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A set of vectors {v1, . . . ,vn} is linearly independent
if the only solution to

x1v1 + · · ·+ xnvn = 0

is the trivial solution: x1 = · · · = xn = 0. If there is
more than one solution to this equation, then the set

of vectors is linearly dependent.

A linear combination of a vectors v1,v2, . . . ,vn is a
sum of scalar multiples of the vectors:

x1v1 + x2v2 + . . .+ xnvn

(the xi’s are scalars).

An n× n matrix A is invertible if there exists another
n× n matrix A−1 such that AA−1 = A−1A = I.

The span of a set of vectors {v1, . . . ,vn} (denoted
span{v1, . . . ,vn}) is the set of all linear combinations

of v1, . . . ,vn.

There are three types of elementary row operations
for matrices.

1. Swapping two rows of the matrix.

2. Adding a multiple of one row to another row.

3. Scaling a row by a non-zero constant.

If A is an m× n matrix, then the transpose of A
(denoted AT ) is an n×m matrix whose i-th row is

the i-th column of A: | |
v1 · · · vn
| |

T =

— vT1 —
...

— vTn —

 .

The reduced row echelon form of an m× n matrix A
(denoted rref A) is the m× n matrix which is row

equivalent to A and satisfies the following.

1. The leading non-zero entry of each row is 1.

2. All other entries in the columns with leading 1’s
are 0’s.

3. The leading 1 in any row is to the right of all
leading 1’s in the rows above. Rows of 0’s are at
the bottom of the matrix.

Two m× n matrices are row equivalent if one can be
transformed into the other by a sequence of

elementary row operations.

A column of a matrix is a pivot column if the column
contains a pivot. Otherwise the column is a non-pivot

column.

A pivot position (or simply, pivot) in a matrix A is a
position corresponding to a leading 1 in rref A.
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The rank of a matrix A (denoted rankA) is the
dimension of the column space of the matrix, which is

the number of pivots/pivot columns in A.

The column space of a matrix A (denoted ColA) is
the span of the columns of A.

The nullity of a matrix A is the dimension of the null
space of A, which is the number of non-pivot columns

in A.

The null space of a matrix A (denoted NulA) is the
set of all vectors x satisfying Ax = 0.

A diagonal matrix is an n× n matrix where all the
entries off the diagonal are 0’s.

The row space of a matrix A is the column space of
AT .

A vector space is a set of objects (e.g. vectors) along
with two operations, vector addition and scalar

multiplication, which satisfy ten axioms (not listed
here).

The n× n identity matrix is a diagonal matrix with
1’s on its diagonal.

A basis for a vector space V is a set of linearly
independent vectors that spans V (i.e. the span of

the vectors is V ).

Let V be a vector space. A subspace H of V is a
subset of V that satisfies

1. 0 ∈ H;

2. H is closed under vector addition (if u,v ∈ H,
then u + v ∈ H);

3. H is closed under scalar multiplication (if u ∈ H
and k is a scalar, then ku ∈ H).

Every subspace is a vector space.
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If {v1, . . . ,vn} is a basis for a vector space V , then
the dimension of V is n, the number of vectors in the

basis.
(A vector space may also be infinite dimensional; it
may not be possible to write down a basis for the

vector space in this case.)

The standard basis for Rn is the set of columns of the
n× n identity matrix. (The i-th standard basis

vector is denoted ei.)

If T : V →W is a function, then the image (or range)
of T (denoted imT ) is the set of all outputs of T .

That is, the image of T is the set of all vectors b for
which T (x) = b has a solution.

If A is the standard matrix for T , then the image of T
is the column space of A, which is a subspace of W .

If T : V →W is a function, then V is the domain of
T , and W is the codomain of T .

If T : V →W is a function, then T is onto if
T (x) = b has at least one solution for each b ∈W .

In this case, the image of T is W .

If T : V →W is a function, then the kernel of T is
the set of all solutions to T (x) = 0.

If A is the standard matrix for T , then the kernel of
T is the null space of A, which is a subspace of V .

If T : V →W is a function that is both one-to-one
and onto, then T is a bijection. Moreover, there

exists a function T−1 : W → V satisfying
T−1(T (x)) = x and T (T−1(b)) = b for all x ∈ V and

b ∈W . The function T−1 is the inverse of T .

