DEFINITIONS: REVIEW

Definition 1 (Set equality). If A and B are sets, then $A=B$ if $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$.
Definition 2 (Subset). If A and B are sets, then $A \subseteq B$ if $x \in A \Rightarrow x \in B$.
Definition 3 (Power set). If A is a set, then $\mathscr{P}(A)=\{x: x \subseteq A\}$.
Definition 4 (Union). If A and B are sets, then $A \cup B=\{x: x \in A$ or $x \in B\}$.
Definition 5 (Finite and infinite unions). If $\left\{A_{i}\right\}$ is a collection of sets indexed by I, then

$$
\bigcup_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for some } i \in I\right\} .
$$

Definition 6 (Intersection). If A and B are sets, then $A \cap B=\{x: x \in A$ and $x \in B\}$.
Definition 7 (Finite and infinite intersection). If $\left\{A_{i}\right\}$ is a collection of sets indexed by I, then

$$
\bigcap_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for every } i \in I\right\} .
$$

Definition 8 (Set difference). If A and B are sets, then $A-B=\{x: x \in A$ and $x \notin B\}$.
Definition 9 (Complement). If A is a set, then $\bar{A}=\{x: x \notin A\}$.
Exercise 1. Fill out the right side of each block.

	Set equality
$A=B$	\Leftrightarrow

$$
x \in A \cap B \quad \Leftrightarrow
$$

Set difference

$x \in A-B \quad \Leftrightarrow$

Complement
$x \in \bar{A}$
\Leftrightarrow
$x \in A \cup B \quad \Leftrightarrow$

In/finite union
$x \in \bigcup_{i \in I} A_{i} \quad \Leftrightarrow$

All of the proof that we have been writing recently have been of the form, "prove that $A \subseteq B$." In order to prove that $A \subseteq B$, we show that A and B satisfy the definition of subset. Namely, we show that if $x \in A$, then $x \in B$. In particular, the body of the proof should start with the statement, "suppose $x \in A$ " (or "if $x \in A$ "). Then after a series of logical deductions, the proof ends once we conclude that $x \in B$.

Exercise 2. Arrange the following statements to give an outline for a proof that $(A \cap B)-C \subseteq(A-C) \cap(B-C)$. Justify each statement by citing the appropriate definition.
\Rightarrow \qquad (by definition of
) a. $x \in A$ and $x \in B$ and $x \notin C$
\Rightarrow (by definition of
b. $x \in A \cap B$ and $x \notin C$
$\Rightarrow \quad$ (by definition of
) c. $x \in(A \cap B)-C$
\Rightarrow
(by definition of
) d. $x \in A-C$ and $x \in B-C$
)
e. $x \in(A-C) \cap(B-C)$

Exercise 3. Since unions are 'or' statements, proofs involving unions often break into multiple cases. Arrange the statements to prove that $(A-C) \cup(B-C) \subseteq(A \cup B)-C$. Justify each statement by citing the appropriate definition.

Case 1	\Rightarrow	(by definition of		
	\Rightarrow	(by definition of		a. $x \in A-C$ b. $x \in B-C$
		(by definition of		c. $x \in A \cup B$ and $x \notin C$
	\Rightarrow	(by definition of		d. $x \in(A \cup B)-C$
		(by definition of		e. $x \in B$ and $x \notin C$
Case 2		(by definition of		g. $x \in A$ or $x \in B$, and $x \notin C$
	\Rightarrow	(by definition of		h. $x \in A-C$ or $x \in B-C$
	\Rightarrow	(by definition of		i. $x \in(A-C) \cup(B-C)$
		(by definition of		

Exercise 4. In a similar fashion, sketch proofs for the following statements. In some cases, the justification for a step might not be a definition, but information that was given in the statement of the problem.
a. Prove that if $X \subseteq A \cap B$, then $X \subseteq A$ and $X \subseteq B$.
b. Prove that $\mathscr{P}(A \cap B) \subseteq \mathscr{P}(A) \cap \mathscr{P}(B)$.
c. Prove that if $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

Upcoming deadlines:

- Due Friday, Feb 19: first draft of Proof 4.
- Due Monday, Feb 22: final draft of Proof 1 and second draft of proof 2.
- Due Wednesday, Feb 24: second draft of proof 3.

