MATH 2001
 DEFINITIONS: REVIEW II

Definition 1 (Cartesian product). If A and B are a sets, then $A \times B=\{(a, b): a \in A$ and $b \in B\}$.

Cartesian product
$(a, b) \in A \times B \quad \Leftrightarrow$

Exercise 1. Arrange the following statements to give an outline for a proof that $(A \cap B) \times C \subseteq(A \times C) \cap(B \times C)$. Justify each statement by citing the appropriate definition.

Proof. (Start by a short introduction defining the variables and describing what will be proved.)
\qquad \Rightarrow \qquad (by definition of
) a. $x \in A, x \in B$, and $y \in C$.
$\Rightarrow \quad$ (by definition of
) b. $(x, y) \in(A \cap B) \times C$
$\Rightarrow \quad$ (by definition of
$\Rightarrow \quad$ (by definition of
c. $(x, y) \in A \times C$ and $(x, y) \in B \times C$
) d. $x \in A \cap B$ and $y \in C$
) e. $(x, y) \in(A \times C) \cap(B \times C)$

Exercise 2. In a similar fashion, sketch proof for the statement $(A \times C) \cap(B \times C) \subseteq(A \cap B) \times C$. Include a brief introduction for each proof.

In Proof 2 in the Proof Portfolio, I stated the following theorem.
Theorem. If A and B are sets, then $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
This theorem (showing that two sets are subsets of each other) is the most common technique for proving that two sets are equal.

Exercise 3. Show that $A \times(B \cup C)=(A \times B) \cup(A \times C)$ by proving that
a. $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$, and
b. $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$.

Upcoming deadlines:

- Due Friday, Feb 19: first draft of Proof 4.
- Due Monday, Feb 22: final draft of Proof 1 and second draft of proof 2.
- Due Wednesday, Feb 24: second draft of proof 3, and first draft of proof 5.
- Due Friday, Feb 26: second draft of proof 4.

