Set and element

Empty set (null set)

Definition

Ordered pair / n-tuple

Definition

Subset

Definition

Finite and infinite sets

SETS SETS

Definition

Cartesian product

SETS
Definition

Proper subset

Definition

Partition

The cardinality of a set is the number of elements in the set.
The cardinality of the set A is denoted by $|A|$ or $\# A$.

A set is finite if its cardinality is finite, that is, the set contains finitely many elements.
A set is infinite if it contains infinitely many elements.

If A and B are sets, the cartesian product $A \times B$ is the set of ordered pairs where the first element is from A, and the second is from B.

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

$(a, b) \in A \times B \quad \Leftrightarrow \quad a \in A$ and $b \in B$

A set is a collection of objects; the objects in the set are called elements.
If A is a set, and a is an element of A, then we write $a \in A$.

The empty set is the set that contains zero elements. The empty set is denoted by \varnothing.

An ordered pair is an ordered list of two elements. More generally, an ordered n-tuple is an ordered list of n elements. The standard notation is to use a comma separated list enclosed by parenthesis:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

A set A is a subset of a set B if every element of A is an element of B.

$$
A \subseteq B \quad \Leftrightarrow \quad x \in A \Rightarrow x \in B
$$

The power set of a set A is the set of all subsets of A. The power set of A is denoted by $\mathscr{P}(A)$.

$$
\mathscr{P}(A)=\{B: B \subseteq A\}
$$

Finite and infinite union

SETS

Definition

Finite and infinite intersection

SETS

Definition

Disjoint sets

Complement

Set equality
 Set equality

Definition

SETs
SetsDefinition
Intersection
Definition
Set difference
ThEOREM
Double containment principle

The union of two sets, A and B, is the set of all element in A or in B.
The union of these sets is denoted by $A \cup B$.

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

$x \in A \cup B \quad \Leftrightarrow \quad x \in A$ or $x \in B$

The intersection of two sets, A and B, is the set of all element in A and in B.
The intersection of these sets is denoted by $A \cap B$.
$A \cap B=\{x: x \in A$ and $x \in B\}$
$x \in A \cap B \quad \Leftrightarrow \quad x \in A$ and $x \in B$

If A and B are sets, the, is the difference $A-B$ is the set of elements in A that are not in B.

$$
A-B=\{x: x \in A \text { and } x \notin B\}
$$

$x \in A-B \quad \Leftrightarrow \quad x \in A$ and $x \notin B$

Let A and B be sets. Then $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.

$$
A=B \quad \Leftrightarrow \quad A \subseteq B \text { and } B \subseteq A
$$

Two sets, A and B, are equal if all the elements of A are elements of B and vice versa.

$$
A=B \quad \Leftrightarrow \quad x \in A \text { if and only if }
$$

A finite union is the union of finitely many sets. An infinite union is the union of infinitely many sets.

Let $A_{1}, A_{2}, A_{3}, \ldots$ be sets, then

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=\left\{x: x \in A_{i} \text { for some } 1 \leq i \leq n\right\} \\
& \bigcup_{i \in \mathbb{N}} A_{i}=\left\{x: x \in A_{i} \text { for some } i \in \mathbb{N}\right\}
\end{aligned}
$$

A finite intersection is the intersection of finitely many sets. An infinite intersection is the intersection of infinitely many sets.
Let $A_{1}, A_{2}, A_{3}, \ldots$ be sets, then

$$
\begin{aligned}
& \bigcap_{i=1}^{n} A_{i}=\left\{x: x \in A_{i} \text { for all } 1 \leq i \leq n\right\} \\
& \bigcap_{i \in \mathbb{N}} A_{i}=\left\{x: x \in A_{i} \text { for all } i \in \mathbb{N}\right\}
\end{aligned}
$$

Two sets, A and B, are disjoint if $A \cap B=\varnothing$.

The complement of a set A is the set of all elements that are not in A, and is denoted by A^{c} or \bar{A}. If $A \subseteq B$, then the complement of A in B is the set of elements in B that are not in A, i.e. $A^{c}=B-A$.

$$
A^{c}=\{x: x \notin A\}
$$

Statement

DEfinition

Logical and

Definition

Logical negation

Definition

Contrapositive

LOGIC LOGIC

Logical statement

Definition

Logical or

Logic Logic

Definition

LOGIC LoGic

Definition

If and only if

Definition

Converse

Logic

A statement is a sentence or mathematical expression that is definitely true or definitely false.

