MATH 2001
 FUNCTIONS

Due Wednesday, April 20.
Book exercises: Section 11.4: 6, 7.
Proofs: Final draft of Proof 14 and first draft of Proof 15.
Due Wednesday, April 27.
Book exercises: Section 12.1: 2, 5, 8, 12. Section 12.2: 8, 14.

Definition. Let A and B be sets. We say that R is a relation from A to B if $R \subseteq A \times B$.
Definition. Let A and B be sets, and let f be a relation from A to B. The relation f is a function from A to B (written $f: A \rightarrow B$) if for each $a \in A$, the relation f contains exactly one element of the form (a, b).

Since (a, b) is unique to a, we write $f(a)=b$.
Definition. Let $f: A \rightarrow B$. The domain of f is A, and the codomain of f is B. The image (or range) of f is the set

$$
\operatorname{im}(f)=\{b \in B:(a, b) \in f\}
$$

Definition. A function $f: A \rightarrow B$ is injective (or one-to-one) if whenever $f(a)=f(b)$, then $a=b$. Equivalently, if $a, b \in A$ and $a \neq b$, then $f(a) \neq f(b)$.

Definition. A function $f: A \rightarrow B$ is surjective (or onto) if $\operatorname{im}(f)=B$. That is, for every $b \in B$, there exists an $a \in A$ such that $f(a)=b$.

Definition. A function f is bijective if f is both injective and surjective.
Exercise 1. Give an example of a function that is
a.) injective but not surjective;
c.) neither injective nor surjective;
b.) surjective but not injective;
d.) bijective.

Exercise 2. Prove that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=3 x$ is injective but not surjective.

Exercise 3. Prove that $f: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ defined by $f(x)=|x|$ is surjective but not injective. (Here $\mathbb{Z}_{\geq 0}=\{x \in \mathbb{Z}: x \geq 0\}$.)

Exercise 4. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective functions, then $g \circ f: A \rightarrow C$ is injective.

Exercise 5. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjective functions, then $g \circ f: A \rightarrow C$ is surjective.

