3.2 - Bases and linear independence
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Definition 1. A subset W of \mathbb{R}^{n} is called a linear subspace of \mathbb{R}^{n} if it satisfies the following three properties:
(a) W contains the zero vector in \mathbb{R}^{n}
(b) W is closed under addition: If \vec{w}_{1} and \vec{w}_{2} are in W, then so is $\vec{w}_{1}+\vec{w}_{2}$.
(c) W is closed under scalar multiplication: if \vec{w} is in W, then $k \vec{w}$ is in W for any scalar k.

Theorem 2. If $T(\vec{x})=A \vec{x}$ is a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then
(a) $\operatorname{ker}(T)=\operatorname{ker}(A)$ is a linear subspace of \mathbb{R}^{m}, and
(b) $\operatorname{im}(T)=\operatorname{im}(A)$ is a linear subspace of \mathbb{R}^{n}.

Proof.

Example 3. Is $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$ a linear subspace of \mathbb{R}^{2} ?

Example 4. Classify all the linear subspaces of \mathbb{R}^{3}.

Recall the definition of the span of a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$.

Example 5. Consider the matrix $A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4\end{array}\right]$. Find vectors in \mathbb{R}^{3} that span the image of
A. What is the smallest number of vectors needed to span the image of A ?

Definition 6. Consider the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\} \subset \mathbb{R}^{n}$.
(a) We say that a vector \vec{v}_{i} is redundant if \vec{v}_{i} is a linear combination of the preceding vectors $\vec{v}_{1}, \ldots, \vec{v}_{i-1}$.
(b) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are called linearly independent if none of them are redundant. Otherwise the vectors are called linearly dependent.
(c) We say that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ form a basis of a subspace V of \mathbb{R}^{n} if they span V and are linearly independent.
Definition 7. The standard basis for \mathbb{R}^{n} is the set of vectors $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$, where \vec{e}_{i} has a 1 in the i-th component, and 0's everywhere else.

The standard basis for \mathbb{R}^{2} is $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$. The standard basis for \mathbb{R}^{3} is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. However, any set of n linearly in dependent vectors is a basis for \mathbb{R}^{n}.

Theorem 8. Suppose that the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ spans V, then the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ contains a basis for V.

Theorem 9. The pivot columns of a matrix A are a basis for $\operatorname{im}(A)$.
Example 10. Find a basis for $\operatorname{im}(A)$, where $A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4\end{array}\right]$.

Example 11. Does $\operatorname{im}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\} ?$

Example 12. Which sets of vectors contains a basis for \mathbb{R}^{3} ?
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$

Example 13. Find a basis for the kernel of the matrix $A=\left[\begin{array}{lllll}1 & 2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 & 6\end{array}\right]$.

Theorem 14. The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent if and only if the only solution to

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is the trivial solution: $a_{1}=a_{2}=\cdots=a_{m}=0$.
Example 15. Suppose that A is an $n \times m$ matrix whose columns are linearly independent. What is $\operatorname{ker}(A)$?

Theorem 16. Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ be a set of vectors in \mathbb{R}^{n}. The following are equivalent.
(a) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent.
(b) None of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are redundant.
(c) None of the vectors is a linear combination of the other vectors.
(d) If $a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m}=\overrightarrow{0}$, then $\quad a_{1}=\cdots=a_{m}=0$.
(e) $\operatorname{ker}\left[\begin{array}{ccc}\mid & & \mid \\ \vec{v}_{1} & \cdots & \vec{v}_{m} \\ \mid & & \mid\end{array}\right]=\{\overrightarrow{0}\}$.
(f) $\operatorname{rank}\left[\begin{array}{ccc}\mid & & \mid \\ \vec{v}_{1} & \cdots & \vec{v}_{m} \\ \mid & & \mid\end{array}\right]=m$.

Theorem 17. Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ be a set of vectors in a subspace V of \mathbb{R}^{n}. The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent if and only if every vector $\vec{v} \in V$ can be expressed uniquely as a linear combination

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m} .
$$

Proof.

ADDITIONAL EXERCISES

(1) Find a nontrivial relation among the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
(2) Is the set of vectors $\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x \leq y \leq z\right\}$ a linear subspace of \mathbb{R}^{3} ? Explain.
(3) Let $A=\left[\begin{array}{cccc}\mid & \mid & \mid & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} \\ \mid & \mid & \mid & \mid\end{array}\right]$ and suppose $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ is in the kernel of A. Express \vec{v}_{4} as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
(4) Suppose that \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} are linearly independent vectors in \mathbb{R}^{4}. Find rref $\left[\begin{array}{ccc}\mid & \mid & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} \\ \mid & \mid & \mid\end{array}\right]$.

