Matrix multiplication: Recall that if A is an $\ell \times m$ matrix, and B is an $m \times n$ matrix, and we write

$$
\left[\begin{array}{ccc}
- & \vec{r}_{1} & - \\
- & \vec{r}_{2} & - \\
& \vdots & \\
- & \vec{r}_{\ell} & -
\end{array}\right], \quad B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{c}_{1} & \vec{c}_{2} & \ldots & \vec{c}_{n} \\
\mid & \mid & & \mid
\end{array}\right],
$$

where $\vec{r}_{1}, \ldots, \vec{r}_{\ell}$ are row vectors and $\vec{c}_{1}, \ldots, \vec{c}_{n}$ are column vectors, then the product

$$
A B=\left[\begin{array}{cccc}
\vec{r}_{1} \vec{c}_{1} & \vec{r}_{1} \vec{c}_{2} & \cdots & \vec{r}_{1} \vec{c}_{n} \\
\vec{r}_{2} \vec{c}_{1} & \vec{r}_{2} \vec{c}_{2} & \cdots & \vec{r}_{2} \vec{c}_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\vec{r}_{\ell} \vec{c}_{1} & \vec{r}_{\ell} \vec{c}_{2} & \cdots & \vec{r}_{\ell} \vec{c}_{n}
\end{array}\right]
$$

is an $\ell \times n$ matrix.
Note: If A is an $\ell \times a$ matrix and B is a $b \times n$ matrix, then the product $A B$ is defined only if

Example 1. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right]$, and $C=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Which products are defined?
(i) $A C$
(ii) $C B$
(iii) $A B$
(iv) $B A$

Compute the product, if defined.

Example 2. Find all matrices that commute with $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Example 3. Find a 2×2 matrix A such that $A^{2}=I$ and all entries of A are non-zero integers.

Properties of matrix multiplication:

(1) Identity: $I A=A I$
(2) Associative: $A(B C)=(A B) C$
(3) Distributive: $A(B+C)=A B+A C$
(4) Scalar multiplication: $A(k B)=(k A) B=k(A B)$.

ADDITIONAL EXERCISES
(1) Find all matrices that commute with $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.
(2) Find a 2×2 matrix A such that $A^{2}=A$ and all entries of A are non-zero.
(3) Find all matrices A such that $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