The statement " P or Q " is true if P is true or Q is true (or both statements are true). The statement " P and $Q "$ is false only if both P is false and Q is false.

```
P\veeQ is true }\quad\Leftrightarrow\quadP\mathrm{ is true or Q is true
```

The statement " P implies Q " $(P \Rightarrow Q)$ is false if P is true and Q is false. Otherwise the statement is true.

$$
P \Rightarrow Q \text { is false } \quad \Leftrightarrow \quad P \text { is false and } Q \text { is }
$$

A statement is a sentence or mathematical expression that is definitively true or definitively false.

The statement " P and Q " is true if both P is true and Q is true. Otherwise " P and Q " is false.

$$
P \wedge Q \text { is true } \quad \Leftrightarrow \quad P \text { is true and } Q \text { is }
$$

true

The negation of a statement P is the statement $\neg P$. The statement $\neg P$ is true if P is true. The statement of $\neg P$ is false if P is true.
P is true (resp. false) $\Leftrightarrow \quad \neg P$ is false (resp. true)

The converse of $P \Rightarrow Q$ is the statement $Q \Rightarrow P$. In general, these two statements are independent, meaning that the truthfulness of one statement does not determine the truthfulness of the other.

The for all/each/every/any statement takes the form: "for all P, we have Q." In other words, Q is true whenever P is true. In this light, "for all" statements can often be reworded as "if-then" statements (and vice versa).
$\forall P$, we have $Q \quad \Leftrightarrow \quad P \Rightarrow Q$

The contrapositive of the statement "if P, then Q " is the statement "if $\neg Q$, then $\neg P$ ". These statements are equivalent, meaning that they are either both true or both false.
$P \Rightarrow Q \quad \Leftrightarrow \quad \neg Q \Rightarrow \neg P$

Existential quantifier: there exists

Negation of $P \vee Q$

Negation of $\forall P$, we have Q

		Logic			Logic
Definition			Definition		
	Theorem			Proof	
		Logic			Logic
Definition			Definition		

Logic LOGIC

Logic
Negation of $P \wedge Q$

Negation of $P \Rightarrow Q$

Negation of $\exists P$ such that Q

Theorem

Logic

Definition

List and entries

$$
\neg(P \wedge Q)=\neg P \vee \neg Q
$$

$$
\neg(P \Rightarrow Q)=P \wedge \neg Q
$$

$\neg(\exists P$, such that $Q)=\forall P$ we have $\neg Q$

A proof of a theorem is a written verification that shows that the theorem is definitely and unequivocally true.

A list is an ordered sequence of objects. The objects in the list are called entries. Unlike sets, the order of entries matters, and entries may be repeated.

The there exists statement takes the form: "there exists P such that Q." This statement is true if there is at least one case where P is true and Q is true. (It maybe that there are many cases where P is false but Q is true.)
$\exists P$ such that $Q \quad \Leftrightarrow \quad$ it is sometimes the case that $P \Rightarrow Q$

$$
\neg(P \vee Q)=\neg P \wedge \neg Q
$$

$\neg(\forall P$, we have $Q)=\exists P$, such that $\neg Q$

A theorem is a mathematical statement that is true and can be (and has been) verified as true.

A definition is an exact, unambiguous explanation of the meaning of a mathematical word or phrase.

List length

Empty list

Factorial

Binomial theorem

Addition principle

Inclusion-exclusion

Definition

Two lists L and M are equal if they have the same length, and the i-th entry of L is the i-th entry of M.

Suppose in making a list of length n there are a_{i} possible choices for the i-th entry. Then the total number of different lists that can be made in this way is $a_{1} a_{2} a_{3} \cdots a_{n}$.

If n and k are integers, and $0 \leq k \leq n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

An integer a is even if there exists an integer b such

$$
\text { that } a=2 b
$$

If n is a non-negative integer, then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

The length of a list is the number of entries in the list.

The empty list is the list with no entries, and is denoted by ().

If n is a non-negative integer, then $n!$ is the number of non-repetitive lists of length n that can be made from n symbols. Thus $0!=1$, and if $n>1$, then $n!$ is the product of all integers from 1 to n. That is, if $n>1$, then $n!=n(n-1)(n-2) \cdots 2 \cdot 1$.
,

If $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint sets, then $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right|$.

