it is a generalize
Theorem: Suppose V and W are ve	ctor spaces and $T:V\to W$ is a linear transformation. Then the
range of T is a subspace of	
(a) Fill in the blank above!	
(b) Prove it! (Note: you cannot just a transformation!)	refer to Theorem 4.3 since T is not necessarily a matrix

2. Suppose $A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Determine whether each of the following are in Nul A, Col A, both or neither. Justify your answers.

(a)
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

3. Suppose
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$
. Is Col $A = \mathbb{R}^3$? What is another way of wording this question?

4. Suppose
$$B = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
. Is Col $B = \mathbb{R}^3$?

- 5. Suppose $C=\begin{bmatrix}1&2&0&0&-1\\0&0&1&1&1\\0&0&0&1&0\end{bmatrix}$. (a) Find an explicit description of the vectors in Nul C.

- (b) What can you say about the vectors in the spanning set of Nul C (both here and in general)?
- (c) What can you say about the columns of C (both here and in general)?
- (d) If Nul C contains non-zero vectors, how many vectors are in the spanning set (both here and in general)?