MATH 2001

QUIZ 3

1.) (1 pt) Write your name in the top right corner of the page.
2.) (8 pts) Give the precise definition of each of the following terms. Your answers must be a complete sentence (or sentences).
(a) Finite set

A finite set is a set that contains finitely many (distinct) elements.
(b) Union

Given two sets A and B, the union of A and B is the set of all elements that are in A or in B (or in both sets). In set builder notation,

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

(c) Finite union

A finite union is the union of finitely many sets.
Given a finite list of sets, $A_{1}, A_{2}, \ldots, A_{n}$, the union of these sets is

$$
\bigcup_{i=1}^{n} A_{i}=\left\{x: x \in A_{i} \text { for some } i \in \mathbb{Z}, \text { where } 1 \leq i \leq n\right\}
$$

(d) Set difference

Given two sets A and B, the difference of A and B is the set of all elements that are in A but not in B. In set builder notation,

$$
A-B=\{x: x \in A \text { and } x \notin B\} .
$$

3.) (2 pts) Give an expression that describes the shaded region.

$$
\overline{A \cup B \cup C \cup(B \cap C)}
$$

4.) (6 pts) Let $A_{n}=\{-n, n\}, B_{n}=[0, n]$, and $C_{n}=A_{n} \cup B_{n}$. Sketch each of the following sets in the $x y$-plane.
(a) $\bigcup_{n=1}^{2}\left(A_{n} \times B_{n}\right)=(\{-1,1\} \times[0,1]) \cup(\{-2,2\} \times[0,2])$.

(b) $\left(\bigcup_{n=1}^{2} A_{n}\right) \times B_{2}=(\{-1,1\} \cup\{-2,2\}) \times[0,2]=\{-2,-1,1,2\} \times[0,2]$.

(c.i) $\bigcup_{n \in A_{2}}\left(C_{n} \times B_{n}\right)=((\{-2,2\} \cup[0,-2]) \times[0,-2]) \cup((\{-2,2\} \cup[0,2]) \times[0,2])$

$$
=(\{-2\} \cup[0,2]) \times[0,2] .
$$

(c.ii) $\bigcup_{n \in A_{2}}\left(C_{n} \times A_{n}\right)=((\{-2,2\} \cup[0,-2]) \times\{-2,2\}) \cup((\{-2,2\} \cup[0,2]) \times\{-2,2\})$

$$
=(\{-2\} \cup[0,2]) \times\{-2,2\} .
$$

