MATH 2001 EQUIVALENCE RELATIONS

Homework. Book exercises: Due Wednesday, April 13.
Section 11.0: 5, 7.
Section 11.1: 2, 8.
Section 11.2: 2, $4,8$.
Section 11.3: 4.
Proofs.
Friday, April 8: first draft of Proof 13.
Monday, April 11: final draft of Proof 12.
Wednesday, April 13: final draft of Proof 13 and first draft of Proof 14.
Example 1. Let $A=\{1,2,3,4,5,6\}$, and let R be an equivalence relation on A defined by $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(2,3),(3,2),(4,6),(6,4),(4,5),(5,4),(5,6),(6,5)\}$.
List the equivalence classes of R.

Example 2. Let R be an equivalence relation on A, where $A=\{a, b, c, d, e\}$. Suppose that $(a, d) \in R$ and $(b, c) \in R$. Write out the elements of R, and draw the graph of R.

Example 3. Let R be the relation on \mathbb{Z} defined by

$$
R=\{(a, b): a, b \in \mathbb{Z}, 3 a-5 b \text { is even }\}
$$

Describe the equivalence classes.

Theorem 4. Suppose that R is an equivalence relation on a set A, and suppose also that $a, b \in A$. Then $[a]=[b]$ if and only if $(a, b) \in R$.

Proof.

Definition 5. A partition of a set A is a set of non-empty subsets of A such that the union of all the subsets is equal to A, and the sets are pairwise disjoint. That is, if X and Y are in the partition, then $X \cap Y=\varnothing$.

Example 6. Find all the partitions of $A=\{a, b, c\}$.

Theorem 7. Let R be an equivalence relation on A. Then $\{[a]: a \in A\}$ is a partition of A.

