MATH 2001 PROOFS

Homework. Due Friday, February 12 at 6pm.

- Complete Proof 2 (originally due today, but pushed back to Friday).
- Revise Proof 1.
- Add Exercise 1 on this worksheet in your Book Problems Overleaf file.
- Read sections 8.1 and 8.2 and definition 4.4. (Skip examples 8.3 and 8.7).

Definition (Subset).

Definition (Union).

Theorem. If A and B are sets, then $A \subseteq A \cup B$.
Proof.

Definition (Power set).

Theorem. If A and B are sets, then $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$.

Definition (Divides). Suppose $a, b \in \mathbb{Z}$, then a divides b if $a c=b$ for some $c \in \mathbb{Z}$.
Notation. We write $a \mid b$ (a \backslash mid b$)$ to denote that a divides b or that a is a divisor of b.
Exercise 1. Demonstrate why the statement is true or explain why the statement is false.

\mathbf{T}	\mathbf{F}	$:$	$4 \mid 20$	\mathbf{T}	\mathbf{F}	$:$
\mathbf{T}	\mathbf{F}	$:$	$3 \mid 11$	\mathbf{T}	\mathbf{F}	$:$
\mathbf{T}	$\left.\frac{1}{2} \right\rvert\, 10$					
\mathbf{T}	\mathbf{F}	$:$	$0 \mid 33$	\mathbf{T}	\mathbf{F}	$:$

Exercise 2. Prove that $\{x \in \mathbb{Z}: 55 \mid x\} \subseteq\{x \in \mathbb{Z}: 11 \mid x\}$.

