1.2 - Matrices, vectors, and Gauss-Jordan elimination
University of Massachusetts Amherst
Math 235 - Spring 2014

A matrix is a rectangular array of numbers. We can be more specific by giving the dimensions of the matrix, that is, an $n \times m$ matrix has n rows and m columns.
This is a 2×3 matrix: $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$, and this is a 3×3 matrix $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$.
Definition 1. A square matrix has the same number of rows and columns, and the (main) diagonal of a square matrix are the elements $a_{11}, a_{22}, \ldots, a_{n n}$.

A square matrix is upper triangular if every entry below the diagonal is 0 .
A square matrix is lower triangular if every entry above the diagonal is 0 .
A square matrix is a diagonal if $a_{i j}=0$ whenever $i \neq j$. That is, the only non-zero entries of a diagonal matrix are on the matrix's diagonal. Diagonal matrices are both upper triangular and lower triangular.

Example 2. Identify the square, diagonal, upper triangular, and lower triangular matrices.

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 3 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 3 \\
0 & -1
\end{array}\right] \quad C=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A vector is a matrix with only one row or one column, which we will often specify by saying row vector for a matrix with one row, and column vector for a matrix with one column. The standard convention is to write vectors in column form, so unless otherwise specified, "vector" will mean "column vector".

Recall: There is a one-to-one correspondence between vectors and points in space.

The rules of matrix multiplication (which we will get to in Section 1.3) allow us to reinterpret systems of linear equations as a matrix product.
The system $\left\{\begin{array}{r}2 x+8 y+4 z=2 \\ 2 x+5 y+z=5 \\ 4 x+10 y-z=1\end{array}\right\}$ is equivalent to the matrix product $\left[\begin{array}{ccc}2 & 8 & 4 \\ 2 & 5 & 1 \\ 4 & 10 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$.
The matrix $\left[\begin{array}{ccc}2 & 8 & 4 \\ 2 & 5 & 1 \\ 4 & 10 & -1\end{array}\right]$ is called the coefficient matrix of the system. For solving linear systems,
we work with the augmented matrix $\left[\begin{array}{cccc}2 & 8 & 4 & 2 \\ 2 & 5 & 1 & 5 \\ 4 & 10 & -1 & 1\end{array}\right]$.
Example 3. Solve the system above using the augmented matrix.

Example 4. Find all solutions to the following system of equations.

$$
\left\{\begin{array}{r}
2 x_{1}+4 x_{2}-2 x_{3}+2 x_{4}+4 x_{5}=2 \\
x_{1}+2 x_{2}-x_{3}+2 x_{4}=4 \\
3 x_{1}+6 x_{2}-2 x_{3}+x_{4}+9 x_{5}=1 \\
5 x_{1}+10 x_{2}-4 x_{3}+5 x_{4}+9 x_{5}=9
\end{array}\right\}
$$

Definition 5. A matrix is in reduced row-echelon form if it satisfies all of the following conditions:
(1) If a row has nonzero entries, then the first nonzero entry is a 1 , called a leading 1 , or pivot.
(2) If a column contains a leading 1 , then all the other entries in that column are 0.
(3) If a row contains a leading 1 , then each row above it contains a leading 1 further to the left. We denote the reduced row-echelon form of a matrix A by $\operatorname{rref}(A)$.

The operations that we use to reduce these matrices into row-echelon form are called elementary row operations.

Definition 6. The elementary row operations are

- Multiply (or divide) a row by a non-zero scalar.
- Subtract a multiple of one row from another row.
- Swap two rows.

ADDITIONAL EXERCISES

(1) Find all solutions to the systems
(a) $\left\{\begin{array}{r}x+y-2 z=5 \\ 2 x+3 y+4 z=2\end{array}\right\}$
(b) $\left\{\begin{array}{r}x_{4}+2 x_{5}-x_{6}=2 \\ x_{1}+2 x_{2}+x_{5}-x_{6}=0 \\ x_{1}+2 x_{2}+2 x_{3}-x_{5}+x_{6}=2\end{array}\right\}$
(2) Find the polynomial of degree 3 (e.g. $f(t)=a t^{3}+b t^{2}+c t+d$) whose graph passes through the points $(0,1),(1,0),(-1,0)$, and $(2,-15)$.
(3) Consider the system of equations

$$
\left\{\begin{array}{r}
y+2 k z=0 \\
x+2 y+6 z=2 \\
k x+2 z=1
\end{array}\right\},
$$

where k is an arbitrary constant.
(a) For which values of the constant k does this system have a unique solution?
(b) When is there no solution?
(c) When are there infinitely many solutions?
(4) Consider the chemical reaction

$$
a \mathrm{NO}_{2}+b \mathrm{H}_{2} \mathrm{O} \rightarrow c \mathrm{HNO}_{2}+d \mathrm{HNO}_{3}
$$

where a, b, c, and d are unknown positive integers. The reaction must be balanced; that is, the number of atoms of each element must be the same before and after the reaction. For example, the number of oxygen atoms must satisfy

$$
2 a+b=2 c+3 d
$$

Find the smallest positive integers that balance the chemical reaction.
(5) Is there a sequence of elementary row operations that transforms

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad \text { into } \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] ? \quad \text { Explain. }
$$

