2.3 — Matrix products University of Massachusetts Amherst Math 235 — Spring 2014

Matrix multiplication: Recall that if A is an $\ell \times m$ matrix, and B is an $m \times n$ matrix, and we write

$$\begin{bmatrix} - & \vec{r}_1 & - \\ - & \vec{r}_2 & - \\ & \vdots \\ - & \vec{r}_\ell & - \end{bmatrix}, \quad B = \begin{bmatrix} | & | & | & | \\ \vec{c}_1 & \vec{c}_2 & \cdots & \vec{c}_n \\ | & | & | & | \end{bmatrix},$$

where $\vec{r_1}, \ldots, \vec{r_\ell}$ are row vectors and $\vec{c_1}, \ldots, \vec{c_n}$ are column vectors, then the product

$$AB = \begin{bmatrix} \vec{r}_{1}\vec{c}_{1} & \vec{r}_{1}\vec{c}_{2} & \cdots & \vec{r}_{1}\vec{c}_{n} \\ \vec{r}_{2}\vec{c}_{1} & \vec{r}_{2}\vec{c}_{2} & \cdots & \vec{r}_{2}\vec{c}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{r}_{\ell}\vec{c}_{1} & \vec{r}_{\ell}\vec{c}_{2} & \cdots & \vec{r}_{\ell}\vec{c}_{n} \end{bmatrix}$$

is an $\ell \times n$ matrix.

Note: If A is an $\ell \times a$ matrix and B is a $b \times n$ matrix, then the product AB is defined only if

Example 1. Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Which products are defined?
(i) AC (ii) CB (iii) AB (iv) BA

Compute the product, if defined.

Example 2. Find all matrices that commute with $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Example 3. Find a 2×2 matrix A such that $A^2 = I$ and all entries of A are non-zero integers.

Properties of matrix multiplication:

- (1) Identity: IA = AI
- (2) Associative: A(BC) = (AB)C
- (3) Distributive: A(B+C) = AB + AC
- (4) Scalar multiplication: A(kB) = (kA)B = k(AB).

ADDITIONAL EXERCISES

- (1) Find all matrices that commute with $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. (2) Find a 2 × 2 matrix A such that $A^2 = A$ and all entries of A are non-zero.
- (3) Find all matrices A such that $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.