If T : V →W is a function, then T is one-to-one if
T (x) = b has at most one solution for each b ∈W .

If T : V →W is a linear transformation, dimV = m
and dimW = n, then there is an n×m matrix A

that satisfies T (x) = Ax. This matrix A is the
standard matrix for T . Moreover, the columns of A

are the images of the standard basis vectors under T :

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |

 .

Let V and W be vector spaces. A function
T : V →W is a linear transformation if

1. T (u + v) = T (u) + T (v) and

2. T (ku) = kT (u)

for any u,v ∈ V and any scalar k.
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Let B = {b1, . . . ,bn} and D = {d1, . . . ,dn} be bases
for a vector space V . Then the change of basis matrix

from B to D is

P
D←B

=

 | | |
[b1]D [b2]D · · · [bn]D
| | |

 .
For any vector v ∈ V , this matrix satisfies

P
D←B

[v]B = [v]D.

If B = {b1, . . . ,bn} is a basis for a vector space V ,
then each b ∈ V is expressible as a unique linear

combination of the basis elements:

b = x1b1 + · · ·+ xnbn.

The coordinates for b are the coefficients in this
expansion, and we write

[b]B =
[
x1 x2 · · · xn

]T
.

The trace of a square matrix is the sum of the entries
on the diagonal of the matrix.

Let T : V →W be a linear transformation between
vector spaces. Let B = {b1, . . . ,bn} be a basis for V

and D = {d1, . . . ,dn} be a basis for W . Then the
B-matrix for the linear transformation is

B =

 | | |
[T (b1)]D [T (b2)]D · · · [T (bn)]D
| | |

 .

For any square matrix, the trace of the matrix is
equal to the sum of its eigenvalues.

The determinant of a square matrix is the sum of the
entries on the diagonal of the matrix.

Let A be a square matrix. The characteristic
polynomial of A is det(A− λI).

For any square matrix, the determinant of the matrix
is equal to the product of its eigenvalues.

Let A be an n× n matrix, and let λ1, λ2, . . . , λk be
the distinct eigenvalues of A. Then the characteristic

polynomial of A factors into

det(A− λI) = (λ− λ1)α1(λ− λ2)α2 · · · (λ− λk)αk .

The multiplicity of the eigenvalue λi is αi.
Necessarily, the sum of the multiplicities equals n:

α1 + α2 + · · ·+ αk = n.
Thus every n× n matrix has n eigenvalues when

counted with multiplicity.

Let A be a square matrix. The eigenvalues of A are
the roots of the characteristic polynomial of A.
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Let A be a square matrix, and let λ be an eigenvalue
for A. The eigenspace corresponding to λ (denoted

Eλ) is

Eλ = Nul(A− λI).

The eigenspace Eλ is the set of all eigenvalues
corresponding to λ.

Let A be a square matrix, and let λ be an eigenvalue
for A. A vector v is an eigenvector corresponding to
the eigenvalue λ if v is a non-zero vector that satisfies

Av = λv.

Let A be a square matrix. An eigenbasis for A is a
basis for ColA that consists entirely of eigenvectors

of A.
The matrix A has an eigenbasis if and only if

dimEλ = multiplicity(λ) for each eigenvalue of A.

Let A be a square matrix, and let λ be an eigenvalue
for A. Then

1 ≤ dimEλ ≤ multiplicity(λ).

Let A be a 2× 2 matrix with complex eigenvalue
λ = a− bi and corresponding eigenvector a + bi.

Then the matrices

C =

[
a −b
b a

]
, Q =

[
a b

]
satisfy AQ = QC. The matrix C is the

rotation-scaling matrix for A.

A square matrix A is diagonalizable if there exist a
diagonal matrix D and an invertible matrix P such

that AP = PD.
Moreover, if λ1, λ2, . . . , λn are the eigenvalues of A

with respective eigenvectors v1,v2, . . . ,vn, and
{v1,v2, . . . ,vn} is an eigenbasis for A, then P is the
matrix with the eigenvectors as columns, and D is
the matrix with the eigenvalues on its diagonal.


