MATH 2001
 MODULAR ARITHMETIC

Due Wednesday, April 20.
Book exercises: Section 11.4: 6, 7.
Proofs: Final draft of Proof 14 and first draft of Proof 15.

Definition. Let a, b, and n be integers. We say that a is congruent to b modulo n if $n \mid(a-b)$, and we write $a \equiv b(\bmod n)$. (TeX: a \equiv $\mathrm{b} \backslash \operatorname{pmod} \mathrm{n})$

Exercise 1. Prove that congruence modulo n is an equivalence relation.

Exercise 2. The division algorithm states that if a and n are integers, then there exist unique integers q and r such that $a=q n+r$ and $0 \leq r<n$.

Prove that $a \equiv r(\bmod n)$.

As a consequence, a and b have the same remainders when divided by n if and only if $a \equiv b(\bmod n)$. Since there are exactly n remainders when dividing by n (they are: $0,1,2,3, \ldots, n-1$), there are exactly n equivalence classes modulo n : $[0],[1],[2], \ldots,[n-1]$.

Exercise 3. Write out the equivalence classes modulo 4 explicitly.

$$
\begin{aligned}
& {[0]=\{ } \\
& {[2]=\{ }
\end{aligned}
$$

$$
\begin{array}{ll}
\} & {[1]=\{ } \\
\} & \\
& {[3]=\{ }
\end{array}
$$

Exercise 4. We define the sum of equivalence classes as follows:

$$
[a]+[b]=\{x+y: x \in[a], y \in[b]\} .
$$

At the moment, there is no reason that the set on the left should be an equivalence class, but it turns out that is it.

Working modulo 3 , write out the following sets explicitly.

$$
\begin{array}{llrl}
{[0]+[0]=\{ } & & {[0]+[1]=\{ } \\
{[1]+[1]=\{ } & & \}[1]+[2]=\{
\end{array}
$$

Exercise 5. Write out the addition table for the integers modulo 4 and modulo 5. (Put the appropriate class in each box.)

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

+	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$					
$[1]$					
$[2]$					
$[3]$					
$[4]$					

Give a conjecture: $[a]+[b]=[$
] (what class?) Can you prove your conjecture?
Exercise 6. We can do the same for multiplication. In this case, we will simply define $[a] \cdot[b]=[a \cdot b]$. Fill out the multiplication tables for 4 and 5 .

\cdot	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

\cdot	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$					
$[1]$					
$[2]$					
$[3]$					
$[4]$					

Exercise 7. We all know that $x^{2}=1$ has two solutions in \mathbb{R} (they are $x=1$ and $x=-1$). How many solutions are there to $x^{2} \equiv 1(\bmod n)$ when $n=4 ? n=5 ? n=8 ? n=16 ? n=24$?