Odd

Counting

Definition

Parity

Composite

Least common multiple

Counting

Theorem

Division algorithm

Divides

Definition

Prime

Counting Counting

Definition

Greatest common divisor

Theorem

Well-ordering principle

Definition

If a and b are integers, then b divides a if there exists an integer q such that $a=q b$. In this case, b is a divisor of a, and a is a multiple of b.

$$
b \mid a \quad \Leftrightarrow \quad a=q b \text { for some } q \in \mathbb{Z}
$$

A positive integer $p>1$ is prime if the only divisors of p are 1 and p.
$p>1$ is prime $\quad \Leftrightarrow \quad a$ has exactly two positive divisors: 1 and p

The greatest common divisor of two integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest integer that divides both a and b.

Every non-empty subset of \mathbb{N} contains a least element.

Let A be a set, and let $\mathcal{B} \subseteq \mathscr{P}(A)$. The set \mathcal{B} is a basis for a topology on A if the following are satisfied.

1. If $x \in A$, then there exists $B \in \mathcal{B}$ such that $x \in B$.
2. If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \cap B_{2}$, then there exists $B_{3} \in \mathcal{B}$ such that $x \in B_{3}$ and $B_{3} \subseteq B_{1} \cap B_{2}$.

An integer a is odd if there exists an integer b such that $a=2 b+1$.
a is odd

$$
\Leftrightarrow \quad a=2 b+1 \text { for some }
$$

Two integers have the same parity if they are both even or both odd. Otherwise they have opposite parity.

A positive integer a is composite if there exists a positive integer $b>1$ satisfying $b \mid a$.
$a>1$ is composite $\quad \Leftrightarrow \quad b \mid a$ and $1<b<a$

The least common multiple of two integers a and b, denoted $\operatorname{lcm}(a, b)$, is the smallest positive integer is a multiple of both a and b.

Given integers a and b with $b>0$, there exist unique integers q and r that satisfy $a=b q+r$, where $0 \leq r<b$.

Open set

Topology

Definition

Relation on a set

Relations

Definition

Symmetric

Relations

Definition

Equivalence relation

Relations

Definition

Closed set

Definition

Reflexive

Relations

Definition

Transitive

Definition

Equivalence class

Relations

Definition

Relation between sets

Let A be a set, let \mathcal{B} be a basis for a topology on A, and let $U \subseteq A$. The set U is closed if U^{c} is open.

Let R be a relation on A. The relation R is reflexive if $a \in A$ implies that $(a, a) \in R$.

Let R be a relation on A. The relation R is transitive if $(a, b),(b, c) \in R$ implies that $(a, c) \in R$.

Let R be an equivalence relation on A, and let $a \in A$.
The equivalence class of a is the set

$$
[a]=\{b \in A:(a, b) \in R\}
$$

$$
x \in[a] \quad \Leftrightarrow \quad(a, x) \in R
$$

Let R be a relation from A to B. The inverse of R is the relation from B to A given by

$$
R^{-1}=\{(b, a):(a, b) \in R\}
$$

$$
(x, y) \in R^{-1} \quad \Leftrightarrow \quad(y, x) \in R
$$

Let A be a set, let \mathcal{B} be a basis for a topology on A, and let $U \subseteq A$. The set U is open if for each $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.

Let A be a set. The set R is a relation on A if $R \subseteq A^{2}$.

Let R be a relation on A. The relation R is symmetric if $(a, b) \in R$ implies that $(b, a) \in R$.

Let R be a relation on A. The relation R is an equivalence relation (on A) if it is reflexive, symmetric, and transitive.

Let A and B be sets. The set R is a relation from A to B if $R \subseteq A \times B$.

Function

Relations

Definition

Image of a set

Domain/codomain/image

Relations

Definition

Inverse image of a set

Let f be a function from A to B. The domain of f is A. The codomain of f is B, and the image of f is the set $\{b \in B:(a, b) \in f\}$. In other words, the image of f is the set $\{f(a): a \in A\}$.

Let f be a function from A to B, and let $V \subseteq B$. Then the inverse image of V (or preimage of V) is the set

$$
f^{-1}(V)=\{x \in A: f(x) \in V\}
$$

$$
\begin{array}{ccc}
x \in f^{-1}(V) & \Rightarrow & f(x) \in V \\
y \in V & \Rightarrow & y=f(x) \text { for some } \\
x \in f^{-1}(V)
\end{array}
$$

Let R be a relation from A to B. The relation R is a function if for each $a \in A, R$ contains a unique element of the form (a, b). In this case, we write $R(a)=b$.

Let f be a function from A to B, and let $U \subseteq A$. Then the image of U is the set

$$
f(U)=\{f(x) \in B: x \in U\}
$$

$y \in f(U)$	\Rightarrow	$y=f(x)$ for some
$x \in U$	\Rightarrow	$f(x) \in f(U)$

