1.3 - On the solutions of linear systems; matrix algebra
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Example 1. The reduce row-echelon forms for three systems are given below. How many solutions are there in each case.
a) $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$

Theorem 2. A linear system is inconsistent if and only if the reduced row-echelon form of its augmented matrix contains the row $\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & 1\end{array}\right]$, representing the equation $0=1$. If a linear system is consistent, then it either has exactly one solution, or infinitely many solutions.

Definition 3. The rank of a matrix A is the number of leading 1's in $\operatorname{rref}(A)$.
Example 4. Compute the rank of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 0\end{array}\right]$.

Example 5. Let A be the coefficient matrix of a system of n linear equations with m variables
a) What are the dimensions of A ?
b) Verify that $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$.
c) Show that if $\operatorname{rank}(A)=m$, then the system has at most one solution.
d) Show that if $\operatorname{rank}(A)=n$, then the system has no solutions or infinitely many solutions.

Theorem 6. A linear system with fewer equations than unknowns has either no solutions or infinitely many solutions. In other words, if a system has a unique solution, then it must have at least as many equations as variables.

Theorem 7. A linear system of n equations in n variables has a unique solution if and only if the rank of its coefficient matrix A is n. In this case, $\operatorname{rref}(A)$ is a diagonal matrix with 1 's on its diagonal (also known as an identity matrix).

Matrix addition:

$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 2 \\ 3 & 3 & 4\end{array}\right]=$

Scalar multiplication:

$4\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -3 & 0\end{array}\right]=$

Dot product:

$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=$
Matrix multiplication:
$\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & 1 & -1\end{array}\right]\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ -1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -2\end{array}\right]=$

LINEAR COMBINATIONS

Definition 8. A vector \vec{b} is called a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ if there exist scalars x_{1}, \ldots, x_{m} such that

$$
\vec{b}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots x_{m} \vec{v}_{m} .
$$

Theorem 9. If the column vectors of an $n \times m$ matrix A are $\vec{v}_{1}, \ldots, \vec{v}_{m}$ and \vec{x} is a vector with components x_{1}, \ldots, x_{m}, then

$$
A \vec{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \cdots & \vec{v}_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m} .
$$

That is, the vector $A \vec{x}$ is a linear combination of the columns vectors in A.
Example 10. Find a 3×3 matrix A such that $A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad A\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{l}4 \\ 6 \\ 8\end{array}\right]$, and $A\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

ADDITIONAL EXERCISES

(1) Prove Theorem 9 in the 2×2 case. That is, show that

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]+x_{2}\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] .
$$

(2) Let $\vec{x}=\left[\begin{array}{c}5 \\ 3 \\ -9\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
(a) Find a diagonal matrix A such that $A \vec{x}=\vec{y}$.
(b) Find a matrix A of rank 1 such that $A \vec{x}=\vec{y}$.
(c) Find a matrix with all nonzero entries such that $A \vec{x}=\vec{y}$.
(3) Find all vectors \vec{x} such that $A \vec{x}=\vec{b}$, where $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$

