## MATH 2001 <br> PROOF BY INDUCTION

General outline of a proof by induction.
Proof.

1. Base case: verify that the first statement is true.
2. Induction step: show that if the $k$-th statement is true, then the $(k+1)$-st statement is true.

Example 1. Prove that for $7 \mid 4^{3 n}-1$ for every non-negative integer $n$ (i.e. $n=0,1,2,3, \ldots$ ). Proof.

Example 2. Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
Proof.

Example 3. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of integers where $a_{1}=3, a_{2}=1$, and $a_{n}=a_{n-2}+a_{n-1}$ for each integer $n \geq 4$. Prove that $1 \leq \frac{a_{n}}{a_{n-1}} \leq 2$ for each $n \geq 3$.
Proof.

Example 4. Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. Prove that $\overline{A_{1} \cap A_{2} \cap \cdots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{n}}$. Proof.

Homework. Four proofs due 6pm on Friday, October 16.
Chapter 10: 6, 7, 18, as well as:
$\mathbf{H W} \# 4$. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence from Exercise 3. Prove that the sequence $\frac{a_{2}}{a_{1}}, \frac{a_{4}}{a_{3}}, \frac{a_{6}}{a_{5}}, \ldots$ is increasing. In other words, prove that $\frac{a_{2 n+2}}{a_{2 n+1}}-\frac{a_{2 n}}{a_{2 n-1}}>0$ for each $n \in \mathbb{N}$.

Suggested reading: Chapter 10.1.

