MATH 2001

RELATIONS

Definition 1. Let A be a set. The set R is a relation on A if $R \subseteq A \times A$.
Definition 2. Let A be a set and let R be a relation on A. Then

- R is reflexive if $(a, a) \in R$ for each $a \in A$;
- R is symmetric if $(a, b) \in R$ implies that $(b, a) \in R$;
- R is transitive if $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$.

Example 3. Let $A=\{a, b, c, d, e, f\}$ and consider the relation R given by the following diagram.

a.) What is R ? (Write out the elements of R in set notation.)
b.) What additional elements would have to be included for R to be reflexive? (Feel free to draw them in as well.)

c.) What additional elements would have to be included for R to be symmetric?

d.) What additional elements would have to be included for R to be transitive?

Example 4. Each of the following is a relation on $\mathbb{Z}:=, \neq, \leq, \mid, \nmid$. For each relation, determine whether it is reflexive, symmetric, and/or transitive. If a relation does not have a particular property, give an example illustrating why not.

Definition 5. A relation R is an equivalence relation if it is reflexive, symmetric, and transitive.
Example 6. Which of the relations in Example 4 are equivalence relations?

Definition 7. Let A be a set, and let R be an equivalence relation on A. For any $a \in A$, the equivalence class containing a (denoted by $[a]$) is the set of all elements in A that are related to a. That is,

$$
[a]=\{b \in A:(a, b) \in R\} .
$$

Example 8. Let $A=\mathbb{Z}$, and let R be the relation on A defined by

$$
R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: a-b=2 c \text { for some } c \in \mathbb{Z}\}
$$

Prove that R is an equivalence relation on \mathbb{Z}, then describe the equivalence classes.

Example 9. Let $A=\mathbb{Z}^{2}-\{(0,0)\}$, and let R be the relation on A defined by

$$
R=\{((a, b),(c, d)): a d-b c=0\} .
$$

Prove that R is an equivalence relation on \mathbb{Z}, then describe the equivalence classes.

