Hello world!
A First Proof

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.
elements are the same

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.
sets are equal \Leftrightarrow
elements are the same
If $A=B$ and $x \in A$, then \ldots

A

B

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.
sets are equal \Leftrightarrow

If $A=B$ and $x \in A$, then $x \in B$.

A

B

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.
sets are equal \Leftrightarrow
elements are the same
If $A=B$ and $x \in A$, then $x \in B$.
If $A=B$ and $x \in B$, then \ldots

A

B

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.
sets are equal \Leftrightarrow
elements are the same
If $A=B$ and $x \in A$, then $x \in B$.
If $A=B$ and $x \in B$, then $x \in A$.

A

B

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.

Know: Given that $A=B$, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.

Know: Given that $A=B$, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Show: How would you show that two sets are equal?

Definition (Set equality)

Let A and B be sets, then $A=B$ if A and B contain exactly the same elements.

Know: Given that $A=B$, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Show: How would you show that two sets are equal?
If we can show the following:

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$, then we would know that $A=B$.

Definition

Let A and B be sets, then $A=B$ if $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$.

Definition (Subset)
Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

Definition (Subset)

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then \ldots

A

B

Definition (Subset)

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we know that if $x \in A$, then $x \in B$.

Definition (Subset)

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we know that if $x \in A$, then $x \in B$. Show: Knowing...
... would show that $A \subseteq B$.

Definition (Subset)

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we know that if $x \in A$, then $x \in B$. Show: Knowing if $x \in A$, then $x \in B$ would show that $A \subseteq B$.

Definition (Subset)

Let A and B be sets, then $A \subseteq B$ if $x \in A \Rightarrow x \in B$.

Prove the following.

Theorem
Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and $A=B$.

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and $A=B$. We prove that $A \subseteq B$ by showing that if $x \in A$, then $x \in B$.

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and $A=B$. We prove that $A \subseteq B$ by showing that if $x \in A$, then $x \in B$.
Suppose $x \in A$.

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and $A=B$. We prove that $A \subseteq B$ by showing that if $x \in A$, then $x \in B$.
Suppose $x \in A$. By the definition of set equality, if $x \in A$, then $x \in B$.

Prove the following.

Theorem

Let A and B be sets. If $A=B$, then $A \subseteq B$.
"Knowing that A and B are sets and $A=B$, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and $A=B$. We prove that $A \subseteq B$ by showing that if $x \in A$, then $x \in B$.
Suppose $x \in A$. By the definition of set equality, if $x \in A$, then $x \in B$. Thus by the definition of subset, we conclude that $A \subseteq B$.

