MATH 2001

QUIZ 10
(1) (1 pt) Write your name in the top right corner of the page.
(2) (6 pts) Recall that a basis of a topology on A is defined as follows.

Definition. Let A be a set, and let \mathcal{B} be a set of subsets of A. The set \mathcal{B} is a basis for a topology on A if the following properties are satisfied.
i For each $x \in A$, there exists a $B \in \mathcal{B}$ such that $x \in B$.
ii If $B_{1}, B_{2} \in \mathcal{B}$, then for each $x \in B_{1} \cap B_{2}$, there exists a $B_{3} \in \mathcal{B}$ such that $x \in B_{3}$ and $B_{3} \subseteq B_{1} \cap B_{2}$.

Complete the following exercises to determine if $\mathcal{B}=\{\{n, n+1, n+2\}: n \in \mathbb{Z}\}$ is a basis for a topology on $A=\mathbb{Z}$.
(a) Let $\mathcal{B}=\{\{n, n+1, n+2\}: n \in \mathbb{Z}\}$, and suppose $x \in \mathbb{Z}$.

Does there exist a $B \in \mathcal{B}$ such that $x \in B$? If yes, give a B that contains x and draw B in the picture below. If not, give a counterexample, or briefly explain why no such B exists.

Yes. Not drawn, but $\{x-2, x-1, x\},\{x-1, x, x+1\}$, and $\{x, x+1, x+2\}$ are all valid basis elements.
(b) Suppose $B_{1}, B_{2} \in \mathcal{B}$ and that $B_{1} \cap B_{2} \neq \varnothing$. For each $x \in B_{1} \cap B_{2}$, does there exist a $B_{3} \in \mathcal{B}$ such that $x \in B_{3}$ and $B_{3} \subseteq B_{1} \cap B_{2}$? If yes, give a brief explanation. If not, draw a B_{1}, B_{2}, and B_{3} in the picture below that do not satisfy the condition.

No. For example if $B_{1}=\{x-1, x, x+1\}$ and $B_{2}=\{x, x+1, x+2\}$, then there does not exist a B_{3} for which $x \in B_{3}$ and $B_{3} \subseteq B_{1} \cap B_{2}$. More generally, any B_{1} and B_{2} where $\left|B_{1} \cap B_{2}\right|<3$ yields a counterexample.
(3) (3 pts) Let A be a set, let \mathcal{B} be a basis for a topology on A, and let U be a subset of A. State what it means for U to be an open set.

The set U is open if for each $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.

