3.2 — Bases and linear independence University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. A subset W of \mathbb{R}^n is called a *linear subspace* of \mathbb{R}^n if it satisfies the following three properties:

- (a) W contains the zero vector in \mathbb{R}^n
- (b) W is closed under addition: If \vec{w}_1 and \vec{w}_2 are in W, then so is $\vec{w}_1 + \vec{w}_2$.
- (c) W is closed under scalar multiplication: if \vec{w} is in W, then $k\vec{w}$ is in W for any scalar k.

Theorem 2. If $T(\vec{x}) = A\vec{x}$ is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then (a) ker(T) = ker(A) is a linear subspace of \mathbb{R}^m , and (b) im(T) = im(A) is a linear subspace of \mathbb{R}^n .

Proof.

Example 3. Is
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \colon x \ge 0, y \ge 0 \right\}$$
 a linear subspace of \mathbb{R}^2 ?

Example 4. Classify all the linear subspaces of \mathbb{R}^3 .

Recall the definition of the span of a set of vectors $\{\vec{v}_1, \ldots, \vec{v}_m\}$.

Example 5. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$. Find vectors in \mathbb{R}^3 that span the image of A. What is the smallest number of vectors needed to span the image of A?

Definition 6. Consider the set of vectors $\{\vec{v}_1, \ldots, \vec{v}_m\} \subset \mathbb{R}^n$.

- (a) We say that a vector \vec{v}_i is redundant if \vec{v}_i is a linear combination of the preceding vectors $\vec{v}_1, \ldots, \vec{v}_{i-1}.$
- (b) The vectors $\vec{v}_1, \ldots, \vec{v}_m$ are called *linearly independent* if none of them are redundant. Otherwise the vectors are called *linearly dependent*.
- (c) We say that the vectors $\vec{v}_1, \ldots, \vec{v}_m$ form a *basis* of a subspace V of \mathbb{R}^n if they span V and are linearly independent.

Definition 7. The standard basis for \mathbb{R}^n is the set of vectors $\{\vec{e}_1, \ldots, \vec{e}_n\}$, where \vec{e}_i has a 1 in the *i*-th component, and 0's everywhere else.

The standard basis for
$$\mathbb{R}^2$$
 is $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$. The standard basis for \mathbb{R}^3 is $\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$. However, any set of *n* linearly in dependent vectors is a basis for \mathbb{R}^n .

ever, any set of n linearly in dependent vectors is a basis for \mathbb{R}^n .

Theorem 8. Suppose that the set of vectors $\{\vec{v}_1, \ldots, \vec{v}_m\}$ spans V, then the set of vectors $\{\vec{v}_1, \ldots, \vec{v}_m\}$ contains a basis for V.

Theorem 9. The pivot columns of a matrix A are a basis for im(A).

Example 10. Find a basis for im(A), where $A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.

Example 11. Does $\operatorname{im}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Example 12. Which sets of vectors contains a basis for \mathbb{R}^3 ?

$$(a) \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \qquad (b) \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad (c) \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\0 \end{bmatrix}$$

Example 13. Find a basis for the kernel of the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 & 6 \end{bmatrix}$.

Theorem 14. The vectors $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent if and only if the only solution to

 $a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_m\vec{v}_m = \vec{0}$

is the trivial solution: $a_1 = a_2 = \cdots = a_m = 0$.

Example 15. Suppose that A is an $n \times m$ matrix whose columns are linearly independent. What is ker(A)?

Theorem 16. Let $\{\vec{v}_1, \ldots, \vec{v}_m\}$ be a set of vectors in \mathbb{R}^n . The following are equivalent.

- (a) The vectors $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent.
- (b) None of the vectors $\vec{v}_1, \ldots, \vec{v}_m$ are redundant.
- (c) None of the vectors is a linear combination of the other vectors.
- (d) If $a_1 \vec{v}_1 + \dots + a_m \vec{v}_m = \vec{0}$, then $a_1 = \dots = a_m = 0$.

(e) ker
$$\begin{bmatrix} \downarrow & & \downarrow \\ \vec{v}_1 & \cdots & \vec{v}_m \\ \downarrow & & \downarrow \end{bmatrix} = \{\vec{0}\}.$$

(f) rank $\begin{bmatrix} \downarrow & & \downarrow \\ \vec{v}_1 & \cdots & \vec{v}_m \\ \downarrow & & \downarrow \end{bmatrix} = m.$

Theorem 17. Let $\{\vec{v}_1, \ldots, \vec{v}_m\}$ be a set of vectors in a subspace V of \mathbb{R}^n . The set of vectors $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent if and only if every vector $\vec{v} \in V$ can be expressed uniquely as a linear combination

$$\vec{v} = a_1 \vec{v}_1 + \dots + a_m \vec{v}_m.$$

Proof.

- (1) Find a nontrivial relation among the vectors $\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}$.
- (2) Is the set of vectors $\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$ a linear subspace of \mathbb{R}^3 ? Explain.
- (3) Let $A = \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \\ | & | & | & | \end{bmatrix}$ and suppose $\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$ is in the kernel of A. Express \vec{v}_4 as a linear combination of \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .
- (4) Suppose that \vec{v}_1, \vec{v}_2 , and \vec{v}_3 are linearly independent vectors in \mathbb{R}^4 . Find rref $\begin{bmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ | & | & | \end{bmatrix}$.