MATH 2001 QUIZ 6

- 1. (1 pt) Write your name in the top right corner of the page.
- 2. (2 pts) You proved: if $C \neq \emptyset$ and $B \times C \subseteq C \times D$, then $B \subseteq D$. Why is it necessary that $C \neq \emptyset$? Fill in the blanks with a concrete example that illustrates why the theorem is false when $C = \emptyset$.

Any choice of B and D where $B \not\subseteq D$ is a correct answer for this problem.

If
$$B = \{1\}$$
, $D = \{2\}$, and $C = \emptyset$. Then $B \times C = \emptyset$, and $C \times D = \emptyset$, but $B \nsubseteq D$.

- 3. Sketch a proof for the statement: if $B \subseteq C$, then $A \times B \subseteq A \times C$.
 - (a) (2 pts) Write a one or two sentence introduction for the proof of this statement.

Suppose A, B, and C are sets and that $B \subseteq C$. We prove that $A \times B \subseteq A \times C$ by showing that if $(x, y) \in A \times B$, then $(x, y) \in A \times C$.

(b) (4 pts) Arrange the statements to give an outline for the body of the proof. Justify each implication in the space after each line (e.g. cite a definition).

```
a\Rightarrow c (definition of Cartesian product) a. (x,y)\in A\times B

\Rightarrow d (definition of subset, and B\subseteq C (given) ) b. (x,y)\in A\times C

\Rightarrow b (definition of Cartesian product) c. x\in A and y\in B

d. x\in A and y\in C
```

4. (0.5 pts per blank) Fill in the blanks to complete a proof of the following statement: if $C \neq \emptyset$ and $A \times C \subseteq B \times C$, then $A \subseteq B$.

Proof. Let A, B, and C be sets, where $A \times C \subseteq B \times C$ and $C \neq \emptyset$. We prove that $A \subseteq B$ by showing that if $x \in A$, then $x \in B$.

Suppose $x \in A$. Since $C \neq \emptyset$, the set C contains at least one element; call that element y. Therefore, since $x \in A$ and $y \in C$, we know that $(x,y) \in A \times C$ by the definition of Cartesian product. So, $(x,y) \in B \times C$ since $A \times C \subseteq B \times C$. Hence, by the definition of Cartesian product, we see that $x \in B$ and $y \in C$. Thus we have shown that if $x \in A$, then $x \in B$, and therefore $A \subseteq B$ by the definition of subset. \Box

Date: March 2, 2016